# Modicon

# MCSESM, MCSESM-E, MCSESP Managed Switch Configuration User Manual



The information provided in this documentation contains general descriptions and/or technical characteristics of the performance of the products contained herein. This documentation is not intended as a substitute for and is not to be used for determining suitability or reliability of these products for specific user applications. It is the duty of any such user or integrator to perform the appropriate and complete risk analysis, evaluation and testing of the products with respect to the relevant specific application or use thereof. Neither Schneider Electric nor any of its affiliates or subsidiaries shall be responsible or liable for misuse of the information contained herein. If you have any suggestions for improvements or amendments or have found errors in this publication, please notify us.

You agree not to reproduce, other than for your own personal, noncommercial use, all or part of this document on any medium whatsoever without permission of Schneider Electric, given in writing. You also agree not to establish any hypertext links to this document or its content. Schneider Electric does not grant any right or license for the personal and noncommercial use of the document or its content, except for a non-exclusive license to consult it on an "as is" basis, at your own risk. All other rights are reserved.

All pertinent state, regional, and local safety regulations must be observed when installing and using this product. For reasons of safety and to help ensure compliance with documented system data, only the manufacturer must perform repairs to components.

When devices are used for applications with technical safety requirements, the relevant instructions must be followed.

Failure to use Schneider Electric software or approved software with our hardware products may result in injury, harm, or improper operating results.

Failure to observe this information can result in injury or equipment damage.

© 2021 Schneider Electric. All Rights Reserved.

## Contents

|        | Safety information                                              | 11 |
|--------|-----------------------------------------------------------------|----|
|        | About this Manual                                               | 13 |
|        | Validity Note                                                   | 13 |
|        | User Comments                                                   | 13 |
|        | Related Documents                                               |    |
|        | Кеу                                                             | 14 |
|        | Replacing a faulty device                                       | 15 |
| 1      | User interfaces                                                 |    |
| 1.1    | Graphical User Interface                                        |    |
| 1.2    | Command Line Interface                                          |    |
| 1.2.1  | Preparing the data connection                                   |    |
| 1.2.1  | Access to the Command Line Interface using Telnet               |    |
| 1.2.2  | Access to the Command Line Interface using SSH (Secure Shell)   |    |
| 1.2.3  | Access to the Command Line Interface using 331 (Secure Shell)   |    |
| 1.2.4  | Mode-based command hierarchy.                                   |    |
| 1.2.6  | Executing the commands.                                         |    |
| 1.2.7  | Structure of a command                                          |    |
| 1.2.8  | Examples of commands                                            |    |
| 1.2.9  |                                                                 |    |
| 1.2.10 | Key combinations.                                               |    |
| 1.2.11 | Data entry elements.                                            |    |
| 1.2.12 | Use cases                                                       |    |
| 1.2.12 | Service Shell                                                   |    |
| 1.3    | System monitor                                                  |    |
| 1.3.1  | Functional scope                                                |    |
| 1.3.1  | Starting the System Monitor                                     |    |
|        |                                                                 |    |
| 2      | Specifying the IP parameters                                    |    |
| 2.1    | IP parameter basics                                             |    |
| 2.1.1  | IPv4                                                            |    |
| 2.1.2  | IPv6                                                            | 47 |
| 2.2    | Specifying the IP parameters using the Command Line Interface   | 52 |
| 2.2.1  | IPv4                                                            | 52 |
| 2.2.2  | IPv6                                                            | 53 |
| 2.3    | Specifying the IP parameters using Ethernet Switch Configurator |    |
| 2.4    | Specifying the IP parameters using the Graphical User Interface |    |
| 2.4.1  | IPv4                                                            | 56 |
| 2.4.2  | IPv6                                                            | 57 |
| 2.5    | Specifying the IP parameters using BOOTP                        | 58 |
| 2.6    | Specifying the IP parameters using DHCP                         | 59 |
| 2.6.1  | IPv4                                                            |    |
| 2.6.2  | IPv6                                                            |    |
| 2.7    | Management address conflict detection                           |    |
| 2.7.1  | Active and passive detection                                    |    |
| 2.8    | Duplicate Address Detection                                     |    |
|        |                                                                 | 00 |

| 3                                                                                                                                                                  | Access to the device                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 65                                                                                     |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|
| 3.1                                                                                                                                                                | Access roles                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 65                                                                                     |
| 3.2                                                                                                                                                                | First login (Password change)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 66                                                                                     |
| 3.3                                                                                                                                                                | Authentication lists                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 67                                                                                     |
| 3.3.1                                                                                                                                                              | Applications                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 67                                                                                     |
| 3.3.2                                                                                                                                                              | Policies                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 67                                                                                     |
| 3.3.3                                                                                                                                                              | Managing authentication lists                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 67                                                                                     |
| 3.3.4                                                                                                                                                              | Adjust the settings                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 68                                                                                     |
| 3.4                                                                                                                                                                | User management                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 70                                                                                     |
| 3.4.1                                                                                                                                                              | Access roles                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 70                                                                                     |
| 3.4.2                                                                                                                                                              | Managing user accounts                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                        |
| 3.4.3                                                                                                                                                              | Default setting                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                        |
| 3.4.4                                                                                                                                                              | Changing default passwords                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                        |
| 3.4.5                                                                                                                                                              | Setting up a new user account.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                        |
| 3.4.6                                                                                                                                                              | Deactivating the user account                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                        |
| 3.4.7                                                                                                                                                              | Adjusting policies for passwords                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                        |
| 3.5                                                                                                                                                                | LDAP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                        |
| 3.5.1                                                                                                                                                              | Coordination with the server administrator.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                        |
| 3.5.2                                                                                                                                                              | Example configuration                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                        |
| 3.6                                                                                                                                                                | SNMP access.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                        |
| 3.6.1                                                                                                                                                              | SNMPv1/v2 access                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                        |
| 3.6.2                                                                                                                                                              | SNMPv3 access                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                        |
| 3.7                                                                                                                                                                | Out of Band access                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                        |
| 3.7.1                                                                                                                                                              | Specifying the IP parameters                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                        |
| 3.7.2                                                                                                                                                              | Disable the USB network interface                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 84                                                                                     |
| -                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                        |
| 4                                                                                                                                                                  | Synchronizing the system time in the network                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                        |
| <b>4</b><br>4.1                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 85                                                                                     |
|                                                                                                                                                                    | Synchronizing the system time in the network                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 85<br>85                                                                               |
| 4.1                                                                                                                                                                | Synchronizing the system time in the network                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 85<br>85<br>85                                                                         |
| 4.1<br>4.1.1                                                                                                                                                       | Synchronizing the system time in the network.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 85<br>85<br>85<br>87                                                                   |
| 4.1<br>4.1.1<br>4.1.2                                                                                                                                              | Synchronizing the system time in the network.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 85<br>85<br>85<br>87<br>88                                                             |
| 4.1<br>4.1.1<br>4.1.2<br>4.2                                                                                                                                       | Synchronizing the system time in the network.<br>Basic settings.<br>Setting the time                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 85<br>85<br>87<br>87<br>88                                                             |
| 4.1<br>4.1.1<br>4.1.2<br>4.2<br>4.2.1                                                                                                                              | Synchronizing the system time in the network<br>Basic settings.<br>Setting the time<br>Automatic daylight saving time changeover.<br>SNTP<br>Preparation.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 85<br>85<br>87<br>87<br>88<br>89<br>90                                                 |
| 4.1<br>4.1.1<br>4.1.2<br>4.2<br>4.2.1<br>4.2.2                                                                                                                     | Synchronizing the system time in the network. Basic settings Setting the time Automatic daylight saving time changeover. SNTP Preparation. Defining settings of the SNTP client.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 85<br>85<br>87<br>88<br>89<br>90<br>91                                                 |
| 4.1<br>4.1.1<br>4.1.2<br>4.2<br>4.2.1<br>4.2.2<br>4.2.3                                                                                                            | Synchronizing the system time in the network. Basic settings Setting the time Automatic daylight saving time changeover. SNTP Preparation. Defining settings of the SNTP client. Specifying SNTP server settings.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 85<br>85<br>87<br>88<br>89<br>90<br>91<br>92                                           |
| 4.1<br>4.1.1<br>4.1.2<br>4.2<br>4.2.1<br>4.2.2<br>4.2.3<br>4.3                                                                                                     | Synchronizing the system time in the network. Basic settings Setting the time Automatic daylight saving time changeover. SNTP Preparation. Defining settings of the SNTP client. Specifying SNTP server settings PTP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 85<br>85<br>87<br>88<br>89<br>90<br>91<br>92<br>92                                     |
| 4.1<br>4.1.1<br>4.1.2<br>4.2<br>4.2.1<br>4.2.2<br>4.2.3<br>4.3.3<br>4.3.1<br>4.3.2<br>4.3.3                                                                        | Synchronizing the system time in the network.         Basic settings.         Setting the time         Automatic daylight saving time changeover.         SNTP         Preparation.         Defining settings of the SNTP client.         Specifying SNTP server settings         PTP         Types of clocks         Best Master Clock algorithm         Delay measurement.                                                                                                                                                                                                                                                                                                                            | 85<br>85<br>87<br>88<br>90<br>91<br>92<br>92<br>93<br>93                               |
| 4.1<br>4.1.1<br>4.1.2<br>4.2<br>4.2.1<br>4.2.2<br>4.2.3<br>4.3.3<br>4.3.1<br>4.3.2<br>4.3.3<br>4.3.4                                                               | Synchronizing the system time in the network.         Basic settings.         Setting the time         Automatic daylight saving time changeover.         SNTP         Preparation.         Defining settings of the SNTP client.         Specifying SNTP server settings         PTP         Types of clocks         Best Master Clock algorithm         Delay measurement.         PTP domains                                                                                                                                                                                                                                                                                                        | 85<br>85<br>87<br>88<br>90<br>91<br>92<br>92<br>93<br>93<br>93                         |
| 4.1<br>4.1.1<br>4.1.2<br>4.2<br>4.2.1<br>4.2.2<br>4.2.3<br>4.3.3<br>4.3.1<br>4.3.2<br>4.3.3                                                                        | Synchronizing the system time in the network.         Basic settings.         Setting the time         Automatic daylight saving time changeover.         SNTP         Preparation.         Defining settings of the SNTP client.         Specifying SNTP server settings         PTP         Types of clocks         Best Master Clock algorithm         Delay measurement.                                                                                                                                                                                                                                                                                                                            | 85<br>85<br>87<br>88<br>90<br>91<br>92<br>92<br>93<br>93<br>93                         |
| 4.1<br>4.1.1<br>4.1.2<br>4.2<br>4.2.1<br>4.2.2<br>4.2.3<br>4.3.3<br>4.3.1<br>4.3.2<br>4.3.3<br>4.3.4                                                               | Synchronizing the system time in the network.         Basic settings.         Setting the time         Automatic daylight saving time changeover.         SNTP         Preparation.         Defining settings of the SNTP client.         Specifying SNTP server settings         PTP         Types of clocks         Best Master Clock algorithm         Delay measurement.         PTP domains                                                                                                                                                                                                                                                                                                        | 85<br>85<br>87<br>88<br>90<br>91<br>92<br>93<br>93<br>93<br>93<br>94<br>94             |
| 4.1<br>4.1.1<br>4.1.2<br>4.2<br>4.2.1<br>4.2.2<br>4.2.3<br>4.3<br>4.3.1<br>4.3.2<br>4.3.3<br>4.3.4<br>4.3.5                                                        | Synchronizing the system time in the network<br>Basic settings<br>Setting the time<br>Automatic daylight saving time changeover.<br>SNTP<br>Preparation.<br>Defining settings of the SNTP client.<br>Specifying SNTP server settings<br>PTP<br>Types of clocks<br>Best Master Clock algorithm<br>Delay measurement.<br>PTP domains<br>Using PTP                                                                                                                                                                                                                                                                                                                                                         | 85<br>85<br>87<br>88<br>90<br>91<br>92<br>93<br>92<br>93<br>93<br>94<br>94<br>95       |
| 4.1<br>4.1.1<br>4.1.2<br>4.2<br>4.2.1<br>4.2.2<br>4.2.3<br>4.3.3<br>4.3.1<br>4.3.2<br>4.3.3<br>4.3.4<br>4.3.5<br><b>5</b>                                          | Synchronizing the system time in the network.         Basic settings.         Setting the time         Automatic daylight saving time changeover.         SNTP         Preparation.         Defining settings of the SNTP client.         Specifying SNTP server settings.         PTP         Types of clocks         Best Master Clock algorithm         Delay measurement.         PTP domains         Using PTP         Managing configuration profiles                                                                                                                                                                                                                                             | 85<br>85<br>87<br>88<br>90<br>91<br>92<br>93<br>93<br>93<br>94<br>94<br>95             |
| 4.1<br>4.1.1<br>4.1.2<br>4.2<br>4.2.1<br>4.2.2<br>4.2.3<br>4.3.3<br>4.3.1<br>4.3.2<br>4.3.3<br>4.3.4<br>4.3.5<br><b>5</b><br>5.1                                   | Synchronizing the system time in the network.         Basic settings         Setting the time         Automatic daylight saving time changeover.         SNTP         Preparation.         Defining settings of the SNTP client.         Specifying SNTP server settings         PTP         Types of clocks         Best Master Clock algorithm         Delay measurement.         PTP domains         Using PTP         Managing configuration profiles         Detecting changed settings                                                                                                                                                                                                            | 85<br>85<br>87<br>88<br>90<br>91<br>92<br>93<br>93<br>93<br>94<br>94<br>95<br>95       |
| 4.1<br>4.1.1<br>4.1.2<br>4.2<br>4.2.1<br>4.2.2<br>4.2.3<br>4.3.4<br>4.3.1<br>4.3.2<br>4.3.3<br>4.3.4<br>4.3.5<br><b>5</b><br>5.1<br>5.1.1                          | Synchronizing the system time in the network.       Basic settings.         Setting the time       Setting the time         Automatic daylight saving time changeover.       SNTP         SNTP       Preparation.         Defining settings of the SNTP client.       Specifying SNTP server settings         PTP       Specifying SNTP server settings         PTP       State Clock algorithm         Delay measurement.       PTP domains         Using PTP       State Clock algorithm         Detecting changed settings       Volatile memory (RAM) and non-volatile memory (NVM)                                                                                                                 | 85<br>85<br>87<br>88<br>90<br>91<br>92<br>93<br>93<br>94<br>95<br>95<br>95<br>95       |
| 4.1<br>4.1.1<br>4.1.2<br>4.2<br>4.2.1<br>4.2.2<br>4.2.3<br>4.3.4<br>4.3.2<br>4.3.3<br>4.3.4<br>4.3.5<br><b>5</b><br>5.1<br>5.1.1<br>5.1.2                          | Synchronizing the system time in the network.         Basic settings.         Setting the time         Automatic daylight saving time changeover.         SNTP         Preparation.         Defining settings of the SNTP client.         Specifying SNTP server settings         PTP         Types of clocks         Best Master Clock algorithm         Delay measurement.         PTP domains         Using PTP         Managing configuration profiles         Detecting changed settings         Volatile memory (RAM) and non-volatile memory (NVM)         External memory (EAM) and non-volatile memory (NVM)                                                                                   | 85<br>85<br>87<br>88<br>90<br>92<br>93<br>93<br>94<br>95<br>95<br>95<br>95<br>97       |
| 4.1<br>4.1.2<br>4.2<br>4.2.1<br>4.2.2<br>4.2.3<br>4.3.3<br>4.3.1<br>4.3.2<br>4.3.3<br>4.3.4<br>4.3.5<br><b>5</b><br>5.1<br>5.1.1<br>5.1.1<br>5.1.2<br>5.2          | Synchronizing the system time in the network.         Basic settings.         Setting the time         Automatic daylight saving time changeover.         SNTP         Preparation.         Defining settings of the SNTP client.         Specifying SNTP server settings.         PTP         Types of clocks         Best Master Clock algorithm         Delay measurement.         PTP domains         Using PTP         Managing configuration profiles         Detecting changed settings         Volatile memory (RAM) and non-volatile memory (NVM)         External memory (EAM) and non-volatile memory (NVM).                                                                                 | 85<br>85<br>87<br>88<br>90<br>91<br>92<br>93<br>93<br>94<br>95<br>95<br>95<br>97<br>97 |
| 4.1<br>4.1.1<br>4.1.2<br>4.2<br>4.2.1<br>4.2.2<br>4.2.3<br>4.3.3<br>4.3.1<br>4.3.2<br>4.3.3<br>4.3.4<br>4.3.5<br><b>5</b><br>5.1<br>5.1.1<br>5.1.2<br>5.2<br>5.2.1 | Synchronizing the system time in the network         Basic settings         Setting the time         Automatic daylight saving time changeover.         SNTP         Preparation         Defining settings of the SNTP client.         Specifying SNTP server settings         PTP         Types of clocks         Best Master Clock algorithm         Delay measurement.         PTP domains         Using PTP         Managing configuration profiles         Detecting changed settings         Volatile memory (RAM) and non-volatile memory (NVM)         External memory (EAM) and non-volatile memory (NVM)         Saving the settings.         Saving the configuration profile in the device. | 85<br>85<br>87<br>88<br>90<br>92<br>93<br>93<br>94<br>95<br>95<br>95<br>97<br>97<br>99 |

| 5.3<br>5.3.1   | Loading settings                                                                                       |     |
|----------------|--------------------------------------------------------------------------------------------------------|-----|
| 5.3.2          | Loading the configuration profile from the external memory                                             | 102 |
| 5.3.3          | Importing a configuration profile                                                                      | 104 |
| 5.4            | Reset the device to the factory defaults                                                               | 107 |
| 5.4.1          | Using the Graphical User Interface or Command Line Interface                                           | 107 |
| 5.4.2          | Using the System Monitor                                                                               | 107 |
| 6              | Loading software updates                                                                               | 109 |
| 6.1            | Software update from the PC                                                                            | 109 |
| 6.2            | Software update from a server                                                                          | 110 |
| 6.3            | Software update from the external memory                                                               | 111 |
| 6.3.1          | Manually—initiated by the administrator                                                                | 111 |
| 6.3.2          | Automatically—initiated by the device                                                                  | 111 |
| 6.4            | Loading a previous software version                                                                    | 113 |
| 7              | Configuring the ports                                                                                  | 115 |
| 7.1            | Enabling/disabling the port                                                                            | 115 |
| 7.2            | Selecting the operating mode                                                                           | 116 |
| 7.3            | Gigabit Ethernet mode for ports                                                                        |     |
| 7.3.1          | Example                                                                                                |     |
| 8              | Assistance in the protection from unauthorized access                                                  | 119 |
| 8.1            | Changing the SNMPv1/v2 community                                                                       | 119 |
| 8.2            | Disabling SNMPv1/v2                                                                                    | 120 |
| 8.3            | Disabling HTTP                                                                                         |     |
| 8.4            | Disabling Telnet                                                                                       |     |
| 8.5            | Disabling the Ethernet Switch Configurator access                                                      |     |
| 8.6            | Activating the IP access restriction                                                                   |     |
|                | C C                                                                                                    |     |
| 8.7            | Adjusting the session timeouts                                                                         |     |
| 9              | Controlling the data traffic                                                                           |     |
| 9.1            | Helping protect against unauthorized access                                                            | 129 |
| 9.2            | ACL                                                                                                    |     |
| 9.2.1          | Creating and editing IPv4 rules<br>Creating and configuring an IP ACL using the Command Line Interface |     |
| 9.2.2<br>9.2.3 | Creating and conliguing an IP ACL using the Command Line Interface                                     |     |
| 9.2.3<br>9.2.4 | Creating and configuring a MAC ACL using the Command Line Interface                                    |     |
| 9.2.5          | Assigning ACLs to a port or VLAN.                                                                      |     |
| 9.3            | MAC authentication bypass                                                                              |     |
| 10             | Network load control                                                                                   | 137 |
| 10.1           | Direct packet distribution                                                                             |     |
| 10.1.1         | Learning MAC addresses.                                                                                |     |
| 10.1.1         | Aging of learned MAC addresses                                                                         |     |
| 10.1.3         | Static address entries.                                                                                |     |
| 10.2           | Multicasts                                                                                             |     |
| 10.2.1         | Example of a Multicast application.                                                                    |     |
| 10.2.2         | IGMP snooping                                                                                          |     |
| 10.3           | Rate limiter                                                                                           | 144 |
|                |                                                                                                        |     |

| 10.4                                                                                                                                                                                         | QoS/Priority                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                   |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------|
| 10.4.1                                                                                                                                                                                       | Description of prioritization.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                   |
| 10.4.2<br>10.4.3                                                                                                                                                                             | Handling of received priority information                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                   |
| 10.4.3                                                                                                                                                                                       | VLAN taggingIP ToS (Type of Service)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                   |
| 10.4.4                                                                                                                                                                                       | Handling of traffic classes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                   |
| 10.4.6                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                   |
| 10.4.7                                                                                                                                                                                       | Management prioritization                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                   |
| 10.4.8                                                                                                                                                                                       | Setting prioritization                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                   |
| 10.5                                                                                                                                                                                         | Flow control                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                   |
| 10.5.1                                                                                                                                                                                       | Halfduplex or fullduplex link                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                   |
| 10.5.2                                                                                                                                                                                       | Setting up the Flow Control                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                   |
| 11                                                                                                                                                                                           | Configuring template-based TSN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 159                                                                                                                               |
| 11.1                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                   |
| 11.2                                                                                                                                                                                         | Example                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                   |
| 11.2.1                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                   |
| 11.2.1                                                                                                                                                                                       | Set up the devices                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                   |
| 11.2.2                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 100                                                                                                                               |
| 12                                                                                                                                                                                           | VLANs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                   |
| 12.1                                                                                                                                                                                         | Examples of VLANs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                   |
| 12.1.1                                                                                                                                                                                       | Example 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                   |
| 12.1.2                                                                                                                                                                                       | Example 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                   |
| 12.2                                                                                                                                                                                         | Guest VLAN / Unauthenticated VLAN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 172                                                                                                                               |
| 12.3                                                                                                                                                                                         | RADIUS VLAN assignment                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 174                                                                                                                               |
| 12.4                                                                                                                                                                                         | Creating a Voice VLAN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 175                                                                                                                               |
| 13                                                                                                                                                                                           | Redundancy                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 177                                                                                                                               |
| 13.1                                                                                                                                                                                         | Network Topology vs. Redundancy Protocols                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 177                                                                                                                               |
| 13.1.1                                                                                                                                                                                       | Network topologies.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                   |
|                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 177                                                                                                                               |
| 13.1.2                                                                                                                                                                                       | Redundancy Protocols                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                   |
| 13.1.2<br>13.1.3                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 178                                                                                                                               |
|                                                                                                                                                                                              | Redundancy Protocols       Combinations of Redundancies         Media Redundancy Protocol (MRP)       Combinations                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 178<br>179<br>180                                                                                                                 |
| 13.1.3                                                                                                                                                                                       | Redundancy Protocols                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 178<br>179<br>180                                                                                                                 |
| 13.1.3<br>13.2<br>13.2.1<br>13.2.2                                                                                                                                                           | Redundancy Protocols         Combinations of Redundancies         Media Redundancy Protocol (MRP)         Network Structure         Reconfiguration time                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 178<br>179<br>180<br>180<br>181                                                                                                   |
| 13.1.3<br>13.2<br>13.2.1<br>13.2.2<br>13.2.3                                                                                                                                                 | Redundancy Protocols         Combinations of Redundancies         Media Redundancy Protocol (MRP)         Network Structure         Reconfiguration time         Advanced mode                                                                                                                                                                                                                                                                                                                                                                                                                                  | 178<br>179<br>180<br>180<br>181<br>181                                                                                            |
| 13.1.3<br>13.2<br>13.2.1<br>13.2.2<br>13.2.3<br>13.2.4                                                                                                                                       | Redundancy Protocols         Combinations of Redundancies         Media Redundancy Protocol (MRP)         Network Structure         Reconfiguration time         Advanced mode         Prerequisites for MRP                                                                                                                                                                                                                                                                                                                                                                                                    | 178<br>179<br>180<br>180<br>181<br>181<br>181                                                                                     |
| 13.1.3<br>13.2<br>13.2.1<br>13.2.2<br>13.2.3<br>13.2.4<br>13.2.5                                                                                                                             | Redundancy Protocols         Combinations of Redundancies         Media Redundancy Protocol (MRP)         Network Structure         Reconfiguration time         Advanced mode         Prerequisites for MRP         Example Configuration                                                                                                                                                                                                                                                                                                                                                                      | 178<br>179<br>180<br>180<br>181<br>181<br>181<br>182                                                                              |
| 13.1.3<br>13.2<br>13.2.1<br>13.2.2<br>13.2.3<br>13.2.4<br>13.2.5<br>13.2.6                                                                                                                   | Redundancy Protocols         Combinations of Redundancies         Media Redundancy Protocol (MRP)         Network Structure         Reconfiguration time         Advanced mode         Prerequisites for MRP         Example Configuration         MRP over LAG                                                                                                                                                                                                                                                                                                                                                 | 178<br>179<br>180<br>180<br>181<br>181<br>181<br>182<br>186                                                                       |
| 13.1.3<br>13.2<br>13.2.1<br>13.2.2<br>13.2.3<br>13.2.4<br>13.2.5<br>13.2.6<br>13.3                                                                                                           | Redundancy Protocols         Combinations of Redundancies         Media Redundancy Protocol (MRP)         Network Structure         Reconfiguration time         Advanced mode         Prerequisites for MRP         Example Configuration         MRP over LAG         HIPER Ring Client                                                                                                                                                                                                                                                                                                                       | 178<br>179<br>180<br>181<br>181<br>181<br>182<br>186<br>190                                                                       |
| 13.1.3<br>13.2<br>13.2.1<br>13.2.2<br>13.2.3<br>13.2.4<br>13.2.5<br>13.2.6<br>13.3<br>13.3.1                                                                                                 | Redundancy Protocols         Combinations of Redundancies         Media Redundancy Protocol (MRP)         Network Structure         Reconfiguration time         Advanced mode         Prerequisites for MRP         Example Configuration         MRP over LAG         HIPER Ring Client         VLANS on the HIPER Ring                                                                                                                                                                                                                                                                                       | 178<br>179<br>180<br>181<br>181<br>181<br>182<br>186<br>190<br>191                                                                |
| 13.1.3<br>13.2<br>13.2.1<br>13.2.2<br>13.2.3<br>13.2.4<br>13.2.5<br>13.2.6<br>13.3<br>13.3.1<br>13.3.2                                                                                       | Redundancy Protocols         Combinations of Redundancies         Media Redundancy Protocol (MRP)         Network Structure         Reconfiguration time         Advanced mode         Prerequisites for MRP         Example Configuration         MRP over LAG         HIPER Ring Client         VLANS on the HIPER Ring         HIPER Ring over LAG                                                                                                                                                                                                                                                           | 178<br>179<br>180<br>180<br>181<br>181<br>181<br>182<br>186<br>190<br>191<br>191                                                  |
| 13.1.3<br>13.2<br>13.2.1<br>13.2.2<br>13.2.3<br>13.2.4<br>13.2.5<br>13.2.6<br>13.3<br>13.3.1<br>13.3.2<br>13.4                                                                               | Redundancy Protocols.         Combinations of Redundancies.         Media Redundancy Protocol (MRP)         Network Structure         Reconfiguration time         Advanced mode.         Prerequisites for MRP         Example Configuration.         MRP over LAG         HIPER Ring Client.         VLANS on the HIPER Ring         HIPER Ring over LAG         Spanning Tree                                                                                                                                                                                                                                | 178<br>179<br>180<br>181<br>181<br>181<br>182<br>186<br>190<br>191<br>191<br>192                                                  |
| 13.1.3<br>13.2<br>13.2.1<br>13.2.2<br>13.2.3<br>13.2.4<br>13.2.5<br>13.2.6<br>13.3<br>13.3.1<br>13.3.2<br>13.4<br>13.4.1                                                                     | Redundancy Protocols.         Combinations of Redundancies         Media Redundancy Protocol (MRP)         Network Structure         Reconfiguration time         Advanced mode         Prerequisites for MRP         Example Configuration         MRP over LAG         HIPER Ring Client         VLANS on the HIPER Ring         HIPER Ring over LAG         Spanning Tree         Basics.                                                                                                                                                                                                                    | 178<br>179<br>180<br>181<br>181<br>181<br>182<br>186<br>190<br>191<br>191<br>192<br>192                                           |
| 13.1.3<br>13.2<br>13.2.1<br>13.2.2<br>13.2.3<br>13.2.4<br>13.2.5<br>13.2.6<br>13.3<br>13.3.1<br>13.3.2<br>13.4<br>13.4.1<br>13.4.2                                                           | Redundancy Protocols         Combinations of Redundancies         Media Redundancy Protocol (MRP)         Network Structure         Reconfiguration time         Advanced mode         Prerequisites for MRP         Example Configuration         MRP over LAG         HIPER Ring Client         VLANS on the HIPER Ring         HIPER Ring over LAG         Spanning Tree         Basics         Rules for Creating the Tree Structure                                                                                                                                                                        | 178<br>179<br>180<br>181<br>181<br>181<br>182<br>186<br>190<br>191<br>192<br>192<br>195                                           |
| 13.1.3<br>13.2<br>13.2.1<br>13.2.2<br>13.2.3<br>13.2.4<br>13.2.5<br>13.2.6<br>13.3<br>13.3.1<br>13.3.2<br>13.4<br>13.4.1<br>13.4.2<br>13.4.3                                                 | Redundancy Protocols.         Combinations of Redundancies.         Media Redundancy Protocol (MRP)         Network Structure         Reconfiguration time         Advanced mode.         Prerequisites for MRP         Example Configuration.         MRP over LAG         HIPER Ring Client.         VLANS on the HIPER Ring         HIPER Ring over LAG.         Spanning Tree         Basics.         Rules for Creating the Tree Structure         Examples                                                                                                                                                | 178<br>179<br>180<br>181<br>181<br>181<br>182<br>186<br>190<br>191<br>191<br>192<br>195<br>198                                    |
| 13.1.3<br>13.2<br>13.2.1<br>13.2.2<br>13.2.3<br>13.2.4<br>13.2.5<br>13.2.6<br>13.3<br>13.3.1<br>13.3.2<br>13.4<br>13.4.1<br>13.4.2<br>13.4.3<br>13.5                                         | Redundancy Protocols.         Combinations of Redundancies.         Media Redundancy Protocol (MRP)         Network Structure         Reconfiguration time         Advanced mode.         Prerequisites for MRP         Example Configuration.         MRP over LAG         HIPER Ring Client         VLANS on the HIPER Ring         HIPER Ring over LAG.         Spanning Tree         Basics.         Rules for Creating the Tree Structure         Examples.         The Rapid Spanning Tree Protocol                                                                                                       | 178<br>179<br>180<br>181<br>181<br>181<br>182<br>186<br>190<br>191<br>192<br>192<br>192<br>198<br>201                             |
| 13.1.3<br>13.2<br>13.2.1<br>13.2.2<br>13.2.3<br>13.2.4<br>13.2.5<br>13.2.6<br>13.3<br>13.3.1<br>13.3.2<br>13.4<br>13.4.1<br>13.4.2<br>13.4.3<br>13.5<br>13.5.1                               | Redundancy Protocols.         Combinations of Redundancies.         Media Redundancy Protocol (MRP)         Network Structure         Reconfiguration time         Advanced mode.         Prerequisites for MRP         Example Configuration.         MRP over LAG         HIPER Ring Client.         VLANS on the HIPER Ring         HIPER Ring over LAG         Spanning Tree         Basics.         Rules for Creating the Tree Structure         Examples.         The Rapid Spanning Tree Protocol         Port roles                                                                                    | 178<br>179<br>180<br>181<br>181<br>181<br>182<br>186<br>190<br>191<br>192<br>192<br>195<br>198<br>201<br>201                      |
| 13.1.3<br>13.2<br>13.2.1<br>13.2.2<br>13.2.3<br>13.2.4<br>13.2.5<br>13.2.6<br>13.3<br>13.3.1<br>13.3.2<br>13.4<br>13.4.1<br>13.4.2<br>13.4.3<br>13.5<br>13.5.1<br>13.5.1                     | Redundancy Protocols.         Combinations of Redundancies.         Media Redundancy Protocol (MRP)         Network Structure         Reconfiguration time         Advanced mode.         Prerequisites for MRP         Example Configuration.         MRP over LAG         HIPER Ring Client         VLANS on the HIPER Ring         HIPER Ring over LAG         Spanning Tree         Basics.         Rules for Creating the Tree Structure         Examples         The Rapid Spanning Tree Protocol         Port roles         Port states                                                                  | 178<br>179<br>180<br>181<br>181<br>181<br>182<br>186<br>190<br>191<br>192<br>192<br>195<br>198<br>201<br>201<br>202               |
| 13.1.3<br>13.2<br>13.2.1<br>13.2.2<br>13.2.3<br>13.2.4<br>13.2.5<br>13.2.6<br>13.3<br>13.3.1<br>13.3.2<br>13.4<br>13.4.1<br>13.4.2<br>13.4.3<br>13.5<br>13.5.1<br>13.5.2<br>13.5.3           | Redundancy Protocols.         Combinations of Redundancies.         Media Redundancy Protocol (MRP)         Network Structure         Reconfiguration time         Advanced mode         Prerequisites for MRP         Example Configuration.         MRP over LAG         HIPER Ring Client         VLANS on the HIPER Ring         HIPER Ring over LAG         Spanning Tree         Basics.         Rules for Creating the Tree Structure         Examples         The Rapid Spanning Tree Protocol         Port states         Spanning Tree Priority Vector                                                | 178<br>179<br>180<br>181<br>181<br>181<br>182<br>186<br>190<br>191<br>192<br>195<br>198<br>201<br>201<br>202<br>203               |
| 13.1.3<br>13.2<br>13.2.1<br>13.2.2<br>13.2.3<br>13.2.4<br>13.2.5<br>13.2.6<br>13.3<br>13.3.1<br>13.3.2<br>13.4<br>13.4.1<br>13.4.2<br>13.4.3<br>13.5<br>13.5.1<br>13.5.1                     | Redundancy Protocols.         Combinations of Redundancies.         Media Redundancy Protocol (MRP)         Network Structure         Reconfiguration time         Advanced mode         Prerequisites for MRP         Example Configuration         MRP over LAG         HIPER Ring Client         VLANS on the HIPER Ring         HIPER Ring over LAG         Spanning Tree         Basics.         Rules for Creating the Tree Structure         Examples         The Rapid Spanning Tree Protocol         Port roles         Port states         Spanning Tree Priority Vector         Fast reconfiguration | 178<br>179<br>180<br>181<br>181<br>181<br>181<br>182<br>186<br>190<br>191<br>192<br>195<br>198<br>201<br>201<br>203<br>203        |
| 13.1.3<br>13.2<br>13.2.1<br>13.2.2<br>13.2.3<br>13.2.4<br>13.2.5<br>13.2.6<br>13.3<br>13.3.1<br>13.3.2<br>13.4<br>13.4.1<br>13.4.2<br>13.4.3<br>13.5<br>13.5.1<br>13.5.2<br>13.5.3<br>13.5.4 | Redundancy Protocols.         Combinations of Redundancies.         Media Redundancy Protocol (MRP)         Network Structure         Reconfiguration time         Advanced mode         Prerequisites for MRP         Example Configuration.         MRP over LAG         HIPER Ring Client         VLANS on the HIPER Ring         HIPER Ring over LAG         Spanning Tree         Basics.         Rules for Creating the Tree Structure         Examples         The Rapid Spanning Tree Protocol         Port states         Spanning Tree Priority Vector                                                | 178<br>179<br>180<br>181<br>181<br>181<br>182<br>186<br>190<br>191<br>192<br>195<br>198<br>201<br>201<br>203<br>203<br>203<br>204 |

| 13.6    | Link Aggregation                            |     |
|---------|---------------------------------------------|-----|
| 13.6.1  | Methods of Operation.                       |     |
| 13.6.2  | Link Aggregation Example                    | 210 |
| 13.7    | Link Backup                                 | 212 |
| 13.7.1  | Fail Back Description                       | 212 |
| 13.7.2  | Example Configuration                       | 213 |
| 13.8    | FuseNet                                     | 215 |
| 13.9    | Subring                                     | 216 |
| 13.9.1  | Subring description                         | 216 |
| 13.9.2  | Subring example                             | 218 |
| 13.9.3  | Subring example configuration.              | 219 |
| 13.10   | Subring with LAG                            | 222 |
| 13.10.1 | Example                                     | 222 |
| 13.11   | Ring/Network Coupling                       |     |
| 13.11.1 | Methods of Ring/Network Coupling            |     |
| 13.11.2 | Prepare the Ring/Network Coupling           |     |
| 10.11.2 |                                             |     |
| 14      | Operation diagnosis                         | 241 |
| 14.1    | Sending SNMP traps                          | 241 |
| 14.1.1  | List of SNMP traps                          | 242 |
| 14.1.2  | SNMP traps for configuration activity       | 243 |
| 14.1.3  | SNMP trap setting                           | 243 |
| 14.1.4  | ICMP messaging                              | 244 |
| 14.2    | Monitoring the Device Status                | 245 |
| 14.2.1  | Events which can be monitored               |     |
| 14.2.2  | Configuring the Device Status               |     |
| 14.2.3  | Displaying the Device Status                |     |
| 14.3    | Security Status                             | 248 |
| 14.3.1  | Events which can be monitored               |     |
| 14.3.2  | Configuring the Security Status             |     |
| 14.3.3  | Displaying the Security Status              |     |
| 14.4    | Out-of-Band signaling                       |     |
| 14.4.1  | Controlling the Signal contact              |     |
| 14.4.2  | Monitoring the Device and Security Statuses |     |
| 14.5    | Port status indication                      |     |
| 14.6    | Port event counter                          |     |
| 14.6.1  | Detecting non-matching duplex modes         |     |
| 14.7    | Auto-Disable.                               | 259 |
| 14.8    | Displaying the SFP status                   | 261 |
| 14.9    | Topology discovery                          | 262 |
| 14.9.1  | Displaying the Topology discovery results   |     |
| 14.9.2  | LLDP-Med                                    |     |
| 14.10   | Detecting loops                             |     |
| 14.11   | Help protect against layer 2 network loops  |     |
| 14.11.1 | Application example.                        |     |
| 14.11.2 | Recommendations for redundant ports         |     |
|         |                                             |     |

| 14.12              | Using the Email Notification function                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 269   |
|--------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|
| 14.12.1            | Specify the sender address                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |       |
| 14.12.2            | Specify the triggering events                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |       |
| 14.12.3            | Change the send interval                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |       |
| 14.12.4            | Specify the recipients                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |       |
| 14.12.5            | Specify the mail server.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |       |
| 14.12.6            | Enable/disable the Email Notification function                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |       |
| 14.12.7            | Send a test email                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |       |
| 14.13              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |
| 14.13.1<br>14.13.2 | Global settings                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |
| 14.13.2            | Syslog System Log Syst |       |
| 14.13.4            | Syslog over TLS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |
| 14.13.5            | Audit Trail                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |       |
| 14.14              | Network analysis with TCPdump                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |       |
|                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |
| 14.15              | Monitoring the data traffic.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |       |
| 14.15.1            | Port Mirroring                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |       |
| 14.16              | Self-test                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |       |
| 14.17              | Copper cable test                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 285   |
| 15                 | Advanced functions of the device                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 287   |
| 15.1               | Using the device as a DHCP server                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 287   |
| 15.1.1             | IP Addresses assigned per port or per VLAN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | . 287 |
| 15.1.2             | DHCP server static IP address example                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |       |
| 15.1.3             | DHCP server dynamic IP address range example                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 289   |
| 15.2               | DHCP L2 Relay                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 290   |
| 15.2.1             | Circuit and Remote IDs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 291   |
| 15.2.2             | DHCP L2 Relay configuration                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | . 291 |
| 15.3               | Using the device as a DNS client                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 294   |
| 15.3.1             | Configuring a DNS server example                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 294   |
| 15.4               | GARP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 296   |
| 15.4.1             | Configuring GMRP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |       |
| 15.4.2             | Configuring GVRP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 297   |
| 15.5               | MRP-IEEE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 298   |
| 15.5.1             | MRP operation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |       |
| 15.5.2             | MRP timers                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 298   |
| 15.5.3             | MMRP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |       |
| 15.5.4             | MVRP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 300   |
| 16                 | Industry Protocols                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 303   |
| 16.1               | IEC 61850/MMS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 303   |
| 16.1.1             | Switch model for IEC 61850                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | . 303 |
| 16.1.2             | Integration into a Control System                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | . 304 |
| 16.2               | Modbus TCP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | . 307 |
| 16.2.1             | Client/Server Modbus TCP/IP Mode                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |       |
| 16.2.2             | Supported Functions and Memory Mapping                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |       |
| 16.2.3             | Example Configuration                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |       |
| 16.3               | EtherNet/IP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |       |
| 16.3.1             | Integration into a Control System                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |       |
| 16.3.2             | EtherNet/IP Entity Parameters                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 313   |
| Α                  | Setting up the configuration environment.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 329   |
| A.1                | Setting up a DHCP/BOOTP server                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |       |
|                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 525   |
| _                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |

| A.2    | Setting up a DHCP server with Option 82 | 333 |
|--------|-----------------------------------------|-----|
| A.3    | Preparing access via SSH                | 336 |
| A.3.1  | Generating a key in the device          | 336 |
| A.3.2  | Loading your own key onto the device    | 336 |
| A.3.3  | Preparing the SSH client program        | 337 |
| A.4    | HTTPS certificate                       | 339 |
| A.4.1  | HTTPS certificate management            | 339 |
| A.4.2  | Access through HTTPS                    | 340 |
| В      | Appendix                                | 341 |
| B.1    | Management Information Base (MIB)       | 341 |
| B.2    | List of RFCs                            | 342 |
| B.3    | Underlying IEEE Standards               | 344 |
| B.4    | Underlying IEC Norms                    | 345 |
| B.5    | Underlying ANSI Norms                   | 346 |
| B.6    | Technical Data                          | 347 |
| 16.3.3 | Switching                               | 347 |
| 16.3.4 | VLAN                                    | 347 |
| 16.3.5 | Access Control Lists (ACL)              | 347 |
| B.7    | Copyright of integrated Software        | 348 |
| B.8    | Abbreviations used.                     | 349 |
| С      | Index                                   | 351 |

## **Safety information**

**Note:** Read these instructions carefully, and look at the equipment to become familiar with the device before trying to install, operate, or maintain it. The following special messages may appear throughout this documentation or on the equipment to warn of potential hazards or to call attention to information that clarifies or simplifies a procedure.



The addition of this symbol to a "Danger" or "Warning" safety label indicates that an electrical hazard exists, which will result in personal injury if the instructions are not followed.



This is the safety alert symbol. It is used to alert you to potential personal injury hazards. Obey all safety messages that follow this symbol to avoid possible injury or death.

## **A** DANGER

**DANGER** indicates an imminently hazardous situation which, if not avoided, will result in death or serious injury.

# A WARNING

**WARNING** indicates a potentially hazardous situation which, if not avoided, **can result in** death or serious injury.

# 

**CAUTION** indicates a potentially hazardous situation which, if not avoided, **can result in** minor or moderate injury.

## NOTICE

NOTICE is used to address practices not related to physical injury.

**Note:** Electrical equipment should be installed, operated, serviced, and maintained only by qualified personnel. No responsibility is assumed by Schneider Electric for any consequences arising out of the use of this material.

A qualified person is one who has skills and knowledge related to the construction and operation of electrical equipment and its installation, and has received safety training to recognize and avoid the hazards involved.

© 2021 Schneider Electric. All Rights Reserved.

### About this Manual

#### **Validity Note**

The data and illustrations found in this book are not binding. We reserve the right to modify our products in line with our policy of continuous product development. The information in this document is subject to change without notice and should not be construed as a commitment by Schneider Electric.

#### **User Comments**

We welcome your comments about this document. You can reach us by e-mail at techpub@schneider-electric.com

#### **Related Documents**

The "Configuration" user manual contains the information you need to start operating the device. It takes you step by step from the first startup operation through to the basic settings for operation in your environment.

The "Installation" user manual contains a device description, safety instructions, a description of the display, and the other information that you need to install the device.

The "Graphical User Interface" reference manual contains detailed information on using the graphical user interface to operate the individual functions of the device.

The "Command Line Interface" reference manual contains detailed information on using the Command Line Interface to operate the individual functions of the device.

The ConneXium Network Manager Network Management software provides you with additional options for smooth configuration and monitoring:

- Auto-topology discovery
- Browser interface
- Client/server structure
- Event handling
- Event log
- Simultaneous configuration of multiple devices
- ► Graphical user interface with network layout
- SNMP/OPC gateway

## Key

The designations used in this manual have the following meanings:

|         | List                                                                              |
|---------|-----------------------------------------------------------------------------------|
|         | Work step                                                                         |
| Link    | Cross-reference with link                                                         |
| Note:   | A note emphasizes a significant fact or draws your attention to a dependency.     |
| Courier | Representation of a CLI command or field contents in the graphical user interface |



Execution in the Graphical User Interface

Execution in the Command Line Interface

### **Replacing a faulty device**

The device provides the following plug-and-play solutions for replacing a faulty device with a device of the same type:

- The new device loads the configuration profile of the replaced device from the external memory. See "Loading the configuration profile from the external memory" on page 102.
- The new device gets its IP address using DHCP Option 82. See "DHCP L2 Relay" on page 290. See "Setting up a DHCP server with Option 82" on page 333.

With each solution, upon reboot, the new device gets the same IP settings that the replaced device had.

- For accessing the device management using HTTPS, the device uses a digital certificate. You have the option to import your own certificate to the device. See "HTTPS certificate management" on page 339.
- For accessing the device management using SSH, the device uses an RSA host key. You have the option to import your own host key in PEM format to the device. See "Loading your own key onto the device" on page 336.

### **1** User interfaces

The device lets you specify the settings of the device using the following user interfaces.

Table 1: User interfaces for accessing the device management

| User interface           | Can be reached through                               | Prerequisite                |
|--------------------------|------------------------------------------------------|-----------------------------|
| Graphical User Interface | Ethernet (In-Band)                                   | Web browser                 |
| Command Line Interface   | Ethernet (In-Band)<br>Serial interface (Out-of-Band) | Terminal emulation software |
| System monitor           | Serial interface (Out-of-Band)                       | Terminal emulation software |

## **1.1 Graphical User Interface**

#### **System requirements**

To open the Graphical User Interface, you need the desktop version of a web browser with HTML5 support.

**Note:** Third-party software such as web browsers validate certificates based on criteria such as their expiration date and current cryptographic parameter recommendations. Old certificates can cause errors for example, when they expire or cryptographic recommendations change. To solve validation conflicts with third-party software, transfer your own up-to-date certificate onto the device or regenerate the certificate with the latest firmware.

#### **Starting the Graphical User Interface**

The prerequisite for starting the Graphical User Interface is that the IP parameters are configured in the device. See "Specifying the IP parameters" on page 43.

Perform the following steps:

- □ Start your web browser.
- □ Type the IP address of the device in the address field of the web browser. Use the following form: https://xxx.xxx.xxx
- The web browser sets up the connection to the device and displays the login dialog.
- □ When you want to change the language of the Graphical User Interface, click the appropriate link in the top right corner of the login dialog.
- Enter the user name.
- Enter the password.
- Click the Login button.

The web browser displays the Graphical User Interface.

## **1.2 Command Line Interface**

The Command Line Interface enables you to use the functions of the device through a local or remote connection.

The Command Line Interface provides IT specialists with a familiar environment for configuring IT devices. As an experienced user or administrator, you have knowledge about the basics and about using Schneider Electric devices.

#### **1.2.1 Preparing the data connection**

Information for assembling and starting up your device can be found in the "Installation" user manual.

□ Connect the device with the network. The prerequisite for a successful data connection is the correct setting of the network parameters.

You can access the user interface of the Command Line Interface for example, with the freeware program *PuTTY*.

□ Install the *PuTTY* program on your computer.

#### 1.2.2 Access to the Command Line Interface using Telnet

#### **Telnet connection using Windows**

Telnet is only installed as standard in Windows versions before Windows Vista.

Perform the following steps:

- □ Start the *Command Prompt* program on your computer.
- □ Enter the command telnet <IP\_address>.

| 📾 Administrator: Command Prompt                                                                            | _ 0 | > |
|------------------------------------------------------------------------------------------------------------|-----|---|
| Microsoft Windows [Version 6.1.7601]<br>Copyright (c) 2009 Microsoft Corporation. Alle Rechte vorbehalten. |     | 4 |
| H:\>telnet 192.168.1.5                                                                                     |     |   |
|                                                                                                            |     |   |
|                                                                                                            |     |   |
|                                                                                                            |     |   |
|                                                                                                            |     |   |
|                                                                                                            |     |   |
|                                                                                                            |     |   |
|                                                                                                            |     |   |
|                                                                                                            |     |   |
|                                                                                                            |     |   |
|                                                                                                            |     |   |
|                                                                                                            |     |   |

Figure 1: Command Prompt: Setting up the Telnet connection to the device

#### **Telnet connection using PuTTY**

Perform the following steps:

Start the *PuTTY* program on your computer.

| 🔀 PuTTY Configuration                                                                                                       | <u>? ×</u>                                                                                                                                                                                                                                                                                               |
|-----------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Category:                                                                                                                   |                                                                                                                                                                                                                                                                                                          |
| Category:<br>Session<br>Logging<br>Terminal<br>Bell<br>Features<br>Window<br>Appearance<br>Behaviour<br>Steation<br>Section | Basic options for your PuTTY session         Specify the destination you want to connect to         Host Name (or IP address)       Port         192.168.1.5       23         Connection type:       23         C Raw       I elnet         Code, save or delete a stored session         Saved Sessions |
| Colours<br>Connection<br>Data<br>Proxy<br>Telnet<br>Riogin<br>SSH<br>Serial                                                 | Default Settings       Load         Save       Delete         Close window on exit:                                                                                                                                                                                                                      |
| About Help                                                                                                                  | Cluse window of earl<br>C Always C Never © Dnly on clean exit                                                                                                                                                                                                                                            |

Figure 2: PuTTY input screen

- In the Host Name (or IP address) field you enter the IP address of your device.
   The IP address consists of 4 decimal numbers with values from 0 to 255. The 4 decimal numbers are separated by points.
- □ To select the connection type, select the *Telnet* radio button in the *Connection type* option list.

Click the Open button to set up the data connection to your device.
 The Command Line Interface appears on the screen with a window for entering the user name.
 The device enables up to 5 users to have access to the Command Line Interface at the same time.

**Note:** This device is a security-relevant product. Change the password during the first startup procedure.

Perform the following steps:

- Enter the user name.
  - The default user name is admin.
- □ Press the <Enter> key.

Enter the password. The default password is private. □ Press the <Enter> key. Copyright (c) 2011-2021 Schneider Electric All rights reserved MCSESM-E Release 08.7.00 (Build date 2021-06-22 09:28) System Name : MCSESM-646038d5e836 Management IP : 192.168.1.5 Subnet Mask : 255.255.255.0 Base MAC : 64:60:38:01:02:03 USB IP : 91.0.0.100 USB Mask : 255.255.255.0 System Time : 2021-06-24 12:39:43 NOTE: Enter '?' for Command Help. Command help displays all options that are valid for the particular mode. For the syntax of a particular command form, please consult the documentation. MCSESM-E>

Figure 3: Start screen of the Command Line Interface

#### 1.2.3 Access to the Command Line Interface using SSH (Secure Shell)

In the following example we use the *PuTTY* program. Another option to access your device using SSH is the OpenSSH Suite.

Perform the following steps:

Start the *PuTTY* program on your computer.

| RuTTY Configuration                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Category:                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |
| <ul> <li>Session</li> <li>Logging</li> <li>Terminal</li> <li>Keyboard</li> <li>Bell</li> <li>Features</li> <li>Window</li> <li>Appearance</li> <li>Behaviour</li> <li>Translation</li> <li>Selection</li> <li>Colours</li> <li>Connection</li> <li>Data</li> <li>Proxy</li> <li>Telnet</li> <li>Rlogin</li> <li>SSH</li> <li>Serial</li> </ul> | Basic options for your PuTTY session         Specify the destination you want to connect to         Host Name (or IP address)       Port         132.168.1.5       22         Connection type:       Raw         Raw       Telnet       Rlogin         Load, save or delete a stored session       Saved Sessions         Default Settings       Load         Save       Delete         Close window on exit:       C Only on clean exit |  |
| About Help                                                                                                                                                                                                                                                                                                                                     | Open Cancel                                                                                                                                                                                                                                                                                                                                                                                                                              |  |

Figure 4: PuTTY input screen

- □ In the *Host Name (or IP address)* field you enter the IP address of your device.
- The IP address consists of 4 decimal numbers with values from 0 to 255. The 4 decimal numbers are separated by points.
- □ To specify the connection type, select the *SSH* radio button in the *Connection type* option list. After selecting and setting the required parameters, the device enables you to set up the data connection using SSH.

□ Click the *Open* button to set up the data connection to your device.

Depending on the device and the time at which SSH was configured, setting up the connection takes up to a minute.

When you first log in, towards the end of the connection setup, the *PuTTY* program displays a security alert message and lets you check the fingerprint of the key.

| PuTTY Se | ecurity A                                                                                                                                                                                                                                                                                               | lert                                                                                                               |                                                                                        |                                                                                             |                                                                      |                                                           | ×            |
|----------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|----------------------------------------------------------------------|-----------------------------------------------------------|--------------|
|          | WARNI<br>The set<br>cached<br>server<br>have a<br>to be ti<br>The ne<br>1024 4<br>If you                                                                                                                                                                                                                | NG - POTE<br>in the regis<br>administrat<br>ctually conr<br>he server.<br>w rsa key fi<br>e:62:99:32<br>were expec | key doe:<br>stry. Thi<br>or has c<br>nected to<br>ingerprir<br>::56:07:2<br>:ting this | s not match<br>s means th<br>hanged the<br>o another e<br>ht is:<br>26:1c:c5:3<br>change ar | h the on<br>lat eithe<br>e host ki<br>compute<br>9:55:e4<br>nd trust | ey, or you<br>r pretending<br>:65:a9:f9:60<br>the new key | 9<br>e<br>/, |
| <u> </u> | hit Yes to update PuTTY's cache and continue connecting.<br>If you want to carry on connecting but without updating<br>the cache, hit No.<br>If you want to abandon the connection completely, hit<br>Cancel. Hitting Cancel is the ONLY guaranteed safe<br>choice.<br>Yes <u>No</u> <u>Cancel</u> Help |                                                                                                                    |                                                                                        |                                                                                             |                                                                      |                                                           |              |

Figure 5: Security alert prompt for the fingerprint

□ Check the fingerprint.

This helps protect yourself from unwelcome guests.

□ When the fingerprint matches the fingerprint of the device key, click the Yes button.

The device lets you display the finger prints of the device keys with the command show ssh or in the Device Security > Management Access > Server dialog, SSH tab.

The Command Line Interface appears on the screen with a window for entering the user name. The device enables up to 5 users to have access to the Command Line Interface at the same time.

- Enter the user name.
- The default user name is admin.
- □ Press the <Enter> key.
- Enter the password.

The default password is private.

□ Press the <Enter> key.

**Note:** This device is a security-relevant product. Change the password during the first startup procedure.

```
login as: admin
admin@192.168.1.5's password:
                         Copyright (c) 2011-2021 Schneider Electric
                                    All rights reserved
                                 MCSESM-E Release 08.7.00
                               (Build date 2021-06-22 09:28)
                   System Name : MCSESM-646038d5e836
                   Management IP : 192.168.1.5
                   Subnet Mask : 255.255.255.0
                   Base MAC
                               : 64:60:38:01:02:03
                                : 91.0.0.100
                   USB IP
                   USB Mask : 255.255.255.0
                   System Time : 2021-06-24 12:39:43
NOTE: Enter '?' for Command Help. Command help displays all options
     that are valid for the particular mode.
     For the syntax of a particular command form, please
     consult the documentation.
MCSESM-E>
```

Figure 6: Start screen of the Command Line Interface

#### **1.2.4** Access to the Command Line Interface using the serial interface

The serial interface is used to locally connect an external network management station (VT100 terminal or PC with terminal emulation). The interface lets you set up a data connection to the Command Line Interface and to the system monitor.

| VT 100 terminal settings |            |  |
|--------------------------|------------|--|
| Speed                    | 9600 bit/s |  |
| Data                     | 8 bit      |  |
| Stopbit                  | 1 bit      |  |
| Handshake                | off        |  |
| Parity                   | none       |  |

Perform the following steps:

- □ Connect the device to a terminal using the serial interface. Alternatively connect the device to a COM port of your PC using terminal emulation based on VT100 and press any key.
- □ Alternatively you set up the serial data connection to the device with the serial interface using the *PuTTY* program. Press the <Enter> key.



Figure 7: Serial data connection with the serial interface using the PuTTY program

- Press any key on your terminal keyboard a number of times until the login screen indicates the CLI mode.
- Enter the user name.

The default user name is admin.

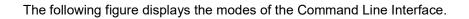
- Press the <Enter> key.
- Enter the password.

The default password is private.

□ Press the <Enter> key.

**Note:** This device is a security-relevant product. Change the password during the first startup procedure.

```
Copyright (c) 2011-2021 Schneider Electric
                                   All rights reserved
                                 MCSESM-E Release 08.7.00
                               (Build date 2021-06-22 09:28)
                   System Name : MCSESM-646038d5e836
                   Management IP : 192.168.1.5
                   Subnet Mask : 255.255.255.0
                   Base MAC : 64:60:38:01:02:03
                                : 91.0.0.100
                   USB IP
                   USB Mask
                                : 255.255.255.0
                   System Time : 2021-06-24 12:39:43
NOTE: Enter '?' for Command Help. Command help displays all options
     that are valid for the particular mode.
     For the syntax of a particular command form, please
     consult the documentation.
MCSESM-E>
```


Figure 8: Start screen of the Command Line Interface

#### 1.2.5 Mode-based command hierarchy

In the Command Line Interface, the commands are grouped in the related modes, according to the type of the command. Every command mode supports specific Schneider Electric software commands.

The commands available to you as a user depend on your privilege level (administrator, operator, guest, auditor). They also depend on the mode in which you are currently working. When you switch to a specific mode, the commands of the mode are available to you.

The User Exec mode commands are an exception. The Command Line Interface also enables you to execute these commands in the Privileged Exec mode.



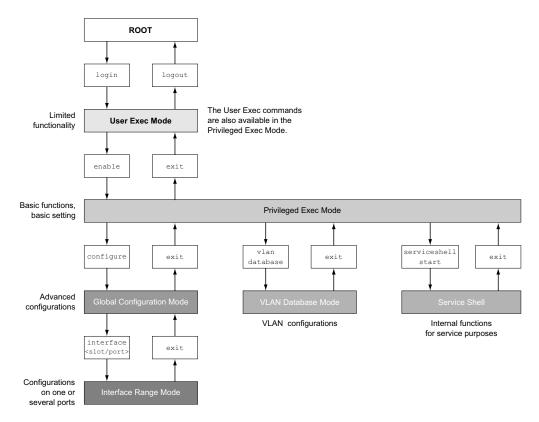



Figure 9: Structure of the Command Line Interface

The Command Line Interface supports, depending on the user level, the following modes: User Exec mode

When you log in with the Command Line Interface, you enter the User Exec mode. The User Exec mode contains a limited range of commands.

Command prompt: (MCSESM-E) >

Privileged Exec mode

To access the entire range of commands, you enter the Privileged Exec mode. If you log in as a privileged user, then you are able to enter the Privileged Exec mode. In the Privileged Exec mode, you are able to execute the User Exec mode commands, too.

- Command prompt: (MCSESM-E) #
- VLAN mode The VLAN mode contains VLAN-related commands. Command prompt: (MCSESM-E) (VLAN) #
- Service Shell
  - The Service Shell is for service purposes only. Command prompt: /mnt/fastpath #

```
Global Config mode
  The Global Config mode lets you perform modifications to the current configuration. This mode
  groups general setup commands.
  Command prompt: (MCSESM-E) (config) #
Interface Range mode
  The commands in the Interface Range mode affect a specific port, a selected group of multiple
  ports or all port of the device. The commands modify a value or switch a function on/off on one
  or more specific ports.
     All physical ports in the device
      Command prompt: (MCSESM-E) ((interface) all)#
      Example: When you switch from the Global Config mode to the Interface Range mode, the
      command prompt changes as follows:
      (MCSESM-E) (config) #interface all
      (MCSESM-E) ((Interface)all)#
     A single port on one interface
      Command prompt: (MCSESM-E) (interface <slot/port>) #
      Example: When you switch from the Global Config mode to the Interface Range mode, the
      command prompt changes as follows:
      (MCSESM-E) (config)#interface 2/1
      (MCSESM-E) (interface 2/1)#
     A range of ports on one interface
      Command prompt: (MCSESM-E) (interface <interface range> )#
      Example: When you switch from the Global Config mode to the Interface Range mode, the
      command prompt changes as follows:
      (MCSESM-E) (config) #interface 1/2-1/4
      (MCSESM-E) ((Interface)1/2-1/4)#
     A list of single ports
      Command prompt: (MCSESM-E) (interface <interface list>) #
      Example: When you switch from the Global Config mode to the Interface Range mode, the
      command prompt changes as follows:
      (MCSESM-E) (config)#interface 1/2,1/4,1/5
      (MCSESM-E) ((Interface)1/2,1/4,1/5)#
     A list of port ranges and single ports
      Command prompt: (MCSESM-E) (interface <complex range>)#
      Example: When you switch from the Global Config mode to the Interface Range mode, the
      command prompt changes as follows:
      (MCSESM-E) (config) #interface 1/2-1/4,1/6-1/9
      (MCSESM-E) ((Interface)1/2-1/4,1/6-1/9)
```

The following table displays the command modes, the command prompts (input request characters) visible in the corresponding mode, and the option with which you quit this mode.

Table 2: Command modes

| Command mode            | Access method                                                        | Quit or start next mode                                                      |
|-------------------------|----------------------------------------------------------------------|------------------------------------------------------------------------------|
| User Exec mode          | First access level. Perform basic tasks and list system information. | To quit you enter logout:<br>(MCSESM-E) >logout                              |
|                         |                                                                      | Are you sure (Y/N) ?y                                                        |
| Privileged Exec<br>mode | From the User Exec mode, you enter the command enable:               | To quit the Privileged Exec mode and return to the User Exec mode, you enter |
|                         | (MCSESM-E) >enable                                                   | exit:                                                                        |
|                         | (MCSESM-E) #                                                         | (MCSESM-E) #exit                                                             |
|                         |                                                                      | (MCSESM-E) >                                                                 |

| Command mode            | Access method                                                                                                                                                                                                                                                                                                                | Quit or start next mode                                                                                                                                                                                                                                                              |
|-------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| VLAN mode               | From the Privileged Exec mode, you<br>enter the command vlan database:<br>(MCSESM-E) #vlan database<br>(MCSESM-E) (Vlan)#                                                                                                                                                                                                    | To end the VLAN mode and return to the<br>Privileged Exec mode, you enter exit or<br>press Ctrl Z.<br>(MCSESM-E) (Vlan) #exit<br>(MCSESM-E) #                                                                                                                                        |
| Global Config<br>mode   | From the Privileged Exec mode, you<br>enter the command configure:<br>(MCSESM-E) #configure<br>(MCSESM-E) (config)#<br>From the User Exec mode, you enter<br>the command enable, and then in<br>Privileged Exec mode, enter the<br>command Configure:<br>(MCSESM-E) >enable<br>(MCSESM-E) #configure<br>(MCSESM-E) (config)# | To quit the Global Config mode and<br>return to the Privileged Exec mode, you<br>enter exit:<br>(MCSESM-E) (config) #exit<br>(MCSESM-E) #<br>To then quit the Privileged Exec mode<br>and return to the User Exec mode, you<br>enter exit again:<br>(MCSESM-E) #exit<br>(MCSESM-E) > |
| Interface Range<br>mode | <pre>From the Global Config mode you enter the command interface {all <slot port=""> <interface range="">  <interface list=""> <complex range="">}. (MCSESM-E) (config)#interface <slot port=""> (MCSESM-E) (interface slot/port)#</slot></complex></interface></interface></slot></pre>                                     | To quit the Interface Range mode and<br>return to the Global Config mode, you<br>enter exit. To return to the Privileged<br>Exec mode, you press Ctrl Z.<br>(MCSESM-E) (interface slot/port)#exit<br>(MCSESM-E) #                                                                    |

Table 2: Command modes

When you enter a question mark (?) after the prompt, the Command Line Interface displays a list of the available commands and a short description of the commands.

| (MCSESM-E)> | Set the CLI preferences.                          |
|-------------|---------------------------------------------------|
| enable      | Turn on privileged commands.                      |
| help        | Display help for various special keys.            |
| history     | Show a list of previously run commands.           |
| logout      | Exit this session.                                |
| ping        | Send ICMP echo packets to a specified IP address. |
| show        | Display device options and settings.              |
| telnet      | Establish a telnet connection to a remote host.   |
|             |                                                   |
| (MCSESM-E)> |                                                   |

Figure 10: Commands in the User Exec mode

#### **1.2.6 Executing the commands**

#### Syntax analysis

When you log in with the Command Line Interface, you enter the User Exec mode. The Command Line Interface displays the prompt (MCSESM-E) > on the screen.

When you enter a command and press the <Enter> key, the Command Line Interface starts the syntax analysis. The Command Line Interface searches the command tree for the desired command.

When the command is outside the Command Line Interface command range, a message informs you of the detected error.

Example:

You want to execute the show system info command, but enter info without f and press the <Enter> key.

The Command Line Interface then displays a message:

(MCSESM-E)>show system ino

Error: Invalid command 'ino'

#### **Command tree**

The commands in the Command Line Interface are organized in a tree structure. The commands, and where applicable the related parameters, branch down until the command is completely defined and therefore executable. The Command Line Interface checks the input. When you entered the command and the parameters correctly and completely, you execute the command with the <Enter> key.

After you entered the command and the required parameters, the other parameters entered are treated as optional parameters. When one of the parameters is unknown, the Command Line Interface displays a syntax message.

The command tree branches for the required parameters until the required parameters have reached the last branch in the structure.

With optional parameters, the command tree branches until the required parameters and the optional parameters have reached the last branch in the structure.

#### 1.2.7 Structure of a command

This section describes the syntax, conventions and terminology, and uses examples to represent them.

#### **Format of commands**

Most of the commands include parameters.

When the command parameter is missing, the Command Line Interface informs you about the detection of an incorrect command syntax.

This manual displays the commands and parameters in the Courier font.

#### **Parameters**

The sequence of the parameters is relevant for the correct syntax of a command.

Parameters are required values, optional values, selections, or a combination of these things. The representation indicates the type of the parameter.

| <command/>              | Commands in pointed brackets (<>) are obligatory.                                                                                                                                                                                           |
|-------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| [command]               | Commands in square brackets ( [ ] ) are optional.                                                                                                                                                                                           |
| <parameter></parameter> | Parameters in pointed brackets (<>) are obligatory.                                                                                                                                                                                         |
| [parameter]             | Parameters in square brackets ([]) are optional.                                                                                                                                                                                            |
|                         | An ellipsis (3 points in sequence without spaces) after an element indicates that you can repeat the element.                                                                                                                               |
| [Choice1   Choice2]     | A vertical line enclosed in brackets indicates a selection option.<br>Select one value.<br>Elements separated by a vertical line and enclosed in square<br>brackets indicate an optional selection (Option1 or Option2 or no<br>selection). |
| {list}                  | Curved brackets ({}) indicate that a parameter is to be selected from a list of options.                                                                                                                                                    |
| {Choice1   Choice2}     | Elements separated by a vertical line and enclosed in curved brackets ({}) indicate an obligatory selection option (option1 or option2).                                                                                                    |
| [param1 {Choice1        | Displays an optional parameter that contains an obligatory selection.                                                                                                                                                                       |
| Choice2}]               |                                                                                                                                                                                                                                             |
| <a.b.c.d></a.b.c.d>     | Small letters are wild cards. You enter parameters with the notation a.b.c.d with decimal points (for example IP addresses)                                                                                                                 |
| <cr></cr>               | You press the <enter> key to create a line break (carriage return).</enter>                                                                                                                                                                 |
|                         |                                                                                                                                                                                                                                             |

Table 3: Parameter and command syntax

The following list displays the possible parameter values within the Command Line Interface:

| Value            | Description                                                                                                                                                                                                           |
|------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| IP address       | This parameter represents a valid IPv4 address. The address consists of 4 decimal numbers with values from 0 to 255. The 4 decimal numbers are separated by a decimal point. The IP address 0.0.0.0 is a valid entry. |
| MAC address      | This parameter represents a valid MAC address. The address consists of 6 hexadecimal numbers with values from 00 to FF. The numbers are separated by a colon, for example, 00:F6:29:B2:81:40.                         |
| string           | User-defined text with a length in the specified range, for example a maximum of 32 characters.                                                                                                                       |
| character string | Use double quotation marks to indicate a character string, for example "System name with space character".                                                                                                            |
| number           | Whole integer in the specified range, for example 0999999.                                                                                                                                                            |
| date             | Date in format YYYY-MM-DD.                                                                                                                                                                                            |
| time             | Time in format HH:MM:SS.                                                                                                                                                                                              |

Table 4: Parameter values in the Command Line Interface

#### **Network addresses**

Network addresses are a requirement for establishing a data connection to a remote work station, a server, or another network. You distinguish between IP addresses and MAC addresses.

The IP address is an address allocated by the network administrator. The IP address is unique in one network area.

The MAC addresses are assigned by the hardware manufacturer. MAC addresses are unique worldwide.

The following table displays the representation and the range of the address types:

Table 5: Format and range of network addresses

| Address Type | Format          | Range                                   | Example           |
|--------------|-----------------|-----------------------------------------|-------------------|
| IP Address   | nnn.nnn.nnn.nnn | nnn: 0 to 255 (decimal)                 | 192.168.11.110    |
| MAC Address  | mm:mm:mm:mm:mm  | mm: 00 to ff (hexadecimal number pairs) | A7:C9:89:DD:A9:B3 |

#### Strings

A string is indicated by quotation marks. For example, "System name with space character". Space characters are not valid user-defined strings. You enter a space character in a parameter between quotation marks.

#### Example:

```
*(MCSESM-E)#cli prompt Device name
Error: Invalid command 'name'
```

```
*(MCSESM-E)#cli prompt 'Device name'
```

\*(Device name)#

#### **1.2.8 Examples of commands**

#### Example 1: clear arp-table-switch

Command for clearing the ARP table of the management agent (cache).

clear arp-table-switch is the command name. The command is executable without any other parameters by pressing the <Enter> key.

#### **Example 2: radius server timeout**

Command to configure the RADIUS server timeout value. (MCSESM-E) (config)#radius server timeout <1..30> Timeout in seconds (default: 5).

radius server timeout is the command name.

The parameter is required. The value range is 1..30.

#### Example 3: radius server auth modify <1..8>

Command to set the parameters for RADIUS authentication server 1.

(MCSESM-E) (config)#radius server auth modify 1

| [name]      | RADIUS authentication server name.          |
|-------------|---------------------------------------------|
| [port]      | RADIUS authentication server port.          |
|             | (default: 1812).                            |
| [msgauth]   | Enable or disable the message authenticator |
|             | attribute for this server.                  |
| [primary]   | Configure the primary RADIUS server.        |
| [status]    | Enable or disable a RADIUS authentication   |
|             | server entry.                               |
| [secret]    | Configure the shared secret for the RADIUS  |
|             | authentication server.                      |
| [encrypted] | Configure the encrypted shared secret.      |
| <cr></cr>   | Press Enter to execute the command.         |

radius server auth modify is the command name.

The parameter <1..8> (RADIUS server index) is required. The value range is 1..8 (integer).

The parameters [name], [port], [msgauth], [primary], [status], [secret] and [encrypted] are optional.

#### 1.2.9 Input prompt

#### **Command mode**

With the input prompt, the Command Line Interface displays which of the three modes you are in:

- (MCSESM-E) > User Exec mode
- (MCSESM-E) #
- Privileged Exec mode
- (MCSESM-E) (config)#
- Global Config mode (MCSESM-E) (Vlan)#
- VLAN Database mode
- (MCSESM-E) ((Interface)all) #
- Interface Range mode / All ports of the device
- (MCSESM-E) ((Interface) 2/1) # Interface Range mode / A single port on one interface
- (MCSESM-E) ((Interface)1/2-1/4) # Interface Range mode / A range of ports on one interface
- (MCSESM-E) ((Interface)1/2,1/4,1/5)# Interface Range mode / A list of single ports
- (MCSESM-E) ((Interface)1/1-1/2,1/4-1/6) #
   Interface Range mode / A list of port ranges and single ports

#### Asterisk, pound sign and exclamation point

Asterisk \*

An asterisk \* in the first or second position of the input prompt displays you that the settings in the volatile memory and the settings in the non-volatile memory are different. In your configuration, the device has detected modifications which have not been saved.

- \* (MCSESM-E)>
- Pound sign #

A pound sign # at the beginning of the input prompt displays you that the boot parameters and the parameters during the boot phase are different.

- \*#(MCSESM-E)>
- Exclamation point :

An exclamation point ! at the beginning of the input prompt displays: the password for the user or admin user account corresponds with the default setting.

! (MCSESM-E)>

#### Wildcards

The device lets you change the command line prompt.

The Command Line Interface supports the following wildcards:

Table 6: Using wildcards within the Command Line Interface input prompt

| Wildcard | Description |
|----------|-------------|
| %d       | System date |
| %t       | System time |

| Wildcard | Description                |
|----------|----------------------------|
| %i       | IP address of the device   |
| %m       | MAC address of the device  |
| %p       | Product name of the device |

Table 6: Using wildcards within the Command Line Interface input prompt

!(MCSESM-E)>enable

```
!(MCSESM-E)#cli prompt %i
```

!192.168.1.5#cli prompt (MCSESM-E)%d

!\* (MCSESM-E) 2021-06-24#cli prompt (MCSESM-E) %d%t

```
!*(MCSESM-E)2021-06-24 12:39:43#cli prompt %m
```

!\*AA:BB:CC:DD:EE:FF#

#### 1.2.10 Key combinations

The following key combinations make it easier for you to work with the Command Line Interface:

Table 7: Key combinations in the Command Line Interface

| Key combination                                      | Description                           |
|------------------------------------------------------|---------------------------------------|
| <ctrl> + <h>,<br/><backspace></backspace></h></ctrl> | Delete previous character             |
| <ctrl> + <a></a></ctrl>                              | Go to beginning of line               |
| <ctrl> + <e></e></ctrl>                              | Go to end of line                     |
| <ctrl> + <f></f></ctrl>                              | Go forward one character              |
| <ctrl> + <b></b></ctrl>                              | Go backward one character             |
| <ctrl> + <d></d></ctrl>                              | Delete current character              |
| <ctrl> + <u>, <x></x></u></ctrl>                     | Delete to beginning of line           |
| <ctrl> + <k></k></ctrl>                              | Delete to end of line                 |
| <ctrl> + <w></w></ctrl>                              | Delete previous word                  |
| <ctrl> + <p></p></ctrl>                              | Go to previous line in history buffer |
| <ctrl> + <r></r></ctrl>                              | Rewrite or paste the line             |
| <ctrl> + <n></n></ctrl>                              | Go to next line in history buffer     |
| <ctrl> + <z></z></ctrl>                              | Return to root command prompt         |
| <ctrl> + <g></g></ctrl>                              | Aborts running tcpdump session        |
| <tab>, <space></space></tab>                         | Command line completion               |
| Exit                                                 | Go to next lower command prompt       |
|                                                      | List choices                          |

The Help command displays the possible key combinations in Command Line Interface on the screen:

```
(MCSESM-E) #help
HELP:
Special keys:
 Ctrl-H, BkSp delete previous character
 Ctrl-A .... go to beginning of line
 Ctrl-E \hdots .... go to end of line
 Ctrl-F .... go forward one character
 Ctrl-B .... go backward one character
 Ctrl-D .... delete current character
 Ctrl-U, X .. delete to beginning of line
 Ctrl-K .... delete to end of line
 Ctrl-W .... delete previous word
 Ctrl-P \ldots go to previous line in history buffer
 Ctrl-R .... rewrites or pastes the line
 Ctrl-N \ldots go to next line in history buffer
 Ctrl-Z \hfill \ldots return to root command prompt
 Ctrl-G .... aborts running tcpdump session
 Tab, <SPACE> command-line completion
 Exit .... go to next lower command prompt
         .... list choices
  2
(MCSESM-E) #
```

Figure 11: Listing the key combinations with the Help command

#### **1.2.11 Data entry elements**

#### **Command completion**

To simplify typing commands, the Command Line Interface lets you use command completion (Tab Completion). Thus you are able to abbreviate key words.

- Type in the beginning of a keyword. When the characters entered identify a keyword, the Command Line Interface completes the keyword after you press the tab key or the space key. When there is more than one option for completion, enter the letter or the letters necessary for uniquely identifying the keyword. Press the tab key or the space key again. After that, the system completes the command or parameter.
- When you make a non-unique entry and press <Tab> or <Space> twice, the Command Line Interface provides you with a list of options.
- On a non-unique entry and pressing <Tab> or <Space>, the Command Line Interface completes the command up to the end of the uniqueness. When several commands exist and you press <Tab> or <Space> again, the Command Line Interface provides you with a list of options. Example:

```
(MCSESM-E) (Config) #lo
(MCSESM-E) (Config) #log
```

logging logout

When you enter lo and <Tab> or <Space>, the Command Line Interface completes the command up to the end of the uniqueness to log.

When you press <Tab> or <Space> again, the Command Line Interface provides you with a list of options (logging logout).

#### **Possible commands/parameters**

You can obtain a list of the commands or the possible parameters by entering help or ?, for example by entering (MCSESM-E) >show ?

When you enter the command displayed, you get a list of the parameters available for the command show.

When you enter the command without space character in front of the question mark, the device displays the help text for the command itself:

!\*#(MCSESM-E)(Config)#show?

show Display device options and settings.

### 1.2.12 Use cases

### **Saving the Configuration**

To help ensure that your password settings and your other configuration changes are kept after the device is reset or after an interruption of the voltage supply, you save the configuration. To do this, perform the following steps:

- □ Enter enable to switch to the Privileged Exec mode.
- □ Enter the following command:
- save [profile]
- □ Execute the command by pressing the <Enter> key.

### Syntax of the "radius server auth add" command

Use this command to add a RADIUS authentication server.

- Mode: Global Config mode
- Privilege Level: Administrator
- ► Format: radius server auth add <1..8> ip <a.b.c.d> [name <string>] [port <1..65535>]
  - [name]: RADIUS authentication server name.
  - [port]: RADIUS authentication server port (default value: 1813).

| Parameter           | Meaning                                        | Possible values |
|---------------------|------------------------------------------------|-----------------|
| <18>                | RADIUS server index.                           | 18              |
| <a.b.c.d></a.b.c.d> | RADIUS accounting server IP address.           | IP address      |
| <string></string>   | Enter a user-defined text, max. 32 characters. |                 |
| <165535>            | Enter port number between 1 and 65535.         | 165535          |

Mode and Privilege Level:

- The prerequisite for executing the command: You are in the Global Config mode. See "Modebased command hierarchy" on page 25.
- ▶ The prerequisite for executing the command: You have the Administrator access role.

Syntax of commands and parameters: See "Structure of a command" on page 29.

### Examples for executable commands:

- radius server auth add 1 ip 192.168.30.40
- radius server auth add 2 ip 192.168.40.50 name radiusserver2
- radius server auth add 3 ip 192.168.50.60 port 1813
- radius server auth add 4 ip 192.168.60.70 name radiusserver4 port 1814

### 1.2.13 Service Shell

The Service Shell is for service purposes only.

The Service Shell lets users have access to internal functions of the device. When you need assistance with your device, the service personnel use the Service Shell to monitor internal conditions for example, the switch or CPU registers.

Do not execute internal functions without service technician instructions. Executing internal functions such as deleting the content of the non-volatile memory (*NVM*) **possibly leads to inoperability of your device**.

### Start the Service Shell

The prerequisite is that you are in User Exec mode: (MCSESM-E) >

Perform the following steps:

- □ Enter enable and press the <Enter> key.
  - To reduce the effort when typing:
    - Enter e and press the <Tab> key.
- □ Enter serviceshell start and press the <Enter> key.
  - To reduce the effort when typing:
  - Enter ser and press the <Tab> key.
  - Enter s and press the <Tab> key.

!MCSESM-E >enable

```
!*MCSESM-E #serviceshell start
WARNING! The service shell offers advanced diagnostics and functions.
Proceed only when instructed by a service technician.
You can return to the previous mode using the 'exit' command.
BusyBox v1.31.0 (2021-06-24 12:39:43 UTC) built-in shell (ash)
Enter 'help' for a list of built-in commands.
```

!/mnt/fastpath #

### **Working with the Service Shell**

When the Service Shell is active, the timeout of the Command Line Interface is inactive. To help prevent configuration inconsistencies, end the Service Shell before any other user starts transferring a new configuration to the device.

### **Display the Service Shell commands**

The prerequisite is that you already started the Service Shell.

Perform the following steps: Enter help and press the <Enter> key.

```
/mnt/fastpath # help
Built-in commands:
------
. : [ [[ alias bg break cd chdir command continue echo eval exec
    exit export false fg getopts hash help history jobs kill let
    local pwd read readonly return set shift source test times trap
    true type ulimit umask unalias unset wait
/mnt/fastpath #
```

### **End the Service Shell**

Perform the following steps: Enter exit and press the <Enter> key.

### Deactivate the Service Shell permanently in the device

When you deactivate the Service Shell, you are still able to configure the device. However, you limit the service personnel's possibilities to perform system diagnostics. The service technician will no longer be able to access internal functions of your device.

The deactivation is irreversible. The Service Shell remains permanently deactivated. In order to reactivate the Service Shell, the device requires disassembly by the manufacturer.

The prerequisites are:

- The Service Shell is not started.
- You are in User Exec mode: (MCSESM-E) >

Perform the following steps:

- □ Enter enable and press the <Enter> key.
  - To reduce the effort when typing:
  - Enter e and press the <Tab> key.

 $\hfill\square$  Enter serviceshell deactivate and press the <Enter> key.

- To reduce the effort when typing:
- Enter ser and press the <Tab> key.
- Enter dea and press the <Tab> key.
- □ **This step is irreversible!** Press the <Y> key.

!MCSESM-E >enable

!\*MCSESM-E #serviceshell deactivate
Notice: If you continue, then the Service Shell is permanently deactivated.
This step is irreversible!
For details, refer to the Configuration Manual.
Are you sure (Y/N) ?

## **1.3** System monitor

The System Monitor lets you set basic operating parameters before starting the operating system.

### 1.3.1 Functional scope

In the System Monitor, you carry out the following tasks, for example:

- Managing the operating system and verifying the software image
- Updating the operating system
- Starting the operating system
- > Deleting configuration profiles, resetting the device to the factory defaults
- Checking boot code information

### **1.3.2 Starting the System Monitor**

Prerequisites:

- ▶ Terminal cable for connecting the device to your PC (available as an optional accessory).
- PC with VT100 terminal emulation (such as the *PuTTY* program) or serial terminal

Perform the following steps:

- □ Use the terminal cable to connect the serial interface of the device with the COM port of the PC.
- $\Box$  Start the VT100 terminal emulation on the PC.
- □ Specify the following transmission parameters:

| VT 100 terminal settings |            |  |
|--------------------------|------------|--|
| Speed                    | 9600 bit/s |  |
| Data                     | 8 bit      |  |
| Stopbit                  | 1 bit      |  |
| Handshake                | off        |  |
| Parity                   | none       |  |

 $\Box$  Set up a connection to the device.

□ Turn on the device. When the device is already on, reboot it. The screen displays the following message after rebooting: Press <1> to enter System Monitor 1.

□ Press the <1> key within 3 seconds.

The device starts the System Monitor. The screen displays the following view:

```
System Monitor 1
(Selected OS: ...-8.7 (2021-06-22 09:28))
```

- 1 Manage operating system
- 2 Update operating system
- 3 Start selected operating system
- 4 Manage configurations
- 5 Show boot code information
- q End (reset and reboot)

sysMon1>

Figure 12: System Monitor 1 screen display

 $\Box$  Select a menu item by entering the number.

□ To leave a submenu and return to the main menu of System Monitor 1, press the <ESC> key.

## **2** Specifying the IP parameters

When you install the device for the first time, enter the IP parameters.

The device provides the following options for entering the IP parameters during the first installation:

- Entry using the Command Line Interface. When you preconfigure your device outside its operating environment, or restore the network access ("In-Band") to the device, choose this "Out-of-Band" method.
- Entry using the Ethernet Switch Configurator protocol. When you have a previously installed network device or you have another Ethernet connection between your PC and the device, you choose this "In-Band" method.
- Configuration using the external memory. When you are replacing a device with a device of the same type and have already saved the configuration in the external memory, you choose this method.
- Using BOOTP. To configure the installed device using BOOTP, you choose this "In-Band" method. You need a BOOTP server for this method. The BOOTP server assigns the configuration data to the device using its MAC address. The DHCP mode is the default mode for the configuration data reference.
- Configuration using DHCP.

To configure the installed device using DHCP, you choose this "In-Band" method. You need a DHCP server for this method. The DHCP server assigns the configuration data to the device using its MAC address or its system name.

Configuration using the Graphical User Interface. When the device already has an IP address and is reachable using the network, the Graphical User Interface provides you with another option for configuring the IP parameters.

# **2.1 IP** parameter basics

### 2.1.1 IPv4

### **IP** address

The IP addresses consist of 4 bytes. Write these 4 bytes in decimal notation, separated by a decimal point.

RFC 1340 written in 1992, defines 5 IP Address classes.

| Class | Network address | Host address | Address range                |
|-------|-----------------|--------------|------------------------------|
| A     | 1 Byte          | 3 Bytes      | 0.0.0.0 to 127.255.255.255   |
| В     | 2 Bytes         | 2 Bytes      | 128.0.0.0 to 191.255.255.255 |
| С     | 3 Bytes         | 1 Byte       | 192.0.0.0 to 223.255.255.255 |
| D     |                 |              | 224.0.0.0 to 239.255.255.255 |
| E     |                 |              | 240.0.0.0 to 255.255.255.255 |

Table 8: IP address classes

The first byte of an IP address is the network address. The worldwide leading regulatory board for assigning network addresses is the IANA ("Internet Assigned Numbers Authority"). When you require an IP address block, contact your Internet Service Provider (ISP). Your ISP contacts their local higher-level organization to reserve an IP address block:

- APNIC (Asia Pacific Network Information Center) Asia/Pacific Region
- ARIN (American Registry for Internet Numbers) Americas and Sub-Sahara Africa
- LACNIC (Regional Latin-American and Caribbean IP Address Registry) Latin America and some Caribbean Islands
- RIPE NCC (Réseaux IP Européens) Europe and Surrounding Regions

| 0 |   | Ne | et ID | t ID - 7 bits Host ID - 24 bits    |         | Class A |                   |         |
|---|---|----|-------|------------------------------------|---------|---------|-------------------|---------|
| Т | 0 |    | I     | Net ID - 14 bits                   |         | Hos     | st ID - 16 bits   | Class B |
| Т | T | 0  |       | Net ID - 2                         | 21 bits |         | Host ID - 8 bit s | Class C |
| Ι | T | T  | 0     | Multicast Group ID - 28 bits       |         | 28 bits | Class D           |         |
| Т | I | I  | Ι     | reserved for future use - 28 b its |         | Class E |                   |         |

Figure 13: Bit representation of the IP address

When the first bit of an IP address is a zero, it belong to class A for example, the first octet is less than 128.

When the first bit of an IP address is a one and the second bit is a zero, it belongs to class B for example, the first octet is between 128 and 191.

When the first 2 bits of an IP address are a one, it belongs to class C for example, the first octet is higher than 191.

Assigning the host address (host ID) is the responsibility of the network operator. The network operator alone is responsible for the uniqueness of the assigned IP addresses.

### Netmask

Routers and Gateways subdivide large networks into subnetworks. The netmask asssigns the IP addresses of the individual devices to a particular subnetwork.

You perform subnetwork division using the netmask in much the same way as the division of the network addresses (net id) into classes A to C.

Set the bits of the host address (host id) that represent the mask to one. Set the remaining host address bits to zero (see the following examples).

Example of a subnet mask:

Decimal notation 255.255.192.0

| Binary notation          |                                                           |
|--------------------------|-----------------------------------------------------------|
| 111111111111111111111000 | 0000.0000000                                              |
|                          | <ul> <li>Subnetwork mask bits</li> <li>Class B</li> </ul> |

Example of applying the subnet mask to IP addresses for subnetwork assignment:

| Decimal notation<br>129.218.65.17                      |
|--------------------------------------------------------|
| 128 < 129 191 › Class B                                |
| Binary notation<br>10000001.11011010.01000001.00010001 |
| Subnetwork 1 Network address                           |
| Decimal notation<br>129.218.129.17                     |
| 128 < 129 191 › Class B                                |
| Binary notation<br>10000001.11011010.10000001.00010001 |
| Subnetwork 2                                           |

### Example of how the netmask is used

In a large network it is possible that Gateways and routers separate the management agent from its network management station. How does addressing work in such a case?

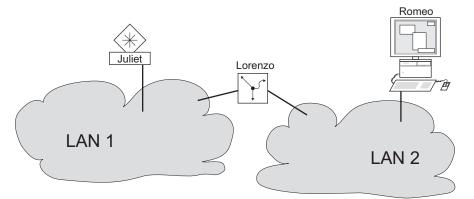



Figure 14: The management agent is separated from its network management station by a router

The network management station "Romeo" wants to send data to the management agent "Juliet". Romeo knows Juliet's IP address and also knows that the router "Lorenzo" knows the way to Juliet.

Romeo therefore puts his message in an envelope and writes Juliet's IP address as the destination address; for the source address he writes his own IP address on the envelope.

Romeo then places this envelope in a second one with Lorenzo's MAC address as the destination and his own MAC address as the source. This process is comparable to going from Layer 3 to Layer 2 of the ISO/OSI base reference model.

Finally, Romeo puts the entire data packet into the mailbox which is comparable to going from Layer 2 to Layer 1, that means to sending the data packet over the Ethernet.

Lorenzo receives the letter, removes the outer envelope and recognizes from the inner envelope that the letter is meant for Juliet. He places the inner envelope in a new outer envelope and searches his address list (the ARP table) for Juliet's MAC address; he writes her MAC address on the outer envelope as the destination address and his own MAC address as the source address. He then places the entire data packet in the mail box.

Juliet receives the letter and removes the outer envelope. She finds the inner envelope with Romeo's IP address. Opening the inner envelope and reading its contents corresponds to transferring the message to the higher protocol layers of the ISO/OSI layer model.

Juliet would now like to send a reply to Romeo. She places her reply in an envelope with Romeo's IP address as destination and her own IP address as source. But where is she to send the answer? For she did not receive Romeo's MAC address. It was lost, because Lorenzo replaced the outer envelope.

In the MIB, Juliet finds Lorenzo listed under the variable <code>NetGatewayIPAddr</code> as a means of communicating with Romeo. She therefore puts the envelope with the IP addresses in a further envelope with Lorenzo's MAC destination address.

The letter now travels back to Romeo via Lorenzo, the same way the first letter traveled from Romeo to Juliet.

### **Classless Inter-Domain Routing**

Class C with a maximum of 254 addresses was too small, and class B with a maximum of 65534 addresses was too large for most users. Resulting in an ineffective usage of the available class B addresses.

Class D contains reserved Multicast addresses. Class E is for experimental purposes. A nonparticipating Gateway ignores experimental datagrams with these destination addresses.

Since 1993, RFC 1519 has been using Classless Inter-Domain Routing (CIDR) to provide a solution. CIDR overcomes these class boundaries and supports classless address ranges.

With CIDR, you enter the number of bits that designate the IP address range. You represent the IP address range in binary form and count the mask bits that designate the netmask. The mask bits equal the number of bits used for the subnet in a given IP address range.

### Example:

| IP address,<br>decimal           | Network mask,<br>decimal | IP address<br>binary | ,                    |      |   |
|----------------------------------|--------------------------|----------------------|----------------------|------|---|
| 192.168.112.1<br>192.168.112.127 | 255.255.255.128          |                      | 10101000<br>10101000 |      |   |
|                                  |                          |                      | 25 mask bits         | s —— | _ |
| CIDR notation: 192.1             | 68.112.0/25              |                      |                      |      |   |

— Mask bits

The term "supernetting" refers to combing a number of class C address ranges. Supernetting enables you to subdivide class B address ranges to a fine degree.

## 2.1.2 IPv6

### **IP** parameter basics

The Internet Protocol version 6 (IPv6) is the new version of the Internet Protocol version 4 (IPv4). The need to implement IPv6 was due to the fact that IPv4 addresses are not sufficient in the context of the growing Internet today. The IPv6 protocol is described in RFC 8200.

Some of the differences between IPv6 and IPv4 are:

- Address representation and length
- Absence of the broadcast address type
- Simplified header structure
- Fragmentation performed only by the source host
- Added capabilities for packet flow identification in the network

Both IPv4 and IPv6 protocols can operate at the same time in the device. This is possible with the use of the Dual IP Layer technique, also referred to as Dual Stack.

**Note:** If you want the device to operate only using the IPv4 function, then disable the IPv6 function in the device.

In the device, the IPv6 protocol has the following restrictions:

- > You can specify a maximum number of 8 IPv6 unicast addresses as follows:
  - 4 IPv6 addresses using manual configuration
  - 2 IPv6 addresses when the Auto radio button is selected
  - 1 IPv6 address using the DHCPv6 server
  - 1 link-local address
- ► The IPv6 function can be enabled only on the management interface. The total number of configurable IPv6 addresses can be used at the same time on the interface.
- The IPv6 addresses can be used to set the management IP address of the device. Other services where IPv6 addresses can be used include for example, SNTP, SYSLOG, DNS, and LDAP.

### **Address representation**

The IPv6 address consists of 128 bits. It is represented as 8 groups of 4 hexadecimal digits, each group representing 16 bits, further referred to as a hextet. The hextets are separated by colons (:). IPv6 addresses are not case-sensitive and you can write them in either lowercase or uppercase.

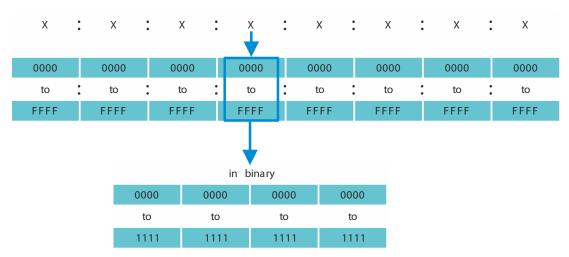



Figure 15: IPv6 address representation

As you can see in the figure above, usually an IPv6 address contains many zeros. In order to shorten IPv6 addresses that contain 0 bits, it is necessary to follow 2 writing rules:

- The first rule is to discard the leading zeros in every hextet. This rule is only applied to leading zeros and not to the trailing zeros of a hextet. If the trailing zeros are also discarded, then the resulting address is ambiguous.
- The second rule uses a special syntax to compress the zeros. You can use 2 adjacent colons "::" to replace a string of adjacent hextets that contain only zeros. The "::" sign can be used only one time in an address. If the "::" sign is used more than one time in an address representation, then there can be more than one possible address expanded from that notation.

When the two rules are applied, the result is commonly known as the compressed format.

In the table below you can find 2 examples of how these rules are applied:

| Preferred           | CC03:0000:0000:0000:0001:AB30:0400:FF02 |  |  |
|---------------------|-----------------------------------------|--|--|
| No leading<br>zeros | CC03: 0: 0: 1:AB30: 400:FF02            |  |  |
| Compressed          | CC03::1:AB30:400:FF02                   |  |  |
|                     |                                         |  |  |
| Preferred           | 2008:00B7:0000:DEF0:DDDD:0000:E604:0001 |  |  |
| No leading<br>zeros | 2008: B7: 0:DEF0:DDDD: 0:E604: 1        |  |  |
|                     | 2008:B7::DEF0:DDDD:0:E604:1             |  |  |

Table 9: IPv6 address compression

### **Prefix length**

Unlike an IPv4 address, an IPv6 address does not use a subnet mask to identify the network portion of an address. Instead, the IPv6 protocol uses the prefix length.

The text representation of IPv6 address prefixes is similar to the way IPv4 address prefixes are written in Classless Inter-Domain Routing (CIDR):

```
<ipv6-address>/<prefix-length>
```

The prefix length range is 0..128. The typical IPv6 prefix length for LANs and other types of networks is /64. This means that the network portion of the address is 64 bits in length. The remaining 64 bits represent the Interface ID, similar to the host portion of the IPv4 address.

In the figure below you can find an example of prefix length bits allocation.

| 64 bits prefix length                       | 64 bits interface ID |  |  |  |
|---------------------------------------------|----------------------|--|--|--|
| Address example: 2009:0CB8:0000:0004::10/64 |                      |  |  |  |
| 2009:0CB8:0000:0004 00000:0000:0000:0010    |                      |  |  |  |

### **Address types**

The IPv6 address types are described in RFC 4291.

The IPv6 address types are identified by the high-order bits of the address, as in the table below:

| Address type       | Binary prefix     | IPv6 notation |  |
|--------------------|-------------------|---------------|--|
| Unspecified        | 000 (128 bits)    | ::/128        |  |
| Loopback           | 001 (128 bits)    | ::1/128       |  |
| Multicast          | 1111111           | FF00::/8      |  |
| Link-local Unicast | 111111010         | FE80::/10     |  |
| Global Unicast     | (everything else) |               |  |

Table 10: IPv6 address types

### The Unspecified address

The IPv6 address with every bit set to 0 is called the Unspecified address, which corresponds to 0.0.0.0 in IPv4. The Unspecified address is used only to indicate the absence of an address. It is typically used as a source address when a unique address is not determined yet.

**Note:** The Unspecified address cannot be assigned to an interface or used as a destination address.

### The Loopback address

The unicast address 0:0:0:0:0:0:0:0:1 is called the Loopback address. It can be used by a device to send an IPv6 packet to itself. It cannot be assigned to a physical interface.

### The Multicast address

IPv6 does not have a broadcast address like IPv4. But there is an IPv6 all-nodes Multicast address that essentially gives the same result.

An IPv6 Multicast address is used to send an IPv6 packet to multiple destinations. The structure of a Multicast address is as follows: The next 4 bits identify the scope of the Multicast address (how far the packet is transmitted):

- The first 8 bits are set to FF.
- ▶ The next 4 bits are the lifetime of the address: 0 is permanent and 1 is temporary.
- The next 4 bits identify the scope of the Multicast address, meaning how far the packets are transmitted through the network.

### The Link-Local address

The Link-Local address is used to communicate with other devices on the same link. The term "link" refers to a subnet. Routers do not forward packets with link-local source or destination addresses to other links.

Link-local addresses are used to transmit packets on a single link for scopes such as automatic address configuration, neighbor discovery, or when no routers are present. They have the following format:

| Table 11: | Link-Local Address format |
|-----------|---------------------------|
|-----------|---------------------------|

| 10 bits   | 54 bits | 64 bits      |
|-----------|---------|--------------|
| 111111010 | 0       | Interface ID |

The Link-Local address is always configured and cannot be changed.

### **The Global Unicast address**

A Global Unicast address is globally unique and can be routed over the Internet. This type of addresses are equivalent to public IPv4 addresses. Currently, only Global Unicast addresses with the first three bits of 001 or 2000::/3 are assigned.

A Global Unicast address has 3 parts:

- Global Routing Prefix
- Subnet ID
- Interface ID.

The Global Routing Prefix is the network portion of the address.

The Subnet ID is used by an organization to identify its subnets and it has up to 16 bits in length. The length of the Subnet ID is given by the length of the Global Routing Prefix.

The Interface ID identifies an interface of a particular node. The term Interface ID is used because one host can have multiple interfaces, each having one or more IPv6 addresses.

The general format for IPv6 Global Unicast addresses is represented in the figure below.

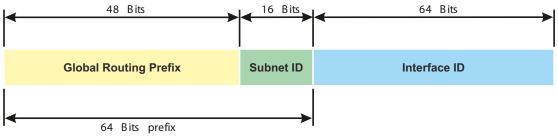



Figure 16: IPv6 Global Unicast address general format

# 2.2 Specifying the IP parameters using the Command Line Interface

### 2.2.1 IPv4

There are the following methods you enter the IP parameters:

- ▶ BOOTP/DHCP
- Ethernet Switch Configurator protocol
- External memory
- Command Line Interface using the serial connection

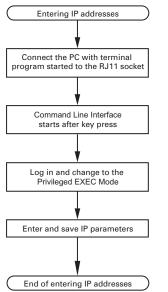
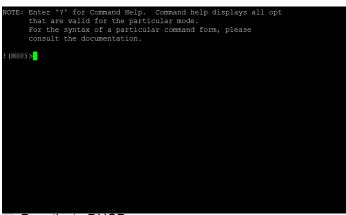




Figure 17: Flow chart for entering IP addresses

**Note:** If a terminal or PC with terminal emulation is unavailable in the vicinity of the installation location, you can configure the device at your own workstation, then take it to its final installation location.

Perform the following steps:

Set up a connection to the device.
 The start screen appears.



Deactivate DHCP.

□ Enter the IP parameters.

 Local IP address In the default setting, the local IP address is 0.0.0.0.
 Netmask When you divided your network into subnetworks, and these are identified with a netmask, enter the netmask here. In the default setting, the local netmask is 0.0.0.0.
 IP address of the Gateway.

This entry is only required, in cases where the device and the network management station or TFTP server are located in different subnetworks (see on page 45 "Example of how the netmask is used").

Specify the IP address of the Gateway between the subnetwork with the device and the path to the network management station.

In the default setting, the IP address is 0.0.0.0.

 $\hfill\square$  Save the configuration specified using <code>copy config running-config nvm</code>.

| enable                                | Change to the Privileged EXEC mode.                                                                                                |
|---------------------------------------|------------------------------------------------------------------------------------------------------------------------------------|
| network protocol none                 | Deactivating DHCP.                                                                                                                 |
| network parms 10.0.1.23 255.255.255.0 | Assign the device the IP address 10.0.1.23 and the netmask 255.255.255.0. You have the option of also assigning a Gateway address. |
| copy config running-config nvm        | Save the current settings in the non-volatile memory $(n \cup m)$ in the "selected" configuration profile.                         |

After entering the IP parameters, you easily configure the device using the Graphical User Interface.

### 2.2.2 IPv6

The device lets you specify the IPv6 parameters using the Command Line Interface over the serial interface. Another option to access the Command Line Interface is using a SSH connection with the use of the IPv4 management address.

Perform the following steps:

- □ Set up a connection to the device.
  - The start screen appears.

| NOTE: | Enter '?' for Command Help. Command help displays all opt<br>that are valid for the particular mode.<br>For the syntax of a particular command form, please<br>consult the documentation. |
|-------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| !()   | >                                                                                                                                                                                         |
| • • • |                                                                                                                                                                                           |
|       |                                                                                                                                                                                           |
|       |                                                                                                                                                                                           |
|       |                                                                                                                                                                                           |
|       |                                                                                                                                                                                           |
|       |                                                                                                                                                                                           |
|       |                                                                                                                                                                                           |
|       |                                                                                                                                                                                           |
|       |                                                                                                                                                                                           |
|       |                                                                                                                                                                                           |
|       |                                                                                                                                                                                           |
|       |                                                                                                                                                                                           |
|       |                                                                                                                                                                                           |
|       |                                                                                                                                                                                           |
|       |                                                                                                                                                                                           |

- □ Enable the IPv6 protocol if the protocol is disabled.
- □ Enter the IPv6 parameters.
- IPv6 address
   Valid IPv6 address. The IPv6 address is displayed in a compressed format.
   Prefix length

Unlike an IPv4 address, the IPv6 address does not use a subnet mask to identify the network part of an address. This role is performed in IPv6 by the prefix length (see on page 49 "Prefix length").

EUI option function

You can use the *EUI option* function to automatically configure the Interface ID of the IPv6 address. The device uses the MAC address of its interface with the values ff and fe added between byte 3 and byte 4 to generate a 64-bit Interface ID.

You can only select this option for IPv6 addresses that have a prefix length equal to 64. ► IPv6 Gateway address

The IPv6 Gateway address is the address of a router through which the device accesses other devices outside its own network.

You can specify any IPv6 address except loopback and *Multicast* addresses. In the default setting, the IPv6 Gateway address is ::.

| enable                                        | Change to the Privileged EXEC mode.                                                                                                                           |
|-----------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------|
| network ipv6 operation                        | Enable the IPv6 protocol if the protocol is disabled.<br>In the default setting, the IPv6 protocol is enabled.                                                |
| network ipv6 address add 2001::1 64<br>eui-64 | Assign the IPv6 address 2001::1 and the prefix<br>length 64. The eui-64 parameter is optional.<br>You have the option of also assigning a Gateway<br>address. |
| copy config running-config nvm                | Save the current settings in the non-volatile memory $(n \cup m)$ in the "selected" configuration profile.                                                    |

After entering the IPv6 parameters, you easily configure the device using the Graphical User Interface. To use an IPv6 address in a URL, use the following URL syntax: https://[<ipv6\_address>].

## 2.3 Specifying the IP parameters using Ethernet Switch Configurator

The Ethernet Switch Configurator protocol enables you to assign IP parameters to the device using the Ethernet.

You easily configure other parameters using the Graphical User Interface.

Install the Ethernet Switch Configurator software on your PC.

Perform the following steps: □ Start the Ethernet Switch Configurator program.

When Ethernet Switch Configurator is started, Ethernet Switch Configurator automatically searches the network for those devices which support the Ethernet Switch Configurator protocol.

Ethernet Switch Configurator uses the first network interface found for the PC. When your computer has several network cards, you can select the one you desire in the Ethernet Switch Configurator toolbar.

Ethernet Switch Configurator displays a line for every device that responds to a Ethernet Switch Configurator protocol inquiry.

Ethernet Switch Configurator enables you to identify the devices displayed.

- Select a device line.
- □ To set the LEDs to flashing for the selected device, click the *Signal* button on the tool bar. To stop the flashing, click the *Signal* button again.
- □ By double-clicking a line, you open a window in which you specify the device name and the IP parameter.

**Note:** Disable the Ethernet Switch Configurator function in the device, after you have assigned the IP parameters to the device.

Note: Save the settings so that you will still have the entries after a restart.

## 2.4 Specifying the IP parameters using the Graphical User Interface

### 2.4.1 IPv4

Perform the following steps:

□ Open the *Basic Settings* > *Network* > *Global* dialog.

In this dialog you specify the VLAN in which the device management can be accessed and configure the Ethernet Switch Configurator access.

□ In the *VLAN ID* column you specify the VLAN in which the device management can be accessed over the network.

Note here that you can only access the device management using ports that are members of the relevant VLAN.

The *MAC address* field displays the MAC address of the device with which you access the device over the network.

- □ In the *Ethernet Switch Configurator protocol v1/v2* frame you specify the settings for accessing the device using the Ethernet Switch Configurator software.
- The Ethernet Switch Configurator protocol lets you allocate an IP address to the device on the basis of its MAC address. Activate the Ethernet Switch Configurator protocol if you want to allocate an IP address to the device from your PC with the Ethernet Switch Configurator software.
- □ Open the *Basic Settings* > *Network* > *IPv4* dialog.

In this dialog you specify the source from which the device gets its IP parameters after starting.

- □ In the *Management interface* frame you first specify where the device gets its IP parameters from:
- In the BOOTP mode, the configuration is using a BOOTP or DHCP server on the basis of the MAC address of the device.
- In the DHCP mode, the configuration is using a DHCP server on the basis of the MAC address or the name of the device.
- In the Local mode, the device uses the network parameters from the internal device memory.

**Note:** When you change the allocation mode of the IP address, the device activates the new mode immediately after you click the  $\checkmark$  button.

- □ If required, you enter the IP address, the netmask and the Gateway in the *IP parameter* frame.
- □ Save the changes temporarily. To do this, click the ✓ button.

### 2.4.2 IPv6

Perform the following steps:

- □ Open the Basic Settings > Network > IPv6 dialog.
- □ The IPv6 protocol is enabled by default. Verify if the *on* radio button is selected in the *Operation* frame.
- □ In the *Configuration* frame you specify where the device gets its IPv6 parameters from:
- If the None radio button is selected, then the device receives its IPv6 parameters manually. You can manually specify a maximum number of 4 IPv6 addresses. You cannot specify loopback, link-local, and *Multicast* addresses as static IPv6 addresses.
- If the Auto radio button is selected, then the device receives its IPv6 parameters dynamically for example, with the use of a Router Advertisement Daemon (radvd). The device receives a maximum of 2 IPv6 addresses.
- If the DHCPv6 radio button is selected, then the device receives its IPv6 parameters from a DHCPv6 server.
  - The device can receive only one IPv6 address from the DHCPv6 server.
- If the All radio button is selected, then the device receives its IPv6 parameters using every alternative for both dynamic and manual assignments.

**Note:** When you change the allocation mode of the IPv6 address, the device activates the new mode immediately after you click the velocity button.

□ If necessary, you enter the Gateway address in the IP parameter frame.

**Note:** If the *Auto* radio button is selected and you use a Router Advertisement Daemon (radvd), then the device automatically receives a link-local type *Gateway address* with a higher metric than the manually set *Gateway address*.

□ In the *Duplicate Address Detection* frame you can specify the number of consecutive *Neighbor Solicitation* messages that the device sends for the *Duplicate Address Detection* function (see on page 63 "Duplicate Address Detection").

Save the changes temporarily. To do this, click the 🗸 button.

Manually specify an IPv6 address. To do this, perform the following steps:

- □ Open the *Basic Settings > Network > IPv*6 dialog.
- Click the button.
   The dialog displays the *Create* window.
- Enter the IPv6 address in the *IP address* field.
- □ Enter the IPv6 address prefix length in the *PrefixLength* field.
- ☐ Click the *Ok* button. The device adds a new table entry.

## 2.5 Specifying the IP parameters using BOOTP

With the *BOOTP* function activated the device sends a boot request message to the BOOTP server. The boot request message contains the Client ID configured in the *Basic Settings > Network > IPv4* dialog. The BOOTP server enters the Client ID into a database and assigns an IP address. The server answers with a boot reply message. The boot reply message contains the assigned IP address.

## **2.6** Specifying the IP parameters using DHCP

### 2.6.1 IPv4

The DHCP (Dynamic Host Configuration Protocol) is a further development of BOOTP, which it has replaced. The DHCP additionally lets the configuration of a DHCP client using a name instead of using the MAC address.

For the DHCP, this name is known as the "Client Identifier" in accordance with RFC 2131.

The device uses the name entered under sysName in the system group of the MIB II as the Client Identifier. You can change the system name using the Graphical User Interface (see dialog *Basic Settings > System*), the Command Line Interface or SNMP.

The device sends its system name to the DHCP server. The DHCP server then uses the system name to allocate an IP address as an alternative to the MAC address.

In addition to the IP address, the DHCP server sends

- the netmask
- the default Gateway (if available)
- ▶ the TFTP URL of the configuration file (if available).

The device applies the configuration data to the appropriate parameters. When the DHCP Sever assigns the IP address, the device permanently saves the configuration data in non-volatile memory.

| Options | Meaning           |
|---------|-------------------|
| 1       | Subnet Mask       |
| 2       | Time Offset       |
| 3       | Router            |
| 4       | Time server       |
| 12      | Host Name         |
| 42      | NTP server        |
| 61      | Client Identifier |
| 66      | TFTP Server Name  |
| 67      | Bootfile Name     |

Table 12: DHCP options which the device requests

The advantage of using DHCP instead of BOOTP is that the DHCP server can restrict the validity of the configuration parameters ("Lease") to a specific time period (known as dynamic address allocation). Before this period ("Lease Duration") elapses, the DHCP client can attempt to renew this lease. Alternatively, the client can negotiate a new lease. The DHCP server then allocates a random free address.

To help avoid this, DHCP servers provide the explicit configuration option of assigning a specific client the same IP address based on a unique hardware ID (known as static address allocation).

In the default setting, DHCP is activated. As long as DHCP is activated, the device attempts to obtain an IP address. When the device cannot find a DHCP server after restarting, it will not have an IP address. The *Basic Settings* > *Network* > *IPv4* dialog lets you activate or deactivate DHCP.

**Note:** When using ConneXium Network Manager network management, verify that DHCP allocates the original IP address to every device.

The appendix contains an example configuration of the BOOTP/DHCP-server.

Example of a DHCP-configuration file:

```
# /etc/dhcpd.conf for DHCP Daemon
subnet 10.1.112.0 netmask 255.255.240.0 {
option subnet-mask 255.255.240.0;
option routers 10.1.112.96;
1
#
# Host berta requests IP configuration
# with her MAC address
#
host berta {
hardware ethernet 00:80:63:08:65:42;
fixed-address 10.1.112.82;
# Host hugo requests IP configuration
# with his client identifier.
#
host hugo {
#
option dhcp-client-identifier "hugo";
option dhcp-client-identifier 00:68:75:67:6f;
fixed-address 10.1.112.83;
server-name "10.1.112.11";
filename "/agent/config.dat";
```

Lines beginning with the # character, contain comments.

The lines preceding the individually listed devices refer to settings that apply to the following device.

The fixed-address line assigns a permanent IP address to the device.

For further information, please refer to the DHCP server manual.

### 2.6.2 IPv6

The Dynamic Host Configuration Protocol version 6 (DHCPv6) is a network protocol that is used to dynamically specify IPv6 addresses. This protocol is the IPv6 equivalent of the DHCP protocol for IPv4. DHCPv6 protocol is described in RFC 8415.

The device uses a DHCP Unique Identifier (DUID) to send a request to the DHCPv6 server. In the device, the DUID represents the *Client ID* that the DHCPv6 server uses to identify the device that requested an IPv6 address.

The Client ID is displayed in the Basic Settings > Network > IPv6 dialog, in the DHCP frame.

The device can receive only one IPv6 address from the DHCPv6 server, with a *PrefixLength* of 128. No *Gateway address* information is provided. If needed, you can manually specify *Gateway address* information.

In the default setting, DHCPv6 protocol is deactivated. You can activate or deactivate the protocol in the *Basic Settings > Network > IPv6* dialog. Verify that the *DHCPv6* radio button is selected in the *Configuration* frame.

If you want to dynamically get an IPv6 address with a *PrefixLength* other than 128, then select the *Auto* radio button. An example here is the use of a Router Advertisement Daemon (radvd). The radvd uses *Router Solicitation* and *Router Advertisement* messages to automatically configure an IPv6 address.

In the default setting, the *Auto* radio button is selected. You can select or deselect the *Auto* radio button in the *Basic Settings > Network > IPv6* dialog, in the *Configuration* frame.

If the *All* radio button is selected, then the device receives its IPv6 parameters using every alternative for both dynamic and manual assignments.

## 2.7 Management address conflict detection

You assign an IP address to the device using several different methods. This function helps the device detect IP address conflicts on a network after boot up and the device also checks periodically during operation. This function is described in RFC 5227.

When enabled, the device sends an SNMP trap informing you that it detected an IP address conflict.

The following list contains the default settings for this function:

- Operation: On
- Detection mode: active and passive
- Send periodic ARP probes: marked
- Detection delay [ms]: 200
- Release delay [s]: 15
- Address protections: 3
- Protection interval [ms]: 200
- Send trap: marked

### 2.7.1 Active and passive detection

Actively checking the network helps prevent the device from connecting to the network with a duplicate IP address. After connecting the device to a network or after configuring the IP address, the device immediately checks if its IP address exists within the network. To check the network for address conflicts, the device sends 4 ARP probes with the detection delay of 200 ms into the network. When the IP address exists, the device attempts to return to the previous configuration, and make another check after the configured release delay time.

When you disable active detection, the device sends 2 gratuitous APR announcements in 2 s intervals. Using the ARP announcements with passive detection enabled, the device polls the network to determine if there is an address conflict. After resolving an address conflict or after expired release delay time, the device reconnects to the network. Following 10 detected conflicts, when the configured release delay interval is less than 60 s, the device sets the release delay interval to 60 s.

After the device performs active detection or you disable the active detection function, with passive detection enabled the device listens on the network for other devices using the same IP address. When the device detects a duplicate IP address, it initially defends its address by employing the ACD mechanism in the passive detection mode and sends out gratuitous ARPs. The number of protections that the device sends and the protection interval are configurable. To resolve conflicts, if the remote device remains connected to the network, then the network interface of the local device disconnects from the network.

When a DHCP server assigns an IP address to the device and an address conflict occurs, the device returns a DHCP decline message.

The device uses the ARP probe method. This has the following advantages:

- ARP caches on other devices remain unchanged
- ▶ the method is robust through multiple ARP probe transmissions

## 2.8 Duplicate Address Detection

The *Duplicate Address Detection* function determines the uniqueness of an IPv6 unicast address on an interface. The function is performed when an IPv6 address is configured using manual, *DHCPv6*, or *Auto* methods. The function is also triggered by a change in a link status for example, a link status change from down to up.

The *Duplicate Address Detection* function uses *Neighbor Solicitation* and *Neighbor Advertisement* messages. You have the option to set the number of consecutive *Neighbor Solicitation* messages that the device sends. To do this, perform the following steps:

| <ul> <li>Open the Basic Settings &gt; Network &gt; IPve</li> <li>In the Duplicate Address Detection frame solicitants field.</li> <li>Possible values:         <ul> <li>0</li> <li>The function is disabled.</li> <li>15 (default setting: 1)</li> </ul> </li> </ul> | 6 dialog.<br>set the necessary value in the <i>Number of neighbor</i>                                                                                       |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------|
| $\Box$ Save the changes temporarily. To do this, click the $\checkmark$ button.                                                                                                                                                                                      |                                                                                                                                                             |
| enable<br>network ipv6 dad-transmits <05>                                                                                                                                                                                                                            | Change to the Privileged EXEC mode.<br>Set the number of <i>Neighbor Solicitation</i> messages that the device sends.<br>The value 0 disables the function. |

**Note:** If the *Duplicate Address Detection* function discovers that an IPv6 address is not unique on a link, then the device does not log this event in the log file (System Log).

## **3** Access to the device

## **3.1** Access roles

The device functions available to you as a user depend on your access role. When you are logged in with a specific access role, the functions of the access role are available to you.

The commands available to you as a user, also depend on the Command Line Interface mode in which you are currently working. See "Mode-based command hierarchy" on page 25.

The device offers the following access roles:

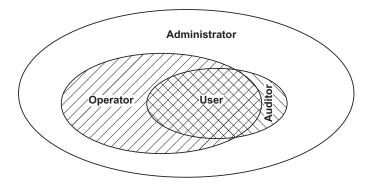



Table 13: Access roles and scope of user authorizations

| Access role   | User authorizations                                                                                                                                                                                                                                            |
|---------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| User          | Users logged in with the access role User are authorized to monitor the device.                                                                                                                                                                                |
| Auditor       | Users logged in with the access role Auditor are authorized to monitor the device and to save the log file in the <i>Diagnostics</i> > <i>Report</i> > <i>Audit Trail</i> dialog.                                                                              |
| Operator      | Users logged in with the access role Operator are authorized to monitor the device and to change the settings – with the exception of security settings for device access.                                                                                     |
| Administrator | Users logged in with the access role Administrator are authorized to monitor the device and to change the settings.                                                                                                                                            |
| Unauthorized  | Unauthorized users are blocked, and the device rejects the user login. Assign<br>this value to temporarily lock the user account. If a detected error occurs during<br>an access role change, then the device assigns this access role to the user<br>account. |

## **3.2** First login (Password change)

To help prevent undesired access to the device, it is imperative that you change the default password during initial setup.

Perform the following steps:

- Open the Graphical User Interface, the SE View application, or the Command Line Interface the first time you log in.
- Log in with the default password.
   The device prompts you to type in a new password.
- Type in your new password. To help increase security, choose a password that contains at least 8 characters which includes upper-case characters, lower-case characters, numerical digits, and special characters.
- When you log in with the Command Line Interface, the device prompts you to confirm your new password.
- $\Box$  Log in again with your new password.

Note: If you lost your password, then contact your local support team.

## **3.3** Authentication lists

When a user accesses the device using a specific connection, the device verifies the login credentials of the user in an authentication list which contains the policies that the device applies for authentication.

The prerequisite for a user's access to the device management is that at least one policy is assigned to the authentication list of the application through which access is performed.

### 3.3.1 Applications

The device provides an application for each type of connection through which someone accesses the device:

- Access to the Command Line Interface using a serial connection: Console (V.24)
- Access to the Command Line Interface using SSH: SSH
- Access to the Command Line Interface using Telnet: Telnet
- Access to the Graphical User Interface: WebInterface

The device also provides an application to control the access to the network from connected end devices using port-based access control: 8021x

### 3.3.2 Policies

When a user logs in with valid login data, the device lets the user have access to its device management. The device authenticates the users using the following policies:

- User management of the device
- LDAP
- RADIUS

When the end device logs in with valid login data, the device lets the connected end devices have access to the network with the port-based access control according to IEEE 802.1X. The device authenticates the end devices using the following policies:

- RADIUS
- IAS (Integrated Authentication Server)

The device gives you the option of a fall-back solution. For this, you specify more than one policy in the authentication list. When authentication is unsuccessful using the current policy, the device applies the next specified policy.

### 3.3.3 Managing authentication lists

You manage the authentication lists in the Graphical User Interface or in the Command Line Interface. To do this, perform the following steps:

□ Open the *Device Security* > *Authentication List* dialog.

The dialog displays the authentication lists that are set up.

show authlists
 Displays the authentication lists that are set up.
 Deactivate the authentication list for those applications by means of which no access to the device is performed, for example 8021x.
 In the Active column of the authentication list defaultDot1x8021AuthList, unmark the checkbox.
 Save the changes temporarily. To do this, click the button.
 authlists disable defaultDot1x8021AuthList
 Deactivates the authentication list defaultDot1x8021AuthList.

### 3.3.4 Adjust the settings

Example: Set up a separate authentication list for the application <code>WebInterface</code> which is by default included in the authentication list <code>defaultLoginAuthList</code>.

The device forwards authentication requests to a RADIUS server in the network. As a fall-back solution, the device authenticates users using the local user management. To do this, perform the following steps:

□ Create an authentication list loginGUI.

authlists add loginGUI

 Open the Device Security > Authentication List dialog.
 Click the button. The dialog displays the Create window.
 Enter a meaningful name in the Name field. In this example, enter the name loginGUI.
 Click the Ok button. The device adds a new table entry.
 enable Change to the Privilegen Configure Change to the Configuration

Change to the Privileged EXEC mode. Change to the Configuration mode. Creates the authentication list loginGUI.

□ Select the policies for the authentication list loginGUI.

- □ In the *Policy* 1 column, select the value *radius*.
- □ In the *Policy* 2 column, select the value *local*.
- □ In the *Policy 3* to *Policy 5* columns, select the value *reject* to help prevent further fall-back.
- □ In the *Active* column, mark the checkbox.
- $\Box$  Save the changes temporarily. To do this, click the  $\checkmark$  button.

| authlists set-policy loginGUI radius<br>local reject reject reject | Assigns the policies radius, local and reject to the authentication list loginGUI. |
|--------------------------------------------------------------------|------------------------------------------------------------------------------------|
| show authlists                                                     | Displays the authentication lists that are set up.                                 |
| authlists enable loginGUI                                          | Activates the authentication list loginGUI.                                        |

Assign an application to the authentication list loginGUI.

In the Device Security > Authentication List dialog, highlight the authentication list loginGUI.
Click the button and then the Allocate applications item. The dialog displays the Allocate applications window.
In the left column, highlight the application WebInterface.
Click the button. The right column now displays the application WebInterface.
Click the Ok button. The dialog displays the updated settings:

The Dedicated applications column of authentication list loginGUI displays the application WebInterface.
The Dedicated applications column of authentication list loginGUI displays the application WebInterface.
Save the changes temporarily. To do this, click the button.

show appllists appllists set-authlist WebInterface loginGUI Displays the applications and the allocated lists.

Assigns the loginGUI application to the authentication list WebInterface.

## 3.4 User management

When a user logs in with valid login data, the device lets the user have access to its device management. The device authenticates the users either using the local user management or with a RADIUS server in the network. To get the device to use the user management, assign the local policy to an authentication list, see the *Device Security* > *Authentication List* dialog.

In the local user management, you manage the user accounts. One user account is usually allocated to each user.

### 3.4.1 Access roles

The device lets you use a role-based authorization model to specifically control the access to the device management. Users to whom a specific authorization profile is allocated are allowed to use commands and functions from the same authorization profile or a lower one.

The device uses the authorization profiles on every application with which the device management can be accessed.

Every user account is linked to an access role that regulates the access to the individual functions of the device. Depending on the planned activity for the respective user, you assign a pre-defined access role to the user. The device differentiates between the following access roles.

| Role          | Description                                                                                                                                                                                                                                                                                                            | Authorized for the following activities                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|---------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Administrator | The user is authorized to monitor and administer the device.                                                                                                                                                                                                                                                           | <ul> <li>All activities with read/write access, including the following activities reserved for an administrator:</li> <li>Add, modify or delete user accounts</li> <li>Activate, deactivate or unlock user accounts</li> <li>Change every password</li> <li>Configure password management</li> <li>Set or change system time</li> <li>Load files to the device, for example device configurations, certificates or software images</li> <li>Reset settings and security-related settings to the state on delivery</li> <li>Configure RADIUS server and authentication lists</li> <li>Apply scripts using the Command Line Interface</li> <li>Enable/disable CLI logging and SNMP logging</li> <li>External memory activation and deactivation</li> <li>System monitor activation and deactivation</li> <li>Configure access restrictions to the Graphical User Interface or the Command Line Interface</li> <li>Configure access restrictions to the Graphical User Interface or the Command Line Interface</li> </ul> |
| Operator      | The user is authorized to<br>monitor and configure the<br>device - with the exception of<br>security-related settings.                                                                                                                                                                                                 | All activities with read/write access, with the exception of the above-named activities, which are reserved for an administrator:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Auditor       | The user is authorized to<br>monitor the device and to<br>save the log file in the<br><i>Diagnostics &gt; Report &gt; Audit</i><br><i>Trail</i> dialog.                                                                                                                                                                | Monitoring activities with read access.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Guest         | The user is authorized to<br>monitor the device - with the<br>exception of security-related<br>settings.                                                                                                                                                                                                               | Monitoring activities with read access.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Unauthorized  | <ul> <li>No access to the device possible.</li> <li>As an administrator you assign this access role to temporarily lock a user account.</li> <li>If an administrator assigns a different access role to the user account and an error occurs, then the device assigns this access role to the user account.</li> </ul> | No activities allowed.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |

### 3.4.2 Managing user accounts

You manage the user accounts in the Graphical User Interface or in the Command Line Interface. To do this, perform the following steps:

□ Open the *Device Security* > *User Management* dialog. The dialog displays the user accounts that are set up.

show users

Displays the user accounts that are set up.

### 3.4.3 Default setting

In the state on delivery, the user accounts admin and user are set up in the device.

| Parameter            | Default setting |          |  |
|----------------------|-----------------|----------|--|
| User name            | admin           | user     |  |
| Password             | private         | public   |  |
| Role                 | administrator   | guest    |  |
| User locked          | unmarked        | unmarked |  |
| Policy check         | unmarked        | unmarked |  |
| SNMP auth type       | hmacmd5         | hmacmd5  |  |
| SNMP encryption type | des             | des      |  |

Table 15: Default settings for the factory setting user accounts

Change the password for the admin user account before making the device available in the network.

### 3.4.4 Changing default passwords

To help prevent undesired access, change the password of the default user accounts. To do this, perform the following steps:

□ Change the passwords for the admin and user user accounts.

□ Open the *Device Security* > *User Management* dialog.

The dialog displays the user accounts that are set up.

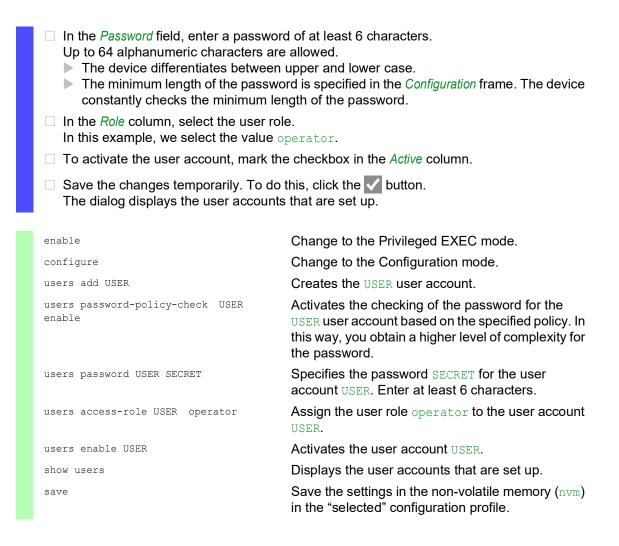
□ To obtain a higher level of complexity for the password, mark the checkbox in the *Policy check* column.

Before saving it, the device checks the password according to the policy specified in the *Password policy* frame.

Note: The password check can lead to a message in the Security status frame in the Basic Settings > System dialog. You specify the settings that cause this message in the Basic Settings > System dialog. □ Click the row of the relevant user account in the *Password* field. Enter a password of at least 6 characters. Up to 64 alphanumeric characters are allowed. The device differentiates between upper and lower case. ▶ The minimum length of the password is specified in the Configuration frame. The device constantly checks the minimum length of the password. □ Save the changes temporarily. To do this, click the ✓ button. enable Change to the Privileged EXEC mode. configure Change to the Configuration mode. Activates the checking of the password for the users password-policy-check <user> enable <user>user account based on the specified policy. In this way, you obtain a higher level of complexity for the password. Note: When you display the security status, the password check can lead to a message (show security-status all). You specify the settings that cause this message with the command security-status monitor pwd-policy-inactive. users password <user> SECRET Specifies the password SECRET for the <user > user account. Enter at least 6 characters. Save the settings in the non-volatile memory (nvm) save in the "selected" configuration profile.

## 3.4.5 Setting up a new user account

Allocate a separate user account to each user that accesses the device management. In this way you can specifically control the authorizations for the access.


In the following example, we will set up the user account for a USER user with the role operator. Users with the operator role are authorized to monitor and configure the device - with the exception of security-related settings. To do this, perform the following steps:

Create a new user account.

□ Open the Device Security > User Management dialog.

- Click the button.
   The dialog displays the *Create* window.
- Enter the name in the User name field.
   In this example, we give the user account the name USER.
- Click the Ok button.
- □ To obtain a higher level of complexity for the password, mark the checkbox in the *Policy check* column.

Before saving it, the device checks the password according to the policy specified in the *Password policy* frame.



**Note:** When you are setting up a new user account in the Command Line Interface, remember to allocate the password.

#### 3.4.6 Deactivating the user account

After a user account is deactivated, the device denies the related user access to the device management. In contrast to completely deleting it, deactivating a user account lets you keep the settings and reuse them in the future. To do this, perform the following steps:

- To keep the user account settings and reuse them in the future, you temporarily deactivate the user account.
  - Open the *Device Security > User Management* dialog. The dialog displays the user accounts that are set up.
     In the row for the relevant user account, unmark the checkbox in the *Active* column.
     Save the changes temporarily. To do this, click the button.

| enable                      | Change to the Privileged EXEC mode.                                                         |
|-----------------------------|---------------------------------------------------------------------------------------------|
| configure                   | Change to the Configuration mode.                                                           |
| users disable <user></user> | To disable user account.                                                                    |
| show users                  | Displays the user accounts that are set up.                                                 |
| save                        | Save the settings in the non-volatile memory (nvm) in the "selected" configuration profile. |

□ To permanently deactivate the user account settings, you delete the user account.

Highlight the row for the relevant user account.Click the R button.

 users delete <user>
 Deletes the user account <user>.

 show users
 Displays the user accounts that are set up.

 save
 Save the settings in the non-volatile memory (nvm) in the "selected" configuration profile.

#### 3.4.7 Adjusting policies for passwords

The device lets you check if the passwords for the user accounts adhere to the specified policy. When the passwords adhere to the policy, you obtain a higher level of complexity for the passwords.

The user management of the device lets you activate or deactivate the check separately in each user account. When you mark the checkbox and the new password fulfills the requirements of the policy, the device accepts the password change.

In the default settings, practical values for the policy are set up in the device. You have the option of adjusting the policy to meet your requirements. To do this, perform the following steps: Adjust the policy for passwords to meet your requirements.

#### □ Open the Device Security > User Management dialog.

In the *Configuration* frame you specify the number user login attempts before the device locks out the user. You also specify the minimum number of characters that defines a password.

Note: The device lets only users with the *administrator* authorization remove the lock.

The number of login attempts as well as the possible lockout of the user apply only when accessing the device management through:

- the Graphical User Interface
- the SSH protocol
- the Telnet protocol

**Note:** When accessing the device management using the Command Line Interface through the serial connection, the number of login attempts is unlimited.

- □ Specify the values to meet your requirements.
  - In the Login attempts field you specify the number of times that a user attempts to log in. The field lets you define this value in the range 0..5.
    - In the above example, the value 0 deactivates the function.
  - ▶ The *Min. password length* field lets you enter values in the range 1..64.

The dialog displays the policy set up in the *Password policy* frame.

- □ Adjust the values to meet your requirements.
  - Values in the range 1 through 16 are allowed. The value 0 deactivates the relevant policy.

To apply the entries specified in the *Configuration* and *Password policy* frames, mark the checkbox in the *Policy check* column for a particular user.

□ Save the changes temporarily. To do this, click the ✓ button.

| enable                          | Change to the Privileged EXEC mode.                                                         |
|---------------------------------|---------------------------------------------------------------------------------------------|
| configure                       | Change to the Configuration mode.                                                           |
| passwords min-length 6          | Specifies the policy for the minimum length of the password.                                |
| passwords min-lowercase-chars 1 | Specifies the policy for the minimum number of lower-case letters in the password.          |
| passwords min-numeric-chars 1   | Specifies the policy for the minimum number of digits in the password.                      |
| passwords min-special-chars 1   | Specifies the policy for the minimum number of special characters in the password.          |
| passwords min-uppercase-chars 1 | Specifies the policy for the minimum number of upper-case letters in the password.          |
| show passwords                  | Displays the policies that are set up.                                                      |
| save                            | Save the settings in the non-volatile memory (nvm) in the "selected" configuration profile. |

# 3.5 LDAP

Server administrators manage Active Directorys which contain user login credentials for applications used in the office environment. The Active Directory is hierarchical in nature, containing user names, passwords, and the authorized read/write permission levels for each user.

This device uses the Lightweight Directory Access Protocol (LDAP) to retrieve user login information and permission levels from a Active Directory. This provides a "single sign on" for network devices. Retrieving the login credentials from an Active Directory lets the user log in with the same login credentials used in the office environment.

An LDAP session starts with the device contacting the Directory System Agent (DSA) to search the Active Directory of an LDAP server. If the server finds multiple entries in the Active Directory for a user, then the server sends the higher permission level found. The DSA listens for information requests and sends responses on TCP port 389 for LDAP, or on TCP port 636 for LDAP over SSL (LDAPS). Clients and servers encode LDAPS requests and responses using the Basic Encoding Rules (BER). The device opens a new connection for every request and closes the connection after receiving a response from the server.

The device lets you upload a CA certificate to validate the server for Secure Socket Level (SSL) and Transport Layer Security (TLS) sessions. Whereby, the certificate is optional for TLS sessions.

The device is able to cache login credentials for up to 1024 users in memory. If the active directory servers are unreachable, then the users are still able to log in using their office login credentials.

## 3.5.1 Coordination with the server administrator

Configuring the *LDAP* function requires that the network administrator request the following information from the server administrator:

- The server name or IP address
- The location of the Active Directory on the server
- ► The type of connection used
- ► The TCP listening port
- When required, the location of the CA certificate
- The name of the attribute containing the user login name
- > The names of the attribute containing the user permission levels

The server administrator can assign permission levels individually using an attribute such as description, or to a group using the memberOf attribute. In the *Device Security* > *LDAP* > *Role Mapping* dialog you specify which attributes receive the various permission levels.

You also have the option to retrieve the name of the attributes containing the user login name and permission levels using a LDAP browser such as JXplorer or Softerra.

## 3.5.2 Example configuration

The device is able to establish an encrypted link to a local server using only the server name or to a server on a different network using an IP address. The server administrator uses attributes to identify login credentials of a user and assign individual and group permission levels.

Using information received from the server administrator, specify which attributes in the Active Directory contain the user login credentials and permission level. The device then compares the user login credentials with the permission levels specified in the device and lets the user log in at the assigned permission level.

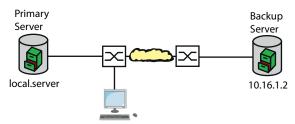



Figure 18: LDAP Example Configuration

For this example, the server administrator sent the following information:

| Information                                                      | Primary Server                                  | Backup Server                                  |
|------------------------------------------------------------------|-------------------------------------------------|------------------------------------------------|
| The server name or IP address                                    | local.server                                    | 10.16.1.2                                      |
| The location of the Active Directory on the server               | Country/City/User                               | Country/Company/User                           |
| The type of connection used                                      | TLS (with certificate)                          | SSL                                            |
| The server administrator sent the CA certificate in an email.    | CA certificate for primary server saved locally | CA certificate for backup server saved locally |
| The TCP listening port                                           | 389 (tls)                                       | 636 (ssl)                                      |
| Name of the attribute containing the user name                   | userPrincipalName                               | userPrincipalName                              |
| The names of the attribute containing the user permission levels | OPERATOR<br>ADMINISTRATOR                       | OPERATOR<br>ADMINISTRATOR                      |

Perform the following steps:

- □ Open the Device Security > Authentication List dialog.
- □ To configure the device to retrieve the user login credentials, during login using the Graphical User Interface, from the Active Directory first, specify for the defaultLoginAuthList list the value ldap in the *Policy 1* column.
- □ Open the Device Security > LDAP > Configuration dialog.
- □ The device lets you specify the length of time that it saves the user login credentials in the cache. To cache user login credentials for a day, in the *Configuration* frame, *Client cache timeout [min]* field, enter the value 1440.
- □ The *Bind user* entry is optional. When specified, users enter only their user name to log in. The service user can be anyone with login credentials listed in the Active Directory under the attribute specified in the *User name attribute* column. In the *Bind user* column, enter the user name and the domain.

- □ The Base DN is a combination of the domain component (dc) and the organizational unit (ou). The Base DN lets the device locate a server in a domain (dc) and find the Active Directory (ou). Specify the location of the Active Directory. In the Base DN column, specify the value ou=Users, ou=City, ou=Country, dc=server, dc=local.
- □ In the User name attribute column, enter the value userPrincipalName to specify the attribute under which the server administrator lists the users.

The device uses a CA certificate to verify the server.

- □ When the certificate is located on your PC or on a network drive, drag and drop the certificate in the state. Alternatively click in the area to select the certificate.
- □ To transfer the CA certificate onto the device, click the *Start* button.
- To add a table entry, click the button.
- □ To specify a description, enter the value Primary AD Server in the *Description* column.
- □ To specify the server name and domain of the primary server, in the *Address* column, enter the value local.server.
- □ The primary server uses the TCP port 389 for communication which is the *Destination TCP* port default value.
- □ The primary server uses TLS for encrypting communication and a CA certificate for server validation. In the *Connection security* column, specify the value startTLS.
- □ To activate the entry, mark the checkbox in the Active column.
- □ Using the information received from the server administrator for the Backup server, add, configure and activate another row.
- □ Open the *Device Security* > *LDAP* > *Role Mapping* dialog.
- □ To add a table entry, click the 🔜 button.

When a user logs in, with LDAP configured and enabled, the device searches the Active Directory for the login credentials of the user. If the device finds the user name and the password is correct, then the device searches for the value specified in the *Type* column. If the device finds the attribute and the text in the *Parameter* column matches the text in the Active Directory, then the device lets the user log in with the assigned permission level. When the value attribute is specified in the *Type* column, specify the value in the *Parameter* column in the following form: attributeName=attributeValue.

- □ In the *Role* column, enter the value operator to specify the user role.
- □ To activate the entry, mark the checkbox in the *Active* column.
- Click the button.
   The dialog displays the *Create* window.
   Enter the values received from the server administrator for the administrator role.
   To activate the entry, mark the checkbox in the *Active* column.
- □ Open the Device Security > LDAP > Configuration dialog.
- □ To enable the function, select the *On* radio button in the *Operation* frame.

The following table describes how to configure the *LDAP* function in the device using the Command Line Interface. The table displays the commands for Index 1. To configure Index 2, use the same commands and substitute the appropriate information.

| enable                  | Change to the Privileged EXEC mode.                              |
|-------------------------|------------------------------------------------------------------|
| configure               | Change to the Configuration mode.                                |
| ldap cache-timeout 1440 | Specify the device to flush the non-volatile memory after a day. |

| ldap client server add 1 local.server<br>port 389                                                | Add a connection to the remote authentication client server with the host name local.server and the UDP port 389.                                |
|--------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------|
| ldap client server modify 1 security startTLS                                                    | Specify the type of security used for the connection.                                                                                            |
| ldap client server modify 1 description<br>Primary_AD_Server                                     | Specify the configuration name of the entry.                                                                                                     |
| ldap basedn<br>ou=Users,ou=City,ou=Country,dc=server,<br>dc=local                                | Specify the Base Domain Name used to find the Active Directory on the server.                                                                    |
| ldap search-attr userPrincipalName                                                               | Specify the attribute to search for in the Active Directory which contains the login credential of the users.                                    |
| ldap bind-user user@company.com                                                                  | Specify the name and domain of the service user.                                                                                                 |
| ldap bind-passwd Ur-123456                                                                       | Specify the password of the service user.                                                                                                        |
| ldap client server enable 1                                                                      | Enable the remote authentication client server connection.                                                                                       |
| ldap mapping add 1 access-role operator<br>mapping-type attribute mapping-<br>parameter OPERATOR | Add a remote authentication role mapping entry for<br>the Operator role. Map the operator role to the<br>attribute containing the word OPERATOR. |
| ldap mapping enable 1                                                                            | Enable the remote authentication role mapping entry.                                                                                             |
| ldap operation                                                                                   | Enable the remote authentication function.                                                                                                       |
|                                                                                                  |                                                                                                                                                  |

## **3.6 SNMP** access

The SNMP protocol lets you work with a network management system to monitor the device over the network and change its settings.

## 3.6.1 SNMPv1/v2 access

Using SNMPv1 or SNMPv2 the network management system and the device communicate unencrypted. Every SNMP packet contains the community name in plain text and the IP address of the sender.

The community names user for read accesses and admin for write accesses are preset in the device. If SNMPv1/v2 is enabled, then the device lets anyone who knows the community name have access to the device.

Make undesired access to the device more difficult. To do this, perform the following steps:

- □ Change the default community names in the device.
- Treat the community names with discretion.

Anyone who knows the community name for write access, has the ability to change the settings of the device.

- □ Specify a different community name for read/write access than for read access.
- □ Use SNMPv1 or SNMPv2 only in environments protected from eavesdropping. The protocols do not use encryption.
- □ We recommend using SNMPv3 and disabling the access using SNMPv1 and SNMPv2 in the device.

## 3.6.2 SNMPv3 access

Using SNMPv3 the network management system and the device communicate encrypted. The network management system authenticates itself with the device using the login credentials of a user. The prerequisite for the SNMPv3 access is that in the network management system uses the same settings that are defined in the device.

The device lets you specify the *SNMP auth type* and *SNMP encryption type* parameters individually in each user account.

When you set up a new user account in the device, the parameters are preset so that the network management system ConneXium Network Manager reaches the device immediately.

The user accounts set up in the device use the same passwords in the Graphical User Interface, in the Command Line Interface, and for SNMPv3.

To adapt the SNMPv3 parameters of the user account settings to the settings in your network management system, perform the following steps:

□ Open the *Device Security* > *User Management* dialog.

The dialog displays the user accounts that are set up.

□ Click the row of the relevant user account in the *SNMP* auth type field. Select the desired setting.

- □ Click the row of the relevant user account in the *SNMP encryption type* field. Select the desired setting.
- $\hfill\square$  Save the changes temporarily. To do this, click the  $\checkmark$  button.

| enable                                                           | Change to the Privileged EXEC mode.                                                                                                                                                             |
|------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| configure                                                        | Change to the Configuration mode.                                                                                                                                                               |
| users snmpv3 authentication <user><br/>md5   shal</user>         | Assigning the HMAC-MD5 or HMACSHA protocol for authentication requests to the user account <user>.</user>                                                                                       |
| users snmpv3 encryption <user> des  <br/>aescfb128   none</user> | Assigns the DES or AES-128 algorithm to the user<br>account <user>.<br/>With this algorithm, the device encrypts<br/>authentication requests. The value none removes<br/>the encryption.</user> |
| show users                                                       | Display the user accounts that have been configured.                                                                                                                                            |
| save                                                             | Save the settings in the non-volatile memory (nvm) in the "selected" configuration profile.                                                                                                     |

# **3.7 Out of Band access**

The device comes with a separate port that lets you access the device management out-of-band. When there is a high in-band load on the switching ports, you can still use this separate port to access the device management.

The prerequisite is that you connect the management station directly to the USB port. When you use Microsoft Windows, install the RNDIS driver, where necessary. Once you connect the management station, it can communicate with the device management over a virtual network connection.

In the default setting, you can access the device management through this port using the following IP parameters:

*IP address* 91.0.0.100
 *Netmask* 255.255.255.0

The device lets you access the device management using the following protocols:

- SNMP
- Telnet
- SSH
- ► HTTP
- HTTPS
- FTP
- SCP
- TFTP
- SFTP

## 3.7.1 Specifying the IP parameters

When you connect the management station through the USB port, the device assigns the IP address of the USB network interface, increased by 1, to the management station (91.0.0.101 in the default setting). The device lets you change the IP parameters to adapt the device to the requirements of your environment.

Verify that the IP subnet of this network interface is not overlapping with any subnet connected to another interface of the device:

Management interface

If the management station accesses the device management through the USB port, then the device disconnects the Graphical User Interface and Command Line Interface immediately after you have performed the changes.

Perform the following steps:

- □ Open the Basic Settings > Out of Band over USB dialog.
- Overwrite the IP address in the IP parameter frame, IP address field.
- □ Save the changes temporarily. To do this, click the ✓ button.

| enable<br>network usb parms 192.168.1.1<br>255.255.255.0 | Change to the Privileged EXEC mode.<br>Specify the IP address 192.168.1.1 and the<br>netmask 255.255.255.0 for the USB network<br>interface. |
|----------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------|
| show network usb                                         | Display the USB network interface settings.                                                                                                  |
| Out-of-band USB management settings                      |                                                                                                                                              |
|                                                          |                                                                                                                                              |
| Management operation                                     | enabled                                                                                                                                      |
| IP address                                               | 192.168.1.1                                                                                                                                  |
| Subnet mask                                              | 255.255.255.0                                                                                                                                |
| Host MAC address                                         | 64:60:38:1f:85:85                                                                                                                            |
| Device MAC address                                       | 64:60:38:1f:85:86                                                                                                                            |
| save                                                     | Save the settings in the non-volatile memory (nvm) in the "selected" configuration profile.                                                  |

#### 3.7.2 Disable the USB network interface

In the default setting, the USB network interface is enabled. If you don't want someone to access device management through the USB port, then the device lets you disable the USB network interface.

If the management station accesses the device management through the USB port, then the device disconnects the Graphical User Interface and Command Line Interface immediately after you have performed the changes.

Perform the following steps:

- □ Open the Basic Settings > Out of Band over USB dialog.
- □ To disable the USB network interface, select the *Off* radio button in the *Operation* frame.
- □ Save the changes temporarily. To do this, click the ✓ button.

| enable                              | Change to the Privileged EXEC mode.                                                                |
|-------------------------------------|----------------------------------------------------------------------------------------------------|
| no network usb operation            | Disable the USB network interface.                                                                 |
| Out-of-band USB management settings |                                                                                                    |
|                                     |                                                                                                    |
| Management operation                | disabled                                                                                           |
| IP address                          | 192.168.1.1                                                                                        |
| Subnet mask                         | 255.255.255.0                                                                                      |
| Host MAC address                    | 64:60:38:1f:85:85                                                                                  |
| Device MAC address                  | 64:60:38:1f:85:86                                                                                  |
|                                     |                                                                                                    |
| save                                | Save the settings in the non-volatile memory $(n \vee m)$ in the "selected" configuration profile. |

## **4** Synchronizing the system time in the network

Many applications rely on a time that is as correct as possible. The necessary accuracy, and thus the allowable deviation from the actual time, depends on the application area.

Examples of application areas include:

- Log entries
- Time stamping of production data
- Process control

The device lets you synchronize the time on the network using the following options:

- The Simple Network Time Protocol (SNTP) is a simple solution for low accuracy requirements. Under ideal conditions, SNTP achieves an accuracy in the millisecond range. The accuracy depends on the signal delay.
- IEEE 1588 with the Precision Time Protocol (PTP) achieves accuracies on the order of fractions of microseconds. This method is suitable even for demanding applications up to and including process control.

When the involved devices support the PTP protocol, it is the better choice. PTP is more accurate, has advanced methods of error correction, and causes a low network load. The implementation of PTP is comparatively easy.

**Note:** According to the PTP and SNTP standards, both protocols function in parallel in the same network. However, since both protocols influence the system time of the device, situations can occur in which the two protocols conflict with each other.

# 4.1 **Basic settings**

In the Time > Basic Settings dialog, you specify general settings for the time.

## 4.1.1 Setting the time

When no reference time source is available to you, you have the option to set the time in the device.

After a cold start or reboot, if no real-time clock is available or the real-time clock contains an invalid time, then the device initializes its clock with January 1, 00:00h. After the power supply is switched off, the device buffers the settings of the real-time clock up to 24 hours.

Alternatively, you configure the settings in the device so that it automatically obtains the current time from a PTP clock or from an SNTP server.

Alternatively, you configure the settings in the device so that it automatically obtains the current time from an SNTP server.

Perform the following steps:

□ Open the *Time* > *Basic* Settings dialog.

- The System time (UTC) field displays the current UTC (Universal Time Coordinated) of the device. UTC is the time relating to the coordinated world time measurement. UTC is the same worldwide and does not take local time shifts into account.
- The time in the System time field comes from the System time (UTC) plus the Local offset [min] value and a possible shift due to daylight saving time.

**Note:** PTP sends the International Atomic Time (TAI). As of July 1, 2020, the TAI time is 37 s ahead of the UTC time. When the PTP reference time source of the UTC offset is set correctly, the device automatically corrects this difference on the display in the *System time (UTC)* field.

□ In order to cause the device to apply the time of your PC to the *System time* field, click the *Set time from PC* button.

Based on the value in the *Local offset* [*min*] field, the device calculates the time in the *System time* (*UTC*) field: The *System time* (*UTC*) comes from the *System time* minus the *Local offset* [*min*] value and a possible shift due to daylight saving time.

The Time source field displays the origin of the time data. The device automatically selects the source with the greatest accuracy.
The source is it is the time of the time data. The device automatically selects

The source is initially local.

When SNTP is active and the device receives a valid SNTP packet, the device sets its time source to sntp.

When PTP is active and the device receives a valid PTP message, the device sets its time source to ptp. The device prioritizes PTP ahead of SNTP.

- The Local offset [min] value specifies the time difference between the local time and the System time (UTC).
- □ In order to cause the device to determine the time zone on your PC, click the *Set time from PC* button. The device calculates the local time difference from UTC and enters the difference into the *Local offset [min]* field.

Note: The device provides the option to obtain the local offset from a DHCP server.

□ Save the changes temporarily. To do this, click the ✓ button.

| enable                                                    | Change to the Privileged EXEC mode.                                                           |
|-----------------------------------------------------------|-----------------------------------------------------------------------------------------------|
| configure                                                 | Change to the Configuration mode.                                                             |
| clock set <yyyy-mm-dd> <hh:mm:ss></hh:mm:ss></yyyy-mm-dd> | Set the system time of the device.                                                            |
| clock timezone offset <-780840>                           | Enter the time difference between the local time and the received UTC time in minutes.        |
| save                                                      | Save the settings in the non-volatile memory $(nvm)$ in the "selected" configuration profile. |

## 4.1.2 Automatic daylight saving time changeover

When you operate the device in a time zone in which there is a summer time change, you set up the automatic daylight saving time changeover on the *Daylight saving time* tab.

When daylight saving time is enabled, the device sets the local system time forward by 1 hour at the beginning of daylight saving time. At the end of daylight saving time, the device sets the local system time back again by 1 hour. To do this, perform the following steps:

- □ Open the *Time* > *Basic* Settings dialog, *Daylight* saving time tab.
- □ To select a preset profile for the start and end of daylight saving time, click the *Profile...* button in the *Operation* frame.
- When no matching daylight saving time profile is available, you specify the changeover times in the *Summertime begin* and *Summertime end* fields.
   For both time points, you specify the month, the week within this month, the weekday, and the time of day.
- □ To enable the function, select the *On* radio button in the *Operation* frame.
- □ Save the changes temporarily. To do this, click the ✓ button.

| enable                                                                          | Change to the Privileged EXEC mode.                                                                       |
|---------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------|
| configure                                                                       | Change to the Configuration mode.                                                                         |
| clock summer-time mode<br><disable recurring eu usa></disable recurring eu usa> | Configure the automatic daylight saving time<br>changeover: enable/disable or activate with a<br>profile. |
| clock summer-time recurring start                                               | Enter the start time for the changeover.                                                                  |
| clock summer-time recurring end                                                 | Enter the end time for the changeover.                                                                    |
| save                                                                            | Save the settings in the non-volatile memory (nvm) in the "selected" configuration profile.               |

## 4.2 SNTP

The Simple Network Time Protocol (SNTP) lets you synchronize the system time in your network. The device supports the SNTP client and the SNTP server function.

The SNTP server makes the UTC (Universal Time Coordinated) available. UTC is the time relating to the coordinated world time measurement. The UTC is the same worldwide and ignores local time shifts.

SNTP is a simplified version of NTP (Network Time Protocol). The data packets are identical with SNTP and NTP. Accordingly, both NTP and SNTP servers serve as a time source for SNTP clients.

Note: Statements in this chapter relating to external SNTP servers also apply to NTP servers.

SNTP knows the following operation modes for the transmission of time:

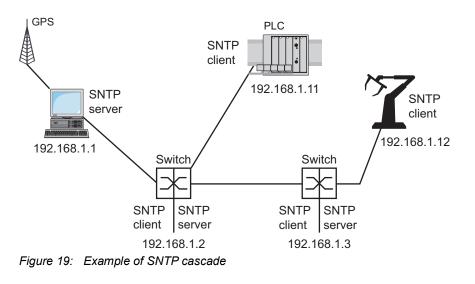
- Unicast
- In *Unicast* operation mode, an SNTP client sends requests to an SNTP server and expects a response from this server.
- Broadcast

In *Broadcast* operation mode, an SNTP server sends SNTP messages to the network in specified intervals. SNTP clients receive these SNTP messages and evaluate them.

In an IPv6 environment, the *Broadcast* operation mode operates as follows:

- The SNTP client listens only for SNTP server messages that have the IPv6 Multicast address set to ff05::101 as the IPv6 destination address.
- The SNTP server sends only SNTP messages to the *Multicast* address ff05::101. The SNTP server does not send SNTP messages with the link-local address as the IPv6 source address.

| IPv4 destination address | Send SNTP packets to                |
|--------------------------|-------------------------------------|
| 0.0.0.0                  | Nobody                              |
| 224.0.1.1                | Multicast address for SNTP messages |
| 255.255.255.255          | Broadcast address                   |


**Note:** An SNTP server in *Broadcast* operation mode also responds to direct requests using *Unicast* from SNTP clients. In contrast, SNTP clients work in either *Unicast* or *Broadcast* operation mode.

## 4.2.1 Preparation

Perform the following steps:

□ To get an overview of how the time is passed on, draw a network plan with the devices participating in SNTP.

When planning, bear in mind that the accuracy of the time depends on the delays of the SNTP messages. To minimize delays and their variance, place an SNTP server in each network segment. Each of these SNTP servers synchronizes its own system time as an SNTP client with its parent SNTP server (SNTP cascade). The highest SNTP server in the SNTP cascade has the most direct access to a reference time source.



**Note:** For precise time distribution, between SNTP servers and SNTP clients you preferably use network components (routers and switches) that forward the SNTP packets with a low and uniform transmission time (latency).

An SNTP client sends its requests to up to 4 configured SNTP servers. When there is no response from the 1st SNTP server, the SNTP client sends its requests to the 2nd SNTP server. When this request is also unsuccessful, it sends the request to the 3rd and finally the 4th SNTP server. If none of these SNTP servers respond, the SNTP client loses its synchronization. The SNTP client periodically sends requests to each SNTP server until a server delivers a valid time.

**Note:** The device provides the option of obtaining a list of SNTP server IP addresses from a DHCP server.

□ If no reference time source is available to you, then determine a device with an SNTP server as a reference time source. Adjust its system time at regular intervals.

## 4.2.2 Defining settings of the SNTP client

As an SNTP client, the device obtains the time information from SNTP or NTP servers and synchronizes its system clock accordingly. To do this, perform the following steps:

- $\Box$  Open the *Time* > *SNTP* > *Client* dialog.
- Set the SNTP operation mode.
  - In the *Configuration* frame, select one of the following values in the *Mode* field: ▶ unicast
    - The device sends requests to an SNTP server and expects a response from this server.
    - broadcast

The device waits for *Broadcast* or *Multicast* messages from SNTP servers on the network.

- □ To synchronize the time only once, mark the *Disable client after successful sync* checkbox. After synchronization, the device disables the *SNTP Client* function.
- The table displays the SNTP server to which the SNTP client sends a request in Unicast operation mode. The table contains up to 4 SNTP server definitions.
- To add a table entry, click the button.
- □ Specify the connection data of the SNTP server.
- □ To enable the function, select the *On* radio button in the *Operation* frame.
- □ Save the changes temporarily. To do this, click the ✓ button.
- ▶ The State field displays the current status of the SNTP Client function.

| Device                     | 192.168.1.1 | 192.168.1.2 | 192.168.1.3 | 192.168.1.11 | 192.168.1.12                              |
|----------------------------|-------------|-------------|-------------|--------------|-------------------------------------------|
| SNTP Client function       | Off         | On          | On          | On           | On                                        |
| Configuration: Mode        | unicast     | unicast     | unicast     | unicast      | unicast                                   |
| Request interval [s]       | 30          | 30          | 30          | 30           | 30                                        |
| SNTP Server<br>address(es) | -           | 192.168.1.1 |             |              | 192.168.1.3<br>192.168.1.2<br>192.168.1.1 |

## 4.2.3 Specifying SNTP server settings

When the device operates as an SNTP server, it provides its system time in coordinated world time (UTC) in the network. To do this, perform the following steps:

- $\Box$  Open the *Time* > *SNTP* > *Server* dialog.
- □ To enable the function, select the *On* radio button in the *Operation* frame.
- □ To enable the *Broadcast* operation mode, select the *Broadcast admin mode* radio button in the *Configuration* frame.

In *Broadcast* operation mode, the SNTP server sends SNTP messages to the network in specified intervals. The SNTP server also responds to the requests from SNTP clients in *Unicast* operation mode.

- In the *Broadcast destination address* field, you set the IPv4 address to which the SNTP server sends the SNTP packets. Set a *Broadcast* address or a *Multicast* address.
   In an IPv6 environment, you cannot set the IPv6 address to which the SNTP server sends the SNTP packets. The SNTP server uses the *Multicast* address ff05::101 as the IPv6 destination address.
- □ In the *Broadcast UDP port* field, you specify the number of the UDP port to which the SNTP server sends the SNTP packets in *Broadcast* operation mode.
- □ In the *Broadcast VLAN ID* field, you specify the ID of the VLAN to which the SNTP server sends the SNTP packets in *Broadcast* operation mode.
- □ In the *Broadcast send interval* [s] field, you enter the time interval at which the SNTP server of the device sends SNTP *Broadcast* packets.

**Note:** Except for the *Broadcast destination address* field, the remaining settings are applicable for both IPv4 and IPv6 SNTP servers.

- □ Save the changes temporarily. To do this, click the ✓ button.
- ▶ The State field displays the current status of the SNTP Server function.

| Device                              | 192.168.1.1 | 192.168.1.2 | 192.168.1.3 | 192.168.1.11 | 192.168.1.12 |
|-------------------------------------|-------------|-------------|-------------|--------------|--------------|
| SNTP Server function                | On          | On          | On          | Off          | Off          |
| UDP port                            | 123         | 123         | 123         | 123          | 123          |
| Broadcast admin mode                | unmarked    | unmarked    | unmarked    | unmarked     | unmarked     |
| Broadcast destination address       | 0.0.0.0     | 0.0.0.0     | 0.0.0.0     | 0.0.0.0      | 0.0.0.0      |
| Broadcast UDP port                  | 123         | 123         | 123         | 123          | 123          |
| Broadcast VLAN ID                   | 1           | 1           | 1           | 1            | 1            |
| Broadcast send interval [s]         | 128         | 128         | 128         | 128          | 128          |
| Disable server at local time source | unmarked    | unmarked    | unmarked    | unmarked     | unmarked     |

| Table 18: Setting | s for the example |
|-------------------|-------------------|
|-------------------|-------------------|

## 4.3 **PTP**

In order for LAN-controlled applications to work without latency, precise time management is required. With PTP (Precision Time Protocol), IEEE 1588 describes a method that enables precise synchronization of clocks in the network.

PTP enables synchronization with an accuracy of a few 100 ns. PTP uses Multicasts for the synchronization messages, which keeps the network load low.

## 4.3.1 Types of clocks

PTP defines the roles of "master" and "slave" for the clocks in the network:

- A master clock (reference time source) distributes its time.
- A slave clock synchronizes itself with the timing signal received from the master clock.

#### **Boundary clock**

The transmission time (latency) in routers and switches has a measurable effect on the precision of the time transmission. To correct such inaccuracies, PTP defines what are known as boundary clocks.

In a network segment, a boundary clock is the reference time source (master clock) to which the subordinate slave clocks synchronize. Typically routers and switches take on the role of boundary clock.

The boundary clock in turn obtains the time from a higher-level reference time source (Grandmaster).

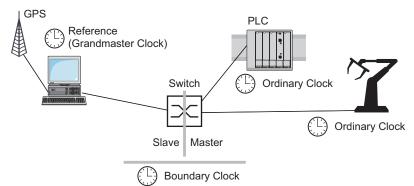



Figure 20: Position of the boundary clock in a network

## **Transparent Clock**

Switches typically take on the Transparent Clock role to enable high accuracy across the cascades. The Transparent Clock is a Slave clock that corrects its own transmission time when it forwards received synchronization messages.

## **Ordinary Clock**

PTP designates the clock in a end device as an "Ordinary Clock". An Ordinary Clock functions either as a master clock or slave clock.

#### 4.3.2 Best Master Clock algorithm

The devices participating in PTP designate a device in the network as a reference time source (Grandmaster). Here the "Best Master Clock" algorithm is used, which determines the accuracy of the clocks available in the network.

The "Best Master Clock" algorithm evaluates the following criteria:

- Priority 1
- Clock class
- Clock accuracy
- Clock variance
- Priority 2

The algorithm first evaluates the value in the *Priority 1* field of the participating devices. The device with the smallest value in the *Priority 1* field becomes the reference time source (Grandmaster). When the value is the same for multiple devices, the algorithm takes the next criterion. When this is also the same, it takes the next criterion after this one. If these values are the same for multiple devices, then the smallest value in the *Clock identity* field decides which device becomes the reference time source (Grandmaster).

In the settings of the boundary clock, the device lets you individually specify the values for *Priority* 1 and *Priority* 2. This lets you influence which device will be the reference time source (Grandmaster) in the network.

#### 4.3.3 Delay measurement

The delay of the synchronization messages between the devices affects the accuracy. The delay measurement lets the devices take into account the average delay.

PTP version 2 offers the following methods for delay measurement:

▶ e2e (End to End)

The slave clock measures the delay of synchronization messages to the master clock.

▶ e2e-optimized

The slave clock measures the delay of synchronization messages to the master clock. This method is available only for transparent clocks. The device forwards the synchronization messages sent using Multicast only to the master clock, keeping the network load low. When the device receives a synchronization message from another master clock, it forwards the synchronization messages only to this new port.

 When the device knows no master clock, it forwards synchronization messages to every port.
 *p*2*p* (Peer to Peer)
 The slave clock measures the delay of synchronization messages to the master clock. In addition, the master clock measures the delay to each slave clock, even across blocked ports. This requires that the master and slave clock support Peer-to-Peer (*p*2*p*). In case of interruption of a redundant ring, for example, the slave clock becomes the master clock and the master clock becomes the slave clock. This switch occurs without loss of precision, because the clocks already know the delay in the other direction.

## 4.3.4 **PTP** domains

The device transmits synchronization messages only from and to devices in the same PTP domain. The device lets you set the domain for the boundary clock and for the transparent clock individually.

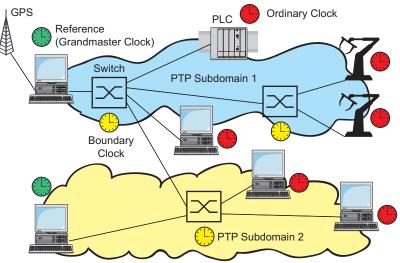



Figure 21: Example of PTP domains

## 4.3.5 Using PTP

In order to synchronize the clocks precisely with PTP, only use switches with a boundary clock or transparent clock as nodes.

Perform the following steps:

- □ To gain an overview of the distribution of clocks, draw a network plan with the devices involved in PTP.
- Specify the role for each participating switch (boundary clock or transparent clock). In the device, this setting is called *PTP mode*.

Table 19: Possible settings for PTP mode

| PTP mode                 | Application                                                                                                                                                                                                                                |
|--------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| v2-boundary-clock        | As a boundary clock, the device distributes synchronization messages to<br>the slave clocks in the subordinate network segment.<br>The boundary clock in turn obtains the time from a higher-level reference<br>time source (Grandmaster). |
| v2-transparent-<br>clock | As a transparent clock, the device forwards received synchronization<br>messages after they have been corrected by the delay of the transparent<br>clock.                                                                                  |

□ Enable PTP on each participating switch.

PTP is then configured on a largely automatic basis.

Enable PTP on the end devices.

□ The device lets you influence which device in the network becomes the reference clock (Grandmaster). Therefore, change the default value in the *Priority 1* and *Priority 2* fields for the *Boundary Clock*.

## **5** Managing configuration profiles

If you change the settings of the device during operation, then the device stores the changes in its memory (*RAM*). After a reboot the settings are lost.

In order to keep the changes after a reboot, the device lets you save the settings in a configuration profile in the non-volatile memory (*NVM*). In order to make it possible to quickly switch to other settings, the non-volatile memory offers storage space for multiple configuration profiles.

If an external memory is connected, then the device automatically saves a copy of the configuration profile in the external memory (*ENVM*). You can disable this function.

# 5.1 Detecting changed settings

The device stores changes made to settings during operation in its volatile memory (*RAM*). The configuration profile in the non-volatile memory (*NVM*) remains unchanged until you save the changed settings explicitly. Until then, the configuration profiles in memory and non-volatile memory are different. The device helps you recognize changed settings.

## 5.1.1 Volatile memory (RAM) and non-volatile memory (NVM)

You can recognize when the configuration profile in the volatile memory (*RAM*) is different from the "selected" configuration profile in the non-volatile memory (*NVM*). To do this, perform the following steps:

 $\Box$  Check the status bar at the top of the menu:

- When a blinking 🔜 icon is visible, the configuration profiles differ.
- When no 🔜 icon is visible, the configuration profiles match.

Or:

#### □ Open the *Basic Settings > Load/Save* dialog.

- □ Check the status of the checkbox in the *Information* frame:
  - When the checkbox is unmarked, the configuration profiles differ.
  - When the checkbox is marked, the configuration profiles match.

| show config status               |  |  |
|----------------------------------|--|--|
| Configuration Storage sync State |  |  |
|                                  |  |  |
| running-config to NVout of sync  |  |  |

## 5.1.2 External memory (EAM) and non-volatile memory (NVM)

You can also recognize when the copy in the external memory (EAM) is different from the configuration profile in the non-volatile memory (*NVM*). To do this, perform the following steps:

| <ul> <li>Open the Basic Settings &gt; Load/Save dialog.</li> <li>Check the status of the checkbox in the Information frame:         <ul> <li>When the checkbox is unmarked, the configuration profiles differ.</li> </ul> </li> </ul> |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <ul> <li>When the checkbox is marked, the configuration profiles match.</li> </ul>                                                                                                                                                    |
|                                                                                                                                                                                                                                       |
| show config status                                                                                                                                                                                                                    |
| Configuration Storage sync State                                                                                                                                                                                                      |
|                                                                                                                                                                                                                                       |
|                                                                                                                                                                                                                                       |
| NV to EAMout of sync                                                                                                                                                                                                                  |
|                                                                                                                                                                                                                                       |

## 5.2 Saving the settings

## 5.2.1 Saving the configuration profile in the device

If you change the settings of the device during operation, then the device stores the changes in its memory (RAM). In order to keep the changes after a reboot, save the configuration profile in the non-volatile memory (NVM).

## Saving a configuration profile

The device stores the settings in the "selected" configuration profile in the non-volatile memory (*NVM*).

Perform the following steps:

| <ul> <li>Open the Basic Settings &gt; Load/Save dialog.</li> <li>Verify that the required configuration profile is "Selected".<br/>You can recognize the "selected" configuration profile because the checkbox in the Selected column is marked.</li> </ul> |                                                                                               |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------|
| Click the 📕 button.                                                                                                                                                                                                                                         |                                                                                               |
| show config profiles nvm                                                                                                                                                                                                                                    | Displays the configuration profiles contained in the non-volatile memory (nvm).               |
| enable                                                                                                                                                                                                                                                      | Change to the Privileged EXEC mode.                                                           |
| save                                                                                                                                                                                                                                                        | Save the settings in the non-volatile memory $(nvm)$ in the "selected" configuration profile. |

## **Copying settings to a configuration profile**

The device lets you store the settings saved in the memory (RAM) in a configuration profile other than the "selected" configuration profile. In this way you create a new configuration profile in the non-volatile memory (NVM) or overwrite an existing one.

Perform the following steps:

- □ Open the *Basic Settings > Load/Save* dialog.
- □ Click the ≡ button and then the *Save as..* item. The dialog displays the *Save as..* window.
- □ In the *Name* field, change the name of the configuration profile. If you keep the proposed name, the device will overwrite an existing configuration profile of the same name.
- Click the *Ok* button.

The new configuration profile is designated as "Selected".

| show config profiles nvm                                    | Displays the configuration profiles contained in the non-volatile memory (nvm).                                                                                                                                                                                        |
|-------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| enable                                                      | Change to the Privileged EXEC mode.                                                                                                                                                                                                                                    |
| copy config running-config nvm profile<br><string></string> | Save the current settings in the configuration<br>profile named <string> in the non-volatile memory<br/>(nvm). If present, the device overwrites a<br/>configuration profile of the same name. The new<br/>configuration profile is designated as "Selected".</string> |

## Selecting a configuration profile

When the non-volatile memory (*NVM*) contains multiple configuration profiles, you have the option to select any configuration profile there. The device stores the settings in the "selected" configuration profile. Upon reboot, the device loads the settings of the "selected" configuration profile into the memory (RAM).

Perform the following steps:

□ Open the *Basic Settings* > *Load/Save* dialog.

The table displays the configuration profiles present in the device. You can recognize the "selected" configuration profile because the checkbox in the *Selected* column is marked.

- □ In the table select the entry of the required configuration profile stored in the non-volatile memory (*NVM*).
- $\Box$  Click the  $\equiv$  button and then the *Select* item.

In the Selected column, the checkbox of the configuration profile is now marked.

| enable                      | Change to the Privileged EXEC mode.                                                                      |
|-----------------------------|----------------------------------------------------------------------------------------------------------|
| show config profiles nvm    | Displays the configuration profiles contained in the non-volatile memory (nvm).                          |
| configure                   | Change to the Configuration mode.                                                                        |
| config profile select nvm 1 | Identifier of the configuration profile.<br>Take note of the adjacent name of the configuration profile. |
| save                        | Save the settings in the non-volatile memory $(nvm)$ in the "selected" configuration profile.            |

#### 5.2.2 Saving the configuration profile in the external memory

When an external memory is connected and you save a configuration profile, the device automatically saves a copy in the *Selected external memory*. In the default setting, the function is enabled. You can disable this function.

Perform the following steps:

- □ Open the *Basic Settings* > *External Memory* dialog.
- □ Mark the checkbox in the *Backup config when saving* column in order to enable the device to automatically save a copy in the external memory during the saving process.
- □ To deactivate the function, unmark the checkbox in the *Backup config when saving* column.
- $\Box$  Save the changes temporarily. To do this, click the  $\checkmark$  button.

| enable                      | Change to the Privileged EXEC mode.                                                                                                            |
|-----------------------------|------------------------------------------------------------------------------------------------------------------------------------------------|
| configure                   | Change to the Configuration mode.                                                                                                              |
| config envm config-save usb | Enable the function.<br>When you save a configuration profile, the device<br>saves a copy in the external memory.<br>usb = External USB memory |
| save                        | Save the settings in the non-volatile memory (nvm) in the "selected" configuration profile.                                                    |

## 5.2.3 Backup the configuration profile on a remote server

The device lets you automatically backup the configuration profile to a remote server. The prerequisite is that you activate the function before you save the configuration profile.

After you save the configuration profile in the non-volatile memory (*NVM*), the device sends a copy to the specified URL.

Perform the following steps:

Open the Basic Settings > Load/Save dialog. In the Backup config on a remote server when saving frame, perform the following steps:
In the URL field, specify the server as well as the path and file name of the backed up configuration profile.
Click the Set credentials button. The dialog displays the Credentials window.
Enter the login credentials needed to authenticate on the remote server.
In the Operation option list, enable the function.
Save the changes temporarily. To do this, click the button.

| enal | ple                           | Change to the Privileged EXEC mode.                             |
|------|-------------------------------|-----------------------------------------------------------------|
| show | v config remote-backup        | Check status of the function.                                   |
| coni | figure                        | Change to the Configuration mode.                               |
| coni | fig remote-backup destination | Enter the destination URL for the configuration profile backup. |
| coni | fig remote-backup username    | Enter the user name to authenticate on the remote server.       |
| coni | fig remote-backup password    | Enter the password to authenticate on the remote server.        |
| cont | fig remote-backup operation   | Enable the function.                                            |

If the transfer to the remote server is unsuccessful, then the device logs this event in the log file (System Log).

## 5.2.4 Exporting a configuration profile

The device lets you save a configuration profile to a server as an XML file. If you use the Graphical User Interface, then you have the option to save the XML file directly to your PC.

Prerequisites:

- To save the file on a server, you need a configured server on the network.
- To save the file to an SCP or SFTP server, you also need the user name and password for accessing this server.

Perform the following steps:

□ Open the Basic Settings > Load/Save dialog.

□ In the table select the entry of the required configuration profile.

Export the configuration profile to your PC. To do this, perform the following steps:

□ Click the link in the *Profile name* column.

 $\hfill\square$  Select the storage location and specify the file name.

Click the Ok button.

The configuration profile is now saved as an XML file in the specified location.

Export the configuration profile to a remote server. To do this, perform the following steps:

- □ Click the ≡ button and then the *Export...* item. The dialog displays the *Export...* window.
- □ In the URL field, specify the file URL on the remote server:
  - □ To save the file on an FTP server, specify the URL for the file in the following form: ftp://<user>:<password>@<IP address>:<port>/<file name>
  - □ To save the file on a TFTP server, specify the URL for the file in the following form: tftp://<IP address>/<path>/<file name>
  - □ To save the file on an SCP or SFTP server, specify the URL for the file in one of the following forms:

```
scp:// or sftp://<user>:<password>@<IP address>/<path>/<file name>
scp:// or sftp://<IP address>/<path>/<file name>
When you click the Ok button, the device displays the Credentials window. There you
enter User name and Password to log in to the server.
```

Click the *Ok* button.

The configuration profile is now saved as an XML file in the specified location.

| show config profiles nvm                                                                                                                             | Displays the configuration profiles contained in the non-volatile memory (nvm).              |
|------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|
| enable                                                                                                                                               | Change to the Privileged EXEC mode.                                                          |
| <pre>copy config running-config remote tftp://<ip_address>/ <path>/ <file_name></file_name></path></ip_address></pre>                                | Save the current settings on a TFTP server.                                                  |
| copy config nvm remote sftp://<br><user_name>:<password>@<ip_address>/<br/><path>/<file_name></file_name></path></ip_address></password></user_name> | Save the selected configuration profile in the non-volatile memory $(nvm)$ on a SFTP server. |
| <pre>copy config nvm profile config3 remote tftp://<ip_address>/ <path>/ <file_name></file_name></path></ip_address></pre>                           | Save the configuration profile $config3$ in the non-volatile memory (nvm) on a TFTP server.  |
| <pre>copy config nvm profile config3 remote ftp://<ip_address>:<port>/ <path>/<file name=""></file></path></port></ip_address></pre>                 | Save the configuration profile $config3$ in the non-volatile memory (nvm) on an FTP server.  |

# 5.3 Loading settings

If you save multiple configuration profiles in the memory, then you have the option to load a different configuration profile.

## 5.3.1 Activating a configuration profile

The non-volatile memory of the device can contain multiple configuration profiles. If you activate a configuration profile stored in the non-volatile memory (NVM), then you immediately change the settings in the device. The device does not require a reboot.

Perform the following steps:

□ Open the *Basic Settings > Load/Save* dialog.

□ In the table select the entry of the required configuration profile.

 $\Box$  Click the  $\equiv$  button and then the *Activate* item.

The device copies the settings to the memory (RAM) and disconnects from the Graphical User Interface. The device immediately uses the settings of the configuration profile.

- □ Reload the Graphical User Interface.
- Log in again.

In the *Selected* column, the checkbox of the configuration profile that was activated before is marked.

show config profiles nvm

enable

copy config nvm profile config3
running-config

Displays the configuration profiles contained in the non-volatile memory (nvm).

Change to the Privileged EXEC mode.

Activate the settings of the configuration profile config3 in the non-volatile memory (nvm). The device copies the settings into the volatile memory and disconnects the connection to the Command Line Interface. The device immediately uses the settings of the configuration profile config3.

## 5.3.2 Loading the configuration profile from the external memory

If an external memory is connected, then the device loads a configuration profile from the external memory upon restart automatically. The device lets you save these settings in a configuration profile in non-volatile memory.

When the external memory contains the configuration profile of an identical device, you have the possibility to transfer the settings from one device to another.

Perform the following steps:

Verify that the device loads a configuration profile from the external memory upon restart. In the default setting, the function is enabled. If the function is disabled, enable it again as follows:

| <ul> <li>Open the Basic Settings &gt; External Memory dialog.</li> <li>In the Config priority column, select the value first.</li> </ul> |              |               |             |                                                                                                                                                                              |
|------------------------------------------------------------------------------------------------------------------------------------------|--------------|---------------|-------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 🗆 Sa                                                                                                                                     | ve the chang | jes temporari | ly. To do f | this, click the 🗸 button.                                                                                                                                                    |
| enable                                                                                                                                   |              |               |             | Change to the Privileged EXEC mode.                                                                                                                                          |
| config<br>config                                                                                                                         |              | riority usb   | first       | Change to the Configuration mode.<br>Enable the function.<br>Upon reboot, the device loads a configuration<br>profile from the external memory.<br>usb = External USB memory |
| show c                                                                                                                                   | onfig envm s | ettings       |             | Displays the settings of the external memory (envm).                                                                                                                         |
| Туре                                                                                                                                     |              | Auto Update   |             | ig Config Load Prio                                                                                                                                                          |
| usb                                                                                                                                      | ok           | [x]           | [x]         | first                                                                                                                                                                        |
| save                                                                                                                                     |              |               |             | Save the settings in a configuration profile in the non-volatile memory ( $NVM$ ) of the device.                                                                             |

Using the Command Line Interface, the device lets you copy the settings from the external memory directly into the non-volatile memory (*NVM*).

| show config profiles nvm             | Displays the configuration profiles contained in the non-volatile memory (nvm).                          |
|--------------------------------------|----------------------------------------------------------------------------------------------------------|
| enable                               | Change to the Privileged EXEC mode.                                                                      |
| copy config envm profile config3 nvm | Copy the configuration profile config3 from the external memory (envm) to the non-volatile memory (nvm). |

The device can also automatically load a configuration profile from a script file during the boot process.

Prerequisites:

- ▶ Verify that the external memory is connected before you start the device.
- The root directory of the external memory contains a text file startup.txt with the content script=<file\_name>. The placeholder <file\_name> represents the script file that the device executes during the boot process.
- The root directory of the external memory contains the script file. You have the option to save the script with a user-specified name. Save the file with the file extension .cli.

**Note:** Verify that the script saved in the external memory is not empty. If the script is empty, then the device loads the next configuration profile as per the configuration priority settings.

After applying the script, the device automatically saves the configuration profile from the script file as an XML file in the external memory. When you type the appropriate command into the script file, you have the option to disable this function:

```
    no config envm config-save usb
    The device does not create a copy in the external USB memory.
```

When the script file contains an incorrect command, the device does not apply this command during the boot process. The device logs the event in the log file (System Log).

## 5.3.3 Importing a configuration profile

The device lets you import from a server a configuration profile saved as an XML file. If you use the Graphical User Interface, then you can import the XML file directly from your PC.

Prerequisites:

- To save the file on a server, you need a configured server on the network.
- To save the file to an SCP or SFTP server, you also need the user name and password for accessing this server.

Perform the following steps:

- □ Open the *Basic Settings* > *Load*/Save dialog.
- □ Click the ≡ button and then the *Import...* item. The dialog displays the *Import...* window.
- □ In the *Select source* drop-down list, select the location from where the device imports the configuration profile.
  - PC/URL
    - The device imports the configuration profile from the local PC or from a remote server.
  - External memory
    - The device imports the configuration profile from the external memory.

Import the configuration profile from the local PC or from a remote server. To do this, perform the following steps:

- □ Import the configuration profile:
  - □ When the file is located on an FTP server, specify the URL for the file in the following form:

ftp://<user>:<password>@<IP address>:<port>/<file name>

□ When the file is located on a TFTP server, specify the URL for the file in the following form:

tftp://<IP address>/<path>/<file name>

□ When the file is located on an SCP or SFTP server, specify the URL for the file in one of the following forms:

scp:// or sftp://<IP address>/<path>/<file name>

When you click the *Start* button, the device displays the *Credentials* window. There you enter *User name* and *Password* to log in to the server.

scp:// or sftp://<user>:<password>@<IP address>/<path>/<file name>

□ In the *Destination* frame, specify where the device saves the imported configuration profile:

- □ In the *Profile name* field, specify the name under which the device saves the configuration profile.
- □ In the *Storage type* field, specify the storage location for the configuration profile.
- Click the Ok button.

The device copies the configuration profile into the specified memory.

If you specified the value ram in the *Destination* frame, then the device disconnects the Graphical User Interface and uses the settings immediately.

Import the configuration profile from the external memory. To do this, perform the following steps:

- □ In the *Import profile from external memory* frame, *Profile name* drop-down list, select the name of the configuration profile to be imported.
  - The prerequisite is that the external memory contains an exported configuration profile.
- In the *Destination* frame, specify where the device saves the imported configuration profile:
   In the *Profile name* field, specify the name under which the device saves the configuration profile.
- Click the Ok button.

The device copies the configuration profile into the non-volatile memory (NVM) of the device.

If you specified the value ram in the *Destination* frame, then the device disconnects the Graphical User Interface and uses the settings immediately.

| enable                                                                                                                            | Change to the Privileged EXEC mode.                                                                                                                                                                                                                                                                         |
|-----------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <pre>copy config remote ftp:// <ip_address>:<port>/<path>/<file_name> running-config</file_name></path></port></ip_address></pre> | Import and activate the settings of a configuration<br>profile saved on an FTP server.<br>The device copies the settings into the volatile<br>memory and disconnects the connection to the<br>Command Line Interface. The device immediately<br>uses the settings of the imported configuration<br>profile. |
| <pre>copy config remote tftp:// <ip_address>/ <path>/<file_name> running-config</file_name></path></ip_address></pre>             | Import and activate the settings of a configuration<br>profile saved on a TFTP server.<br>The device copies the settings into the volatile<br>memory and disconnects the connection to the<br>Command Line Interface. The device immediately<br>uses the settings of the imported configuration<br>profile. |

copy config remote sftp://
<user name>:<password>@<IP\_address>/
<path>/<file name> running-config

copy config remote ftp://
<IP\_address>:<port>/<path>/<file\_name>
 nvm profile config3

copy config remote tftp://
<IP\_address>/<path>/<file\_name>
nvm profile config3

Import and activate the settings of a configuration profile saved on a SFTP server.

The device copies the settings into the volatile memory and disconnects the connection to the Command Line Interface. The device immediately uses the settings of the imported configuration profile.

Import the settings of a configuration profile saved on an FTP server and save the settings in the configuration profile config3 in the non-volatile memory (nvm).

Import the settings of a configuration profile saved on a TFTP server and save the settings in the configuration profile config3 in the non-volatile memory (nvm).

# 5.4 **Reset the device to the factory defaults**

If you reset the settings in the device to the delivery state, then the device deletes the configuration profiles in the volatile memory and in the non-volatile memory.

If an external memory is connected, then the device also deletes the configuration profiles saved in the external memory.

The device then reboots and loads the factory settings.

## 5.4.1 Using the Graphical User Interface or Command Line Interface

Perform the following steps:

□ Open the Basic Settings > Load/Save dialog.

□ Click the <u>v</u> button, then *Back to factory....* The dialog displays a message.

Click the *Ok* button.

The device deletes the configuration profiles in the memory (RAM) and in the non-volatile memory (NVM).

If an external memory is connected, then the device also deletes the configuration profiles saved in the external memory.

After a brief period, the device restarts and loads the delivery settings.

| enable        | Change to the Privileged EXEC mode.                                                                                                                                                                                                                                                                                   |
|---------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| clear factory | Deletes the configuration profiles from the non-<br>volatile memory and from the external memory.<br>If an external memory is connected, then the<br>device also deletes the configuration profiles saved<br>in the external memory.<br>After a brief period, the device restarts and loads<br>the delivery settings. |

## 5.4.2 Using the System Monitor

Prerequisite:

• Your PC is connected with the serial connection of the device using a terminal cable.

Perform the following steps:

- Restart the device.
- □ To change to the System Monitor, press the <1> key within 3 seconds when prompted during reboot.

The device loads the System Monitor.

- □ To change from the main menu to the Manage configurations menu, press the <4> key.
- □ To execute the Clear configs and boot params command, press the <1> key.

- □ To load the factory settings, press the <Enter> key. The device deletes the configuration profiles in the memory (RAM) and in the non-volatile memory (NVM).
  - If an external memory is connected, then the device also deletes the configuration profiles saved in the external memory.
- $\Box$  To change to the main menu, press the <q> key.
- $\Box$  To reboot the device with factory settings, press the <q> key.

## 6 Loading software updates

Schneider Electric is continually working on improving and developing their software. Check regularly if there is an updated version of the software that provides you with additional benefits. You find information and software downloads on the Schneider Electric product pages on the Internet at www.schneider-electric.com.

The device gives you the following options for updating the device software:

- Software update from the PC
- Software update from a server
- Software update from the external memory
- Loading a previous software version

Note: The device settings are kept after updating the device software.

You see the version of the installed device software in the login dialog of the Graphical User Interface.

To display the version of the installed software when you are already logged in, perform the following steps:

Open the Basic Settings > Software dialog.
 The Running version field displays the version number and creation date of the device software that the device loaded during the last restart and is currently running.

enable show system info Change to the Privileged EXEC mode.

Displays the system information such as the version number and creation date of the device software that the device loaded during the last restart and is currently running.

## 6.1 Software update from the PC

The prerequisite is that the image file of the device software is saved on a data carrier which is accessible from your PC.

Perform the following steps:

- □ Navigate to the folder where the image file of the device software is saved.
- □ Open the *Basic Settings* > *Software* dialog.
- Drag and drop the image file in the 1 area. Alternatively click in the area to select the file.
- To start the update procedure, click the *Start* button. As soon as the update procedure is completed successfully, the device displays an information that the software is successfully updated. Upon restart, the device loads the installed device software.

## 6.2 Software update from a server

To update the software using SFTP or SCP you need a server on which the image file of the device software is saved.

To update the software using TFTP, SFTP or SCP you need a server on which the image file of the device software is saved.

Perform the following steps:

□ Open the *Basic Settings* > *Software* dialog.

- In the Software update frame, URL field, enter the URL for the image file in the following form:
   When the image file is saved on an FTP server:
  - ftp://<IP\_address>:<port>/<path>/<image\_file\_name>.bin
  - When the image file is saved on a TFTP server: tftp://<IP\_address>/<path>/<image\_file\_name>.bin
  - When the image file is saved on a SCP or SFTP server: scp://or sftp://<IP\_address>/<path>/<image\_file\_name>.bin scp:// or sftp://<username>:<password>@<IP\_address>/<path>/ <image\_file\_name>.bin When you enter the URL without the user name and password, the device displays the Credentials window. There you enter the login credentials needed to log in to the server.
- To start the update procedure, click the *Start* button.
   The device copies the currently running device software into the backup memory.
   As soon as the update procedure is completed successfully, the device displays an information that the software is successfully updated.
   Upon restart, the device loads the installed device software.

| enable |
|--------|
|--------|

Change to the Privileged EXEC mode.

| copy firmware remote tftp://10.0.1.159/ | Transfer the product.bin file from the TFTP  |
|-----------------------------------------|----------------------------------------------|
| product.bin system                      | server with the IP address 10.0.1.159 to the |
|                                         | device.                                      |

## 6.3 Software update from the external memory

### 6.3.1 Manually—initiated by the administrator

The device lets you update the device software with a few mouse clicks. The prerequisite is that the image file of the device software is located in the external memory.

Perform the following steps:

- □ Open the Basic Settings > Software dialog.
- □ In the table mark the row which displays the name of the desired image file in the external memory.
- □ Right-click to display the context menu.
- To start the update procedure, click in the context menu the *Update* item.
   The device copies the currently running device software into the backup memory.
   As soon as the update procedure is completed successfully, the device displays an information that the software is successfully updated.
   Upon restart, the device loads the installed device software.

### 6.3.2 Automatically—initiated by the device

When the following files are located in the external memory during a restart, the device updates the device software automatically:

- the image file of the device software
- a text file startup.txt with the content autoUpdate=<Image\_file\_name>.bin

The prerequisite is that in the *Basic Settings > External Memory* dialog, you mark the checkbox in the *Software auto update* column. This is the default setting in the device.

Perform the following steps:

- □ Copy the image file of the new device software into the main directory of the external memory. Use only an image file suitable for the device.
- □ Create a text file startup.txt in the main directory of the external memory.
- $\hfill\square$  Open the <code>startup.txt</code> file in the text editor and add the following line:
- autoUpdate=<Image\_file\_name>.bin
- □ Install the external memory in the device.

### Restart the device.

- During the booting process, the device checks automatically the following criteria:
- Is an external memory connected?
- Is a startup.txt file in the main directory of the external memory?
- Does the image file exist which is specified in the startup.txt file?
- Is the software version of the image file more recent than the software currently running in the device?

When the criteria are fulfilled, the device starts the update procedure.

The device copies the currently running device software into the backup memory.

As soon as the update procedure is completed successfully, the device reboots automatically and loads the new software version.

- □ Check the result of the update procedure. The log file in the *Diagnostics* > *Report* > *System Log* dialog contains one of the following messages:
  - S\_watson\_AUTOMATIC\_SWUPDATE\_SUCCESS
     Software update completed successfully
  - S\_watson\_AUTOMATIC\_SWUPDATE\_ABORTED
     Software update aborted
  - S\_watson\_AUTOMATIC\_SWUPDATE\_ABORTED\_WRONG\_FILE
     Software update aborted due to wrong image file
  - S\_watson\_AUTOMATIC\_SWUPDATE\_ABORTED\_SAVING\_FILE
     Software update aborted because the device did not save the image file.

# 6.4 Loading a previous software version

The device lets you replace the device software with a previous version. The basic settings in the device are kept after replacing the device software.

**Note:** Only the settings for functions which are available in the newer device software version are lost.

# 7 Configuring the ports

The following port configuration functions are available.

- Enabling/disabling the port
- Selecting the operating mode
- ► Gigabit Ethernet mode for ports

## 7.1 Enabling/disabling the port

In the default setting, every port is enabled. For a higher level of access security, disable unconnected ports. To do this, perform the following steps:

|                                                                                 | □ Open the Basic Settings > Port dialog, Configuration tab.            |                                                              |
|---------------------------------------------------------------------------------|------------------------------------------------------------------------|--------------------------------------------------------------|
|                                                                                 | □ To enable a port, mark the checkbox in the <i>Port on</i> column.    |                                                              |
|                                                                                 | □ To disable a port, unmark the checkbox in the <i>Port on</i> column. |                                                              |
| $\Box$ Save the changes temporarily. To do this, click the $\checkmark$ button. |                                                                        |                                                              |
|                                                                                 |                                                                        |                                                              |
|                                                                                 | enable                                                                 | Change to the Privileged EXEC mode.                          |
|                                                                                 | configure                                                              | Change to the Configuration mode.                            |
|                                                                                 | interface 1/1                                                          | Change to the interface configuration mode of interface 1/1. |
|                                                                                 | no shutdown                                                            | Enable the interface.                                        |

# 7.2 Selecting the operating mode

In the default setting, the ports are set to Automatic configuration operating mode.

Note: The active automatic configuration has priority over the manual configuration.

Perform the following steps:

- $\Box$  Open the Basic Settings > Port dialog, Configuration tab.
- □ If the device connected to this port requires a fixed setting, then perform the following steps:
  - Deactivate the function. Unmark the checkbox in the *Automatic configuration* column.
  - □ In the *Manual configuration* column, enter the desired operating mode (transmission rate, duplex mode).
- $\Box$  Save the changes temporarily. To do this, click the  $\checkmark$  button.

| enable            | Change to the Privileged EXEC mode.                             |
|-------------------|-----------------------------------------------------------------|
| configure         | Change to the Configuration mode.                               |
| interface 1/1     | Change to the interface configuration mode of interface $1/1$ . |
| no auto-negotiate | Disable the automatic configuration mode.                       |
| speed 100 full    | Port speed 100 MBit/s, full duplex                              |

## 7.3 Gigabit Ethernet mode for ports

The device supports 2.5 Gbit/s on several interfaces with one of the following SFP transceivers:

- M-SFP-2.5-MM/LC EEC
- M-SFP-2.5-SM-/LC EEC
- M-SFP-2.5-SM/LC EEC
- ▶ M-SFP-2.5-SM+/LC EEC

The type of the transceiver plugged into the slot determines the port speed. The device has no option to set the speed manually. Ports with 2.5 Gbit/s port speed are unable to support data rates of 100 Mbit/s.

**Note:** You find more information about the transceiver order numbers in the "Accessories" chapter of the "Installation" user manual.

### 7.3.1 Example

You use the Gigabit Ethernet mode to get a higher bandwidth for uplinks. To use this function, insert an applicable transceiver type in the appropriate slot.

Perform the following steps:

□ Open the Basic Settings > Port dialog, Configuration tab.

The column *Manual configuration* displays the value 2.5 Gbit/s FDX for the ports that have a 2.5 Gbit/s SFP transceiver inserted.

You cannot change the speed.

| show port 1/1          | Displays the parameters for slot 1 port 1. The<br>Physical Mode list entry displays the value 2500 full<br>for the ports that have a 2.5 Gbit/s SFP transceiver<br>inserted. |
|------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Interface1/1           |                                                                                                                                                                              |
| NameMy interf          | ace                                                                                                                                                                          |
|                        |                                                                                                                                                                              |
| Cable-crossing Setting |                                                                                                                                                                              |
| Physical Mode2500 full |                                                                                                                                                                              |
| Physical Status        |                                                                                                                                                                              |

## **8** Assistance in the protection from unauthorized access

The device offers functions that help you protect the device against unauthorized access.

After you set up the device, carry out the following steps in order to reduce possible unauthorized access to the device.

Changing the SNMPv1/v2 community

- Disabling SNMPv1/v2
- Disabling HTTP
- Using your own HTTPS certificate
- Using your own SSH key
- Disabling Telnet
- Disabling Ethernet Switch Configurator
- Enable IP access restriction
- Adjusting the session timeouts

## 8.1 Changing the SNMPv1/v2 community

SNMPv1/v2 works unencrypted. Every SNMP packet contains the IP address of the sender and the plaintext community name with which the sender accesses the device. If SNMPv1/v2 is enabled, then the device lets anyone who knows the community name access the device.

The community names user for read accesses and admin for write accesses are preset. If you are using SNMPv1 or SNMPv2, then change the default community name. Treat the community names with discretion. To do this, perform the following steps:

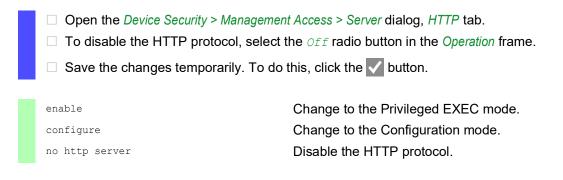
□ Open the Device Security > Management Access > SNMPv1/v2 Community dialog. The dialog displays the communities that are set up. □ For the Write community, specify in the *Name* column the community name. Up to 32 alphanumeric characters are allowed. ▶ The device differentiates between upper and lower case. Specify a different community name than for read access. □ Save the changes temporarily. To do this, click the ✓ button. enable Change to the Privileged EXEC mode. configure Change to the Configuration mode. snmp community rw <community name> Specify the community for read/write access. Display the communities that have been show snmp community configured. Save the settings in the non-volatile memory (nvm) save in the "selected" configuration profile.

# 8.2 Disabling SNMPv1/v2

If you need SNMPv1 or SNMPv2, then use these protocols only in environments protected from eavesdropping. SNMPv1 and SNMPv2 do not use encryption. The SNMP packets contain the community in clear text. We recommend using SNMPv3 in the device and disabling the access using SNMPv1 and SNMPv2. To do this, perform the following steps:

□ Open the Device Security > Management Access > Server dialog, SNMP tab.

The dialog displays the settings of the SNMP server.


- □ To deactivate the SNMPv1 protocol, you unmark the *SNMPv1* checkbox.
- □ To deactivate the SNMPv2 protocol, you unmark the *SNMPv2* checkbox.
- $\Box$  Save the changes temporarily. To do this, click the  $\checkmark$  button.

| enable                    | Change to the Privileged EXEC mode.                                                         |
|---------------------------|---------------------------------------------------------------------------------------------|
| configure                 | Change to the Configuration mode.                                                           |
| no snmp access version v1 | Deactivate the SNMPv1 protocol.                                                             |
| no snmp access version v2 | Deactivate the SNMPv2 protocol.                                                             |
| show snmp access          | Display the SNMP server settings.                                                           |
| save                      | Save the settings in the non-volatile memory (nvm) in the "selected" configuration profile. |

# 8.3 Disabling HTTP

The web server provides the Graphical User Interface with the protocol HTTP or HTTPS. HTTPS connections are encrypted, while HTTP connections are unencrypted.

The HTTP protocol is enabled by default. If you disable HTTP, then no unencrypted access to the Graphical User Interface is possible. To do this, perform the following steps:



If the HTTP protocol is disabled, then you can reach the Graphical User Interface of the device only by HTTPS. In the address bar of the web browser, enter the string https://before the IP address of the device.

If the HTTPS protocol is disabled and you also disable HTTP, then the Graphical User Interface is unaccessible. To work with the Graphical User Interface, enable the HTTPS server using the Command Line Interface. To do this, perform the following steps:

| enable | Ð      |
|--------|--------|
| config | gure   |
| https  | server |

Change to the Privileged EXEC mode. Change to the Configuration mode. Enable the HTTPS protocol.

# 8.4 Disabling Telnet

The device lets you remotely access the device management using Telnet or SSH. Telnet connections are unencrypted, while SSH connections are encrypted.

The Telnet server is enabled in the device by default. If you disable Telnet, then unencrypted remote access to the Command Line Interface is no longer possible. To do this, perform the following steps:

Open the *Device Security > Management Access > Server* dialog, *Telnet* tab.
 To disable the Telnet server, select the *Off* radio button in the *Operation* frame.
 Save the changes temporarily. To do this, click the button.

| enable           | Change to the Privileged EXEC mode. |
|------------------|-------------------------------------|
| configure        | Change to the Configuration mode.   |
| no telnet server | Disable the Telnet server.          |

If the SSH server is disabled and you also disable Telnet, then access to the Command Line Interface is only possible through the serial interface of the device. To work remotely with the Command Line Interface, enable SSH. To do this, perform the following steps:

Open the Device Security > Management Access > Server dialog, SSH tab.
 To enable the SSH server, select the On radio button in the Operation frame.

 $\Box$  Save the changes temporarily. To do this, click the  $\checkmark$  button.

| enable     | Change to the Privileged EXEC mode. |
|------------|-------------------------------------|
| configure  | Change to the Configuration mode.   |
| ssh server | Enable the SSH server.              |

## 8.5 **Disabling the Ethernet Switch Configurator access**

Ethernet Switch Configurator lets you assign IP parameters to the device over the network during commissioning. Ethernet Switch Configurator communicates in the device management VLAN without encryption and authentication.

After the device is commissioned, we recommend to set Ethernet Switch Configurator to read-only or to disable Ethernet Switch Configurator access completely. To do this, perform the following steps:

- □ Open the *Basic Settings > Network* dialog.
- □ To take away write permission from the Ethernet Switch Configurator software, in the *Ethernet Switch Configurator protocol v1/v2* frame, specify the value readonly in the *Access* field.
- □ To disable Ethernet Switch Configurator access completely, select the *Off* radio button in the *Ethernet Switch Configurator protocol v1/v2* frame.
- □ Save the changes temporarily. To do this, click the ✓ button.

| enable                                       | Change to the Privileged EXEC mode.                                    |
|----------------------------------------------|------------------------------------------------------------------------|
| network ethernet-switch-conf mode read-only  | Disable write permission of the Ethernet Switch Configurator software. |
| no network ethernet-switch-conf<br>operation | Disable Ethernet Switch Configurator access.                           |

## 8.6 Activating the IP access restriction

In the default setting, you access the device management from any IP address and with the supported protocols.

The IP access restriction lets you restrict access to the device management to selected IP address ranges and selected IP-based protocols.

Example:

The device is to be accessible only from the company network using the Graphical User Interface. The administrator has additional remote access using SSH. The company network has the address range 192.168.1.0/24 and remote access from a mobile network with the IP address range 109.237.176.0/24. The SSH application program knows the fingerprint of the RSA key.

| Parameter         | Company network | Mobile phone network |
|-------------------|-----------------|----------------------|
| Network address   | 192.168.1.0     | 109.237.176.0        |
| Netmask           | 24              | 24                   |
| Desired protocols | https, snmp     | ssh                  |

Perform the following steps:

- □ Open the Device Security > Management Access > IP Access Restriction dialog.
- Unmark the checkbox in the Active column for the entry. This entry lets users have access to the device from any IP address and the supported protocols.

Address range of the company network:

- □ To add a table entry, click the 🔜 button.
- □ Specify the address range of the company network in the *IP* address range column: 192.168.1.0/24
- □ For the address range of the corporate network, deactivate the undesired protocols. The *HTTPS*, *SNMP*, and *Active* checkboxes remain marked.

Address range of the mobile phone network:

- $\Box$  To add a table entry, click the  $\blacksquare$  button.
- □ Specify the address range of the mobile network in the *IP* address range column: 109.237.176.0/24
- □ For the address range of the mobile network, deactivate the undesired protocols. The SSH and Active checkboxes remain marked.

Before you enable the function, verify that at least one active entry in the table lets you have access. Otherwise, if you change the settings, then the connection to the device terminates. Access to the device management is only possible using the Command Line Interface through the serial interface of the device.

- □ To enable IP access restriction, select the *On* radio button in the *Operation* frame.
- □ Save the changes temporarily. To do this, click the ✓ button.

| enable                                               | Change to the Privileged EXEC mode.                                                                                                  |
|------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------|
| show network management access global                | Displays if IP access restriction is enabled or disabled.                                                                            |
| show network management access rules                 | Display the entries that have been configured.                                                                                       |
| no network management access operation               | Disable the IP access restriction.                                                                                                   |
| network management access add 2                      | Create the entry for the address range of the company network.<br>Number of the next available index in this example:                |
| network management access modify 2 ip<br>192.168.1.0 | Specify the IP address of the company network.                                                                                       |
| network management access modify 2 mask 24           | Specify the netmask of the company network.                                                                                          |
| network management access modify 2 ssh<br>disable    | Deactivate SSH for the address range of the<br>company network.<br>Repeat the operation for every unwanted protocol.                 |
| network management access add 3                      | Create an entry for the address range of the mobile<br>phone network.<br>Number of the next available index in this example:<br>3.   |
| network management access modify 3 ip 109.237.176.0  | Specify the IP address of the mobile phone network.                                                                                  |
| network management access modify 3 mask 24           | Specify the netmask of the mobile phone network.                                                                                     |
| network management access modify 3 snmp<br>disable   | Deactivate SNMP for the address range of the<br>mobile phone network.<br>Repeat the operation for every unwanted protocol.           |
| no network management access status 1                | Deactivate the default entry.<br>This entry lets users have access to the device<br>from any IP address and the supported protocols. |
| network management access status 2                   | Activate an entry for the address range of the company network.                                                                      |
| network management access status 3                   | Activate an entry for the address range of the mobile phone network.                                                                 |
| show network management access rules                 | Display the entries that have been configured.                                                                                       |
| network management access operation                  | Enable the IP access restriction.                                                                                                    |

## 8.7 Adjusting the session timeouts

The device lets you automatically terminate the session upon inactivity of the logged-on user. The session timeout is the period of inactivity after the last user action.

You can specify a session timeout for the following applications:

- Command Line Interface sessions using an SSH connection
- Command Line Interface sessions using a Telnet connection
- Command Line Interface sessions using a serial connection
- Graphical User Interface

### Timeout for Command Line Interface sessions using a SSH connection

Perform the following steps:

- □ Open the Device Security > Management Access > Server dialog, SSH tab.
- □ Specify the timeout period in minutes in the Configuration frame, Session timeout [min] field.
- □ Save the changes temporarily. To do this, click the ✓ button.

| enable             | Change to the Privileged EXEC mode.                                                                |
|--------------------|----------------------------------------------------------------------------------------------------|
| configure          | Change to the Configuration mode.                                                                  |
| ssh timeout <0160> | Specify the timeout period in minutes for Command Line Interface sessions using an SSH connection. |

### Timeout for Command Line Interface sessions using a Telnet connection

Perform the following steps:

- □ Open the Device Security > Management Access > Server dialog, Telnet tab.
- □ Specify the timeout period in minutes in the *Configuration* frame, *Session timeout* [min] field.
- □ Save the changes temporarily. To do this, click the ✓ button.

| enable    | Change to the Privileged EXEC mode.                                                                     |
|-----------|---------------------------------------------------------------------------------------------------------|
| configure | Change to the Configuration mode.                                                                       |
|           | Specify the timeout period in minutes for Command<br>Line Interface sessions using a Telnet connection. |

#### Timeout for Command Line Interface sessions using a serial connection

Perform the following steps:

□ Open the Device Security > Management Access > CLI dialog, Global tab.

- □ Specify the timeout period in minutes in the *Configuration* frame, *Serial interface timeout* [min] field.
- $\Box$  Save the changes temporarily. To do this, click the  $\checkmark$  button.

enable
cli serial-timeout <0..160>

Change to the Privileged EXEC mode. Specify the timeout period in minutes for Command Line Interface sessions using a serial connection.

### **Session timeout for the Graphical User Interface**

Perform the following steps:

- □ Open the Device Security > Management Access > Web dialog.
- □ Specify the timeout period in minutes in the *Configuration* frame, *Web interface session timeout* [min] field.
- $\Box$  Save the changes temporarily. To do this, click the  $\checkmark$  button.

enable

network management access web timeout
<0..160>

Change to the Privileged EXEC mode.

Specify the timeout period in minutes for Graphical User Interface sessions

## 9 Controlling the data traffic

The device checks the data packets to be forwarded in accordance with defined rules. Data packets to which the rules apply are either forwarded by the device or blocked. If data packets do not correspond to any of the rules, then the device blocks the packets.

Routing ports to which no rules are assigned allow packets to pass. As soon as a rule is assigned, the assigned rules are processed first. After that, the specified standard action of the device takes effect.

The device provides the following functions for controlling the data stream:

- Service request control (Denial of Service, DoS)
- Denying access to devices based on their IP or MAC address (Access Control List)

The device observes and monitors the data stream. The device takes the results of the observation and the monitoring and combines them with the rules for the network security to create what is known as a status table. Based on this status table, the device decides whether to accept, drop or reject data.

The data packets go through the filter functions of the device in the following sequence:

- **DoS** ... if permit or accept, then progress to the next rule
- ▶ ACL ... if permit or accept, then progress to the next rule

## 9.1 Helping protect against unauthorized access

With this function, the device supports you in helping protect against invalid or falsified data packets targeted at causing the failure of certain services or devices. You have the option of specifying filters in order to restrict data stream for protection against denial-of-service attacks. The activated filters check incoming data packets and discard them as soon as a match with the filter criteria is found.

The *Network Security > DoS > Global* dialog contains 2 frames in which you activate different filters. To activate them, mark the corresponding checkboxes.

In the *TCP/UDP* frame, you activate up to 4 filters that only influence TCP and UDP packets. Using this filter, you deactivate port scans, which attackers use to try to recognize devices and services offered. The filters operate as follows:

| Filter                    | Action                                                                                                                                                                          |
|---------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Activate Null Scan Filter | <ul> <li>The device detects and discards incoming TCP packets with the following properties:</li> <li>No TCP flags are set.</li> <li>▶ The TCP sequence number is 0.</li> </ul> |

Table 21: DoS filters for TCP packets

| Filter                            | Action                                                                                                                                                                                                                              |
|-----------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Activate Xmas Filter              | <ul> <li>The device detects and discards incoming TCP packets with the following properties:</li> <li>The TCP flags <i>FIN</i>, <i>URG</i> and <i>PSH</i> are simultaneously set.</li> <li>The TCP sequence number is 0.</li> </ul> |
| Activate SYN/FIN Filter           | The device detects and discards incoming TCP packets in which the TCP flags <i>SYN</i> and <i>FIN</i> are simultaneously set.                                                                                                       |
| Activate Minimal Header<br>Filter | The device detects and discards incoming TCP packets in which the TCP header is too short.                                                                                                                                          |

| Table 21: | DoS filters for | TCP packets |
|-----------|-----------------|-------------|
|-----------|-----------------|-------------|

The *ICMP* frame offers you 2 filter options for ICMP packets. Fragmentation of incoming ICMP packets is a sign of an attack. If you activate this filter, then the device detects fragmented ICMP packets and discards them. Using the *Allowed payload size [byte]* parameter, you can also specify the maximum permissible size of the payload of the ICMP packets. The device discards data packets that exceed this byte specification.

**Note:** You can combine the filters in any way in the *Network Security > DoS > Global* dialog. When several filters are selected, a logical Or applies: If the first or second (or the third, etc.) filter applies to a data packet, then the device discards it.

# 9.2 ACL

In this menu you can enter the parameters for the Access Control Lists (ACLs).

The device uses ACLs to filter data packets received on VLANs or on individual or multiple ports. In a ACL, you specify rules that the device uses to filter data packets. When such a rule applies to a packet, the device applies the actions specified in the rule to the packet. The available actions are as follows:

- allow (permit)
- discard (deny)
- ▶ redirect to a certain port (see *Redirection port* field)
- mirror (see Mirror port field)

The list below contains criteria that you can apply to filter the data packets:

- Source or destination address of a packet (MAC)
- Source or destination address of a data packet (IPv4)
- Source or destination port of a data packet (IPv4)

You can specify the following ACL types:

- IP ACLs for VLANs
- IP ACLs for ports
- MAC ACLs for VLANs
- MAC ACLs for ports

When you assign both an IP ACL and MAC ACL to the same interface, the device first uses the IP ACL to filter the data stream. The device applies the MAC ACL rules only after the packets are filtered through the IP ACL. The priority of an ACL is independent of the index of a rule.

Within an ACL, the device processes the rules in order. The index of the respective rule determines the order in which the device filters the data stream. When you assign an ACL to a port or VLAN, you can specify its priority with the index. The lower the number, the higher the priority. The device processes the rule with the higher priority first.

If none of the rules specified in an ACL applies to a data packet, then the implicit deny rule applies. As a result, the device drops the received data packets.

Keep in mind that the device directly implements the implicit deny rule.

**Note:** The number of available ACLs depends on the device. You find more information about the ACL values in the chapter "Technical Data" on page 347.

Note: You can assign a single ACL to any number of ports or VLANs.

The ACL menu contains the following dialogs:

- ACL IPv4 Rule
- ACL MAC Rule
- ACL Assignment

These dialogs provide the following options:

- ▶ To specify the rules for the various ACL types.
- ► To provide the rules with the required priorities.
- ▶ To assign the ACLs to ports or VLANs.

### 9.2.1 Creating and editing IPv4 rules

When filtering IPv4 data packets, the device lets you:

- create new groups and rules
- add new rules to existing groups
- edit an existing rule
- activate and deactivate groups and rules
- delete existing groups and rules
- change the order of existing rules

Perform the following steps:

- $\Box$  Open the *Network Security* > *ACL* > *IPv4 Rule* dialog.
- Click the Republic button.
- The dialog displays the Create window.
- □ To create a group, specify a meaningful name in the *Group name* field. You can combine several rules in one group.
- □ To add a rule to an existing group, select the name of the group in the *Group name* field.
- □ In the *Index* field you specify the number for the rule within the ACL. This number defines the priority of the rule.
- Click the *Ok* button.
   The device adds the rule to the table.
   Group and role are active immediately.
   To deactivate group or rules, unmark the checkbox in the *Active* column.
   To remove a rule, highlight the affected table entry and click the solution.
   Edit the rule parameters in the table.
  - To change a value, double-click the relevant field.
- □ Save the changes temporarily. To do this, click the ✓ button.

**Note:** The device lets you use wildcards with the *Source IP address* and *Destination IP address* parameters. If you enter for example, 192.168.?.?, then the device allows addresses that start with 192.168.

**Note:** The prerequisite for changing the values in the *Source TCP/UDP port* and *Destination TCP/UDP port* column is that you specify the value tcp or udp in the *Protocol* column.

**Note:** The prerequisite for changing the value in the *Redirection port* and *Mirror port* column is that you specify the value permit in the *Action* column.

### 9.2.2 Creating and configuring an IP ACL using the Command Line Interface

In the following example, you configure ACLs to block communications from computers B and C, to computer A via IP (TCP, UDP, etc.).

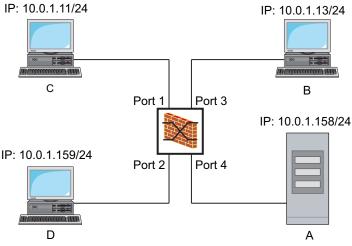



Figure 22: Example of an IP ACL

### Perform the following steps:

enable Change to the Privileged EXEC mode. configure Change to the Configuration mode. ip access-list extended name filter1 Add IP ACL with name filter1. Add rule denying IP deny src 10.0.1.11-0.0.0.0 dst data packets from 10.0.1.11 to 10.0.1.158. Priority 10.0.1.158-0.0.0.0 assign-queue 1 1 (highest priority). ip access-list extended name filter1 Add rule to the IP ACL admitting IP data packets. permit src any dst any show access-list ip filter1 Display rules of the IP ACL filter1. Add IP ACL with name filter2. Add rule denying IP ip access-list extended name filter2 deny src 10.0.1.13-0.0.0.0 dst data packets from 10.0.1.13 to 10.0.1.158. Priority 10.0.1.158-0.0.0.0 assign-queue 1 1 (highest priority). show access-list ip filter2 Display rules of the IP ACL filter2.

### 9.2.3 Creating and editing MAC rules

When filtering MAC data packets, the device lets you:

- create new groups and rules
- add new rules to existing groups
- edit an existing rule
- activate and deactivate groups and rules
- delete existing groups and rules
- change the order of existing rules

Perform the following steps:

□ Open the *Network Security* > *ACL* > *MAC Rule* dialog.

- Click the button.
   The dialog displays the *Create* window.
- □ To create a group, specify a meaningful name in the *Group name* field. You can combine several rules in one group.
- □ To add a rule to an existing group, select the name of the group in the *Group name* field.
- □ In the *Index* field you specify the number for the rule within the ACL. This number defines the priority of the rule.
- Click the *Ok* button.
  The device adds the rule to the table.
  Group and role are active immediately.
  To deactivate group or rules, unmark the checkbox in the *Active* column.
  To remove a rule, highlight the affected table entry and click the solution.
  Edit the rule parameters in the table.
  To change a value, double-click the relevant field.
  Save the changes temporarily. To do this, click the solution.

**Note:** In the *Source MAC address* and *Destination MAC address* fields you can use wildcards in the FF: ??:??:??:?? or ??:??:??:00:01 form. Use capital letters here.

### 9.2.4 Creating and configuring a MAC ACL using the Command Line Interface

In the following example, AppleTalk and IPX are to be filtered out from the entire network. To do this, perform the following steps:

| enable                                                               | Change to the Privileged EXEC mode.                                                                                |
|----------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------|
| configure                                                            | Change to the Configuration mode.                                                                                  |
| mac acl add 1 macfilter                                              | Adds an MAC ACL with the ID 1 and the name macfilter.                                                              |
| mac acl rule add 1 1 deny src any any<br>dst any any etype appletalk | Adds a rule to position 1 of the MAC ACL with the ID 1 rejecting packets with EtherType 0x809B (AppleTalk).        |
| mac acl rule add 1 2 deny src any any<br>dst any any etype ipx-old   | Adds a rule to position 2 of the MAC ACL with the ID 1 rejecting packets with EtherType $0 \times 8137$ (IPX alt). |
| mac acl rule add 1 3 deny src any any<br>dst any any etype ipx-new   | Adds a rule to position 3 of the MAC ACL with the ID 1 rejecting packets with EtherType $0x8138$ (IPX).            |
| mac acl rule add 1 4 permit src any any<br>dst any any               | Adds a rule to position $4$ of the MAC ACL with the ID 1 forwarding packets.                                       |
| show acl mac rules 1                                                 | Displays the rules of the MAC ACL with the ID $_{1}$ .                                                             |
| interface 1/1,1/2,1/3,1/4,1/5,1/6                                    | Change to the interface configuration mode of the interfaces $1/1$ to $1/6$ .                                      |

```
acl mac assign 1 in 1Assigns the MAC ACL with the ID 1 to incoming<br/>data packets (1/1) on interfaces 1/6 to in.exitLeaves the interface mode.show acl mac assignment 1Displays the assignment of the MAC ACL with the<br/>ID 1 to interfaces or VLANs.
```

### 9.2.5 Assigning ACLs to a port or VLAN

When you assign ACLs to a port or VLAN, the device gives you the following options:

- To select the port or VLAN.
- To specify the ACL priority.
- ▶ To select the ACL using the group name.

Perform the following steps:

| □ Open the <i>Network Security</i> > <i>ACL</i> > <i>Assignment</i> dialog.                                                                                                                                                                                                                                                                             |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <ul> <li>Click the  button.</li> <li>The dialog displays the <i>Create</i> window.</li> <li>In the <i>Port/VLAN</i> field, specify the desired port or the desired VLAN.</li> <li>In the <i>Priority</i> field, specify the priority.</li> <li>In the <i>Direction</i> field, specify the data packets to which the device applies the rule.</li> </ul> |
| <ul> <li>In the <i>Group name</i> field, specify the rule the device assigns to the port or the VLAN.</li> <li>Click the <i>Ok</i> button.</li> </ul>                                                                                                                                                                                                   |
| $\Box$ Save the changes temporarily. To do this, click the $\checkmark$ button.                                                                                                                                                                                                                                                                         |
|                                                                                                                                                                                                                                                                                                                                                         |

## 9.3 MAC authentication bypass

The *MAC authorized bypass* function lets clients that do not support 802.1X, such as printers and fax machines, authenticate to the network using their MAC address. The device lets you specify the format of the MAC address used to authenticate the clients on the RADIUS server.

Example:

Split the MAC address into 6 groups of 2 characters. Use uppercase letters and a colon character as separator: AA:BB:CC:DD:EE:FF

Use the passwort xY-45uM e. To do this, perform the following steps:

- □ Open the *Network Security* > 802.1X Port Authentication > Global dialog. In the MAC authentication bypass format options frame, perform the following steps:
- □ In the *Group size* drop-down list, select the value *2*. The device splits the MAC address into 6 groups of 2 characters.
- □ In the *Group separator* drop-down list, select the *:* character.
- □ In the Upper or lower case drop-down list, select the upper-case item.
- □ In the *Password* field, enter the password xY-45uM\_e. The device uses this password for every client that authenticates to the RADIUS server. If you leave the field empty, then the device uses the formatted MAC address also as the password.
- $\Box$  To temporarily save the settings, click the  $\checkmark$  button.

| enable                                                              | Change to the Privileged EXEC mode.                                                                                 |
|---------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------|
| configure                                                           | Change to the Configuration mode.                                                                                   |
| dot1x mac-authentication-bypass format group-size 2                 | Specify the group size 2.                                                                                           |
| <pre>dot1x mac-authentication-bypass format group-separator :</pre> | Specify the group separator :.                                                                                      |
| dot1x mac-authentication-bypass format<br>letter-case upper-case    | Specify that the device formats the authentication data in uppercase letters.                                       |
| dot1x mac-authentication-bypass<br>password xY-45uM_e               | Specify the password $xy-45uM_e$ . The device uses this password to authenticate every client on the RADIUS server. |

## **10 Network load control**

The device features a number of functions that can help you reduce the network load:

- Direct packet distribution
- Multicasts
- Rate limiter
- Prioritization QoS
- Flow control

# **10.1 Direct packet distribution**

The device reduces the network load with direct packet distribution.

On each of its ports, the device learns the sender MAC address of received data packets. The device stores the combination "port and MAC address" in its MAC address table (FDB).

By applying the "Store and Forward" method, the device buffers data received and checks it for validity before forwarding it. The device rejects invalid and defective data packets.

### 10.1.1 Learning MAC addresses

When the device receives a data packet, it checks if the MAC address of the sender is already stored in the MAC address table (FDB). When the MAC address of the sender is unknown, the device generates a new entry. The device then compares the destination MAC address of the data packet with the entries stored in the MAC address table (FDB):

- The device forwards packets with a known destination MAC address directly to ports that have already received data packets from this MAC address.
- The device floods data packets with unknown destination addresses, that is, the device forwards these data packets to every port.

### 10.1.2 Aging of learned MAC addresses

Addresses that have not been detected by the device for an adjustable period of time (aging time) are deleted from the MAC address table (FDB) by the device. A reboot or resetting of the MAC address table deletes the entries in the MAC address table (FDB).

### **10.1.3 Static address entries**

In addition to learning the sender MAC address, the device also provides the option to set MAC addresses manually. These MAC addresses remain configured and survive resetting of the MAC address table (FDB) as well as rebooting of the device.

Static address entries allow the device to forward data packets directly to selected ports. If you do not specify a destination port, then the device discards the corresponding data packets.

You manage the static address entries in the Graphical User Interface or in the Command Line Interface.

Perform the following steps: □ Create a static address entry.

□ Open the Switching > Filter for MAC Addresses dialog.

□ Add a user-configurable MAC address:

- Click the 🔛 button.
  - The dialog displays the Create window.
- ▶ In the Address field, specify the destination MAC address.
- ▶ In the VLAN ID field, specify the ID of the VLAN.
- In the Port list, select the ports to which the device forwards data packets with the specified destination MAC address in the specified VLAN.

When you have defined a Unicast MAC address in the *Address* field, select only one port.

When you have defined a Multicast MAC address in the *Address* field, select one or more ports.

If you want the device to discard data packets with the destination MAC address, then do not select any port.

Click the *Ok* button.

 $\Box$  Save the changes temporarily. To do this, click the  $\checkmark$  button.

| enable                                                | Change to the Privileged EXEC mode.                                                           |
|-------------------------------------------------------|-----------------------------------------------------------------------------------------------|
| configure                                             | Change to the Configuration mode.                                                             |
| mac-filter <mac address=""> <vlan id=""></vlan></mac> | Create the MAC address filter, consisting of a MAC address and VLAN ID.                       |
| interface 1/1                                         | Change to the interface configuration mode of interface $1/1$ .                               |
| mac-filter <mac address=""> <vlan id=""></vlan></mac> | Assign the port to a previously created MAC address filter.                                   |
| save                                                  | Save the settings in the non-volatile memory $(nvm)$ in the "selected" configuration profile. |

Convert a learned MAC address into a static address entry.

| □ Open the Switching > Filter for MAC Addresses dialog.                                                                 |
|-------------------------------------------------------------------------------------------------------------------------|
| □ To convert a learned MAC address into a static address entry, select the value permanent in the <i>Status</i> column. |
| $\Box$ Save the changes temporarily. To do this, click the $\checkmark$ button.                                         |

□ Disable a static address entry.

- □ Open the Switching > Filter for MAC Addresses dialog.
- □ To disable a static address entry, select the value invalid in the *Status* column.
- $\Box$  Save the changes temporarily. To do this, click the  $\checkmark$  button.

| enable                                                   | Change to the Privileged EXEC mode.                                                         |
|----------------------------------------------------------|---------------------------------------------------------------------------------------------|
| configure                                                | Change to the Configuration mode.                                                           |
| interface 1/1                                            | Change to the interface configuration mode of interface $1/1$ .                             |
| no mac-filter <mac address=""> <vlan id=""></vlan></mac> | Cancel the assignment of the MAC address filter on the port.                                |
| exit                                                     | Change to the Configuration mode.                                                           |
| no mac-filter <mac address=""> <vlan id=""></vlan></mac> | Deleting the MAC address filter, consisting of a MAC address and VLAN ID.                   |
| exit                                                     | Change to the Privileged EXEC mode.                                                         |
| save                                                     | Save the settings in the non-volatile memory (nvm) in the "selected" configuration profile. |

### Delete learned MAC addresses.

□ To delete the learned addresses from the MAC address table (FDB), open the *Basic Settings* > *Restart* dialog and click the *Reset MAC address table* button.

clear mac-addr-table

Delete the learned MAC addresses from the MAC address table (FDB).

## 10.2 Multicasts

By default, the device floods data packets with a Multicast address, that is, the device forwards the data packets to every port. This leads to an increased network load.

The use of IGMP snooping can reduce the network load caused by Multicast data traffic. IGMP snooping lets the device send Multicast data packets only on those ports to which devices "interested" in Multicast are connected.

### 10.2.1 Example of a Multicast application

Surveillance cameras transmit images to monitors in the machine room and in the monitoring room. With an IP Multicast transmission, the cameras transmit their graphic data over the network in Multicast packets.

The Internet Group Management Protocol (IGMP) organizes the Multicast data traffic between the Multicast routers and the monitors. The switches in the network between the Multicast routers and the monitors monitor the IGMP data traffic continuously ("IGMP Snooping").

Switches register logins for receiving a Multicast stream (IGMP report). The device then creates an entry in the MAC address table (FDB) and forwards Multicast packets only to the ports on which it has previously received IGMP reports.

### 10.2.2 IGMP snooping

The Internet Group Management Protocol (IGMP) describes the distribution of Multicast information between routers and connected receivers on Layer 3. IGMP Snooping describes the function of a switch of continuously monitoring IGMP traffic and optimizing its own transmission settings for this data traffic.

The *IGMP Snooping* function in the device operates according to RFC 4541 (Considerations for Internet Group Management Protocol (IGMP) and Multicast Listener Discovery (MLD) Snooping Switches).

Multicast routers with an active *IGMP* function periodically request (query) registration of Multicast streams in order to determine the associated IP Multicast group members. IP Multicast group members reply with a Report message. This Report message contains the parameters required by the *IGMP* function. The Multicast router enters the IP Multicast group address from the Report message in its routing table. This causes it to forward data packets with this IP Multicast group in the destination address field according to its routing table.

When leaving a Multicast group (IGMP version 2 and higher), receivers log out with a "Leave" message and do not send any more Report messages. If it does not receive any more Report messages from this receiver within a certain time (aging time), then the Multicast router removes the routing table entry of a receiver.

When several IGMP Multicast routers are in the same network, the device with the smaller IP address takes over the query function. When there are no Multicast routers on the network, you have the option to enable the query function in an appropriately equipped switch.

A switch that connects one Multicast receiver with a Multicast router analyzes the IGMP information with the IGMP snooping method.

The IGMP snooping method also makes it possible for switches to use the *IGMP* function. A switch stores the MAC addresses derived from IP addresses of the Multicast receivers as recognized Multicast addresses in its MAC address table (FDB). In addition, the switch identifies the ports on which it has received reports for a specific Multicast address. In this way, the switch forwards Multicast packets only to ports to which Multicast receivers are connected. The other ports do not receive these packets.

A special feature of the device is the possibility of determining the processing of data packets with unknown Multicast addresses. Depending on the setting, the device discards these data packets or forwards them to every port. By default, the device transmits the data packets only to ports with connected devices, which in turn receive query packets. You also have the option of additionally sending known Multicast packets to query ports.

### Setting IGMP snooping

Perform the following steps:

□ Open the Switching > IGMP Snooping > Global dialog.

□ To enable the function, select the *On* radio button in the *Operation* frame.

When the IGMP Snooping function is disabled, the device behaves as follows:

- The device ignores the received query and report messages.
- The device forwards (floods) received data packets with a Multicast address as the destination address to every port.
- □ Save the changes temporarily. To do this, click the ✓ button.

 $\Box$  Specifying the settings for a port:

- □ Open the Switching > IGMP Snooping > Configuration dialog, Port tab.
- □ To activate the *IGMP Snooping* function on a port, mark the checkbox in the *Active* column for the relevant port.
- $\Box$  Save the changes temporarily. To do this, click the  $\checkmark$  button.

□ Specifying the settings for a VLAN:

- □ Open the Switching > IGMP Snooping > Configuration dialog, VLAN ID tab.
- □ To activate the *IGMP Snooping* function for a specific VLAN, mark the checkbox in the *Active* column for the relevant VLAN.
- □ Save the changes temporarily. To do this, click the ✓ button.

### Setting the IGMP querier function

The device itself optionally sends active query messages; alternatively, it responds to query messages or detects other Multicast queriers in the network (*IGMP Snooping Querier* function).

Prerequisite:

The IGMP Snooping function is enabled globally.

Perform the following steps:

- □ Open the Switching > IGMP Snooping > Querier dialog.
- □ In the *Operation* frame, enable/disable the *IGMP Snooping Querier* function of the device globally.
- □ To activate the *IGMP Snooping Querier* function for a specific VLAN, mark the checkbox in the *Active* column for the relevant VLAN.
- The device carries out a simple selection process: When the IP source address of the other Multicast querier is lower than its own, the device switches to the passive state, in which it does not send out any more query requests.
- ▶ In the Address column, you specify the IP Multicast address that the device inserts as the sender address in generated query requests. You use the address of the Multicast router.
- □ Save the changes temporarily. To do this, click the ✓ button.

### IGMP snooping enhancements (table)

The *Switching* > *IGMP Snooping* > *Snooping Enhancements* dialog provides you access to enhanced settings for the *IGMP Snooping* function. You activate or deactivate the settings on a per port basis in a VLAN.

The following settings are possible:

Static

Use this setting to set the port as a static query port. The device forwards every IGMP message on a static query port, even if it has previously received no IGMP query messages on this port. When the static option is disabled and the device has previously received IGMP query messages, it forwards IGMP messages on this port. When this is the case, the entry displays L ("learned").

▶ Learn by LLDP

A port with this setting automatically discovers other Schneider Electric devices using LLDP (Link Layer Discovery Protocol). The device then learns the IGMP query status of this port from these Schneider Electric devices and configures the *IGMP Snooping Querier* function accordingly. The ALA entry indicates that the Learn by LLDP function is activated. When the device has found another Schneider Electric device on this port in this VLAN, the entry also displays an A ("automatic").

Forward All

With this setting, the device forwards the data packets addressed to a Multicast address to this port. The setting is suitable in the following situations, for example:

- For diagnostic purposes.
- For devices in an MRP ring: After the ring is switched, the Forward All function makes it
  possible to reconfigure the network rapidly for data packets with registered Multicast
  destination addresses. Activate the Forward All function on every ring port.

#### Prerequisite:

The IGMP Snooping function is enabled globally.

#### Perform the following steps:

Open the Switching > IGMP Snooping > Snooping Enhancements dialog.

Double-click the desired port in the desired VLAN.

□ To activate one or more functions, select the corresponding options.

 $\Box$  Click the *Ok* button.

 $\Box$  Save the changes temporarily. To do this, click the  $\checkmark$  button.

| enable                                  | Change to the Privileged EXEC mode.                         |
|-----------------------------------------|-------------------------------------------------------------|
| vlan database                           | Change to the VLAN configuration mode.                      |
| igmp-snooping vlan-id 1 forward-all 1/1 | Activate the Forward All function for port $1/1$ in VLAN 1. |

### **Configure Multicasts**

The device lets you configure the exchange of Multicast data packets. The device provides different options depending on whether the data packets are to be sent to unknown or known Multicast receivers.

The settings for unknown Multicast addresses are global for the entire device. The following options can be selected:

- ▶ The device discards unknown Multicasts.
- The device forwards unknown Multicasts to every port.

**Note:** The exchange settings for unknown Multicast addresses also apply to the reserved IP addresses from the "Local Network Control Block" (224.0.0.0.224.0.0.255). This behavior can affect higher-level routing protocols.

For each VLAN, you specify the sending of Multicast packets to known Multicast addresses individually. The following options can be selected:

- The device forwards known Multicasts to the ports that have previously received query messages (query ports) and to the registered ports. Registered ports are ports with Multicast receivers registered with the corresponding Multicast group. This option helps ensure that the transfer works with basic applications without further configuration.
- The device forwards known Multicasts only to the registered ports. The advantage of this setting is that it uses the available bandwidth optimally through direct distribution.

Prerequisite:

The IGMP Snooping function is enabled globally.

Perform the following steps:

- □ Open the Switching > IGMP Snooping > Multicasts dialog.
- □ In the *Configuration* frame, you specify how the device sends data packets to unknown Multicast addresses.
  - send to registered ports
     The device forwards packets with unknown Multicast address to every query port.
- □ In the *Known multicasts* column, you specify how the device sends data packets to known Multicast addresses in the corresponding VLAN. Click the relevant field and select the desired value.
- $\Box$  Save the changes temporarily. To do this, click the  $\checkmark$  button.

# **10.3** Rate limiter

The rate limiter function helps ensure stable operation even with high traffic volumes by limiting traffic on the ports. The rate limitation is performed individually for each port, as well as separately for inbound and outbound traffic.

If the data rate on a port exceeds the defined limit, then the device discards the overload on this port.

Rate limitation occurs entirely on Layer 2. In the process, the rate limiter function ignores protocol information on higher levels such as IP or TCP. This can affect the TCP traffic.

To minimize these effects, use the following options:

- Limit the rate limitation to certain packet types, for example, Broadcasts, Multicasts, and Unicasts with an unknown destination address.
- Limit the outbound data traffic instead of the inbound traffic. The outbound rate limitation works better with TCP flow control due to device-internal buffering of the data packets.
- Increase the aging time for learned Unicast addresses.

Perform the following steps:

□ Open the *Switching* > *Rate Limiter* dialog.

- Activate the rate limiter and set limits for the data rate. The settings apply on a per port basis and are broken down by type of traffic:
  - Received Broadcast data packets
  - Received Multicast data packets
  - Received Unicast data packets with an unknown destination address

To activate the rate limiter on a port, mark the checkbox for at least one category. In the *Threshold unit* column, you specify if the device interpretes the threshold values as percent of the port bandwidth or as packets per second. The threshold value 0 deactivates the rate limiter.

□ Save the changes temporarily. To do this, click the ✓ button.

## **10.4 QoS/Priority**

QoS (Quality of Service) is a procedure defined in IEEE 802.1D which is used to distribute resources in the network. QoS lets you prioritize the data of necessary applications.

When there is a heavy network load, prioritizing helps prevent data traffic with lower priority from interfering with delay-sensitive data traffic. Delay-sensitive data traffic includes, for example, voice, video, and real-time data.

## **10.4.1 Description of prioritization**

For data traffic prioritization, traffic classes are defined in the device. The device prioritizes higher traffic classes over lower traffic classes. The number of traffic classes depends on the device type.

To provide for optimal data flow for delay-sensitive data, you assign higher traffic classes to this data. You assign lower traffic classes to data that is less sensitive to delay.

## Assigning traffic classes to the data

The device automatically assigns traffic classes to inbound data (traffic classification). The device takes the following classification criteria into account:

- Methods according to which the device carries out assignment of received data packets to traffic classes:
  - trustDot1p
    - The device uses the priority of the data packet contained in the VLAN tag.
  - trustIpDscp
    - The device uses the QoS information contained in the IP header (ToS/DiffServ).
  - untrusted
    - The device ignores possible priority information within the data packets and uses the priority of the receiving port directly.
- The priority assigned to the receiving port.

Both classification criteria are configurable.

During traffic classification, the device uses the following rules:

- When the receiving port is set to trustDot1p (default setting), the device uses the data packet priority contained in the VLAN tag. When the data packets do not contain a VLAN tag, the device is guided by the priority of the receiving port.
- When the receiving port is set to trustIpDscp, the device uses the QoS information (ToS/ DiffServ) in the IP header. When the data packets do not contain IP packets, the device is guided by the priority of the receiving port.
- When the receiving port is set to untrusted, the device is guided by the priority of the receiving port.

#### **Prioritizing traffic classes**

For prioritization of traffic classes, the device uses the following methods:

Strict

When transmission of data of a higher traffic class is no longer taking place or the relevant data is still in the queue, the device sends data of the corresponding traffic class. If every traffic class is prioritized according to the Strict method, then under high network load the device can permanently block the data of lower traffic classes.

Weighted Fair Queuing

The traffic class is assigned a specific bandwidth. This helps ensure that the device sends the data traffic of this traffic class, although there is a great deal of data traffic in higher traffic classes.

### **10.4.2** Handling of received priority information

Applications label data packets with the following prioritization information:

- VLAN priority based on IEEE 802.1Q/ 802.1D (Layer 2)
- ▶ Type-of-Service (ToS) or DiffServ (DSCP) for VLAN Management IP packets (Layer 3)

The device lets you evaluate this priority information using the following options:

trustDot1p

The device assigns VLAN-tagged data packets to the different traffic classes according to their VLAN priorities. The corresponding allocation is configurable. The device assigns the priority of the receiving port to data packets it receives without a VLAN tag.

trustIpDscp

The device assigns the IP packets to the different traffic classes according to the DSCP value in the IP header, although the packet was also VLAN-tagged. The corresponding allocation is configurable. The device prioritizes non-IP packets according to the priority of the receiving port.

untrusted

The device ignores the priority information in the data packets and assigns the priority of the receiving port to them.

### 10.4.3 VLAN tagging

For the VLAN and prioritizing functions, the IEEE 802.1Q standard provides for integrating a MAC frame in the VLAN tag. The VLAN tag consists of 4 bytes and is between the source address field ("Source Address Field") and type field ("Length / Type Field").

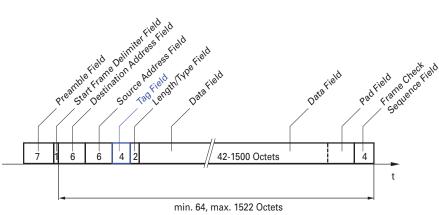



Figure 23: Ethernet data packet with tag

For data packets with VLAN tags, the device evaluates the following information:

- Priority information
- ▶ When VLANs are configured, VLAN tagging

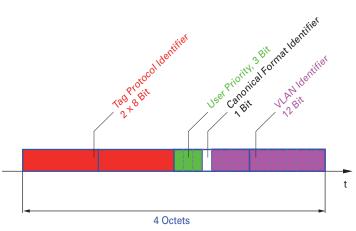



Figure 24: Structure of the VLAN tagging

Data packets with VLAN tags containing priority information but no VLAN information (VLAN ID = 0), are known as Priority Tagged Frames.

**Note:** Network protocols and redundancy mechanisms use the highest traffic class 7. Therefore, select other traffic classes for application data.

When using VLAN prioritizing, consider the following special features:

- End-to-end prioritizing requires the VLAN tags to be transmitted to the entire network. The prerequisite is that every network component is VLAN-capable.
- Routers are not able to send and receive packets with VLAN tags through port-based router interfaces.

## 10.4.4 IP ToS (Type of Service)

The Type-of-Service field (ToS) in the IP header was already part of the IP protocol from the start, and is used to differentiate different services in IP networks. Even back then, there were ideas about differentiated treatment of IP packets, due to the limited bandwidth available and the unreliable connection paths. Because of the continuous increase in the available bandwidth, there was no need to use the ToS field.

Only with the real-time requirements of today's networks has the ToS field become significant again. Selecting the ToS byte of the IP header enables you to differentiate between different services. However, this field is not widely used in practice.



Table 22: ToS field in the IP header

| Bits (0-2): IP Precedence Define | d Bits (3-6): Type of Service<br>Defined | Bit (7)  |
|----------------------------------|------------------------------------------|----------|
| 111 - Network Control            | 0000 - [all normal]                      | 0 - Zero |
| 110 - Internetwork Control       | 1000 - [minimize delay]                  |          |
| 101 - CRITIC / ECP               | 0100 - [maximize throughput              |          |

| Table 22: | ToS field in the IP header (cont |  |
|-----------|----------------------------------|--|
|-----------|----------------------------------|--|

| Bits (0-2): IP Precedence Define | d Bits (3-6): Type of Service Bit<br>Defined | t (7) |
|----------------------------------|----------------------------------------------|-------|
| 100 - Flash Override             | 0010 - [maximize reliability]                |       |
| 011 - Flash                      | 0001 - [minimize monetary cost]              |       |
| 010 - Immediate                  |                                              |       |
| 001 - Priority                   |                                              |       |
| 000 - Routine                    |                                              |       |

#### 10.4.5 Handling of traffic classes

The device provides the following options for handling traffic classes:

- Strict Priority
- Weighted Fair Queuing
- Strict Priority combined with Weighted Fair Queuing
- Queue management

#### **Strict Priority description**

With the Strict Priority setting, the device first transmits data packets that have a higher traffic class (higher priority) before transmitting a data packet with the next highest traffic class. When there are no other data packets remaining in the queue, the device transmits a data packet with the lowest traffic class (lowest priority). In unfortunate cases, if there is a high volume of high-priority traffic waiting to be sent on this port, then the device does not send packets with a low priority.

In delay-sensitive applications, such as VoIP or video, Strict Priority lets data to be sent immediately.

#### **Weighted Fair Queuing description**

With Weighted Fair Queuing, also called Weighted Round Robin (WRR), you assign a minimum or reserved bandwidth to each traffic class. This helps ensure that data packets with a lower priority are also sent although the network is very busy.

The reserved values range from 0% through 100% of the available bandwidth, in steps of 1%.

- A reservation of 0 is equivalent to a "no bandwidth" setting.
- The sum of the individual bandwidths can be up to 100%.

When you assign Weighted Fair Queuing to every traffic class, the entire bandwidth of the corresponding port is available to you.

#### **Combining Strict Priority and Weighted Fair Queuing**

When combining Weighted Fair Queuing with Strict Priority, verify that the highest traffic class of Weighted Fair Queuing is lower than the lowest traffic class of Strict Priority.

If you combine Weighted Fair Queuing with Strict Priority, then a high Strict Priority network load can significantly reduce the bandwidth available for Weighted Fair Queuing.

## 10.4.6 Queue management

#### **Queue Shaping**

Queue Shaping throttles the rate at which queues transmit packets. For example, using Queue Shaping, you rate-limit a higher strict-priority queue so that it lets a lower strict-priority queue to send packets even though higher priority packets are still available for transmission. The device lets you setup Queue Shaping for any queue. You specify Queue Shaping as the maximum rate at which traffic passes through a queue by assigning a percentage of the available bandwidth.

#### **Defining settings for queue management**

|    | Open the Switching > QoS/Priority > Queue Management dialog.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Th | e total assigned bandwidth in the Min. bandwidth [%] column is 100%.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|    | <ul> <li>To activate Weighted Fair Queuing for <i>Traffic class</i> = 0, proceed as follows:</li> <li>Unmark the checkbox in the <i>Strict priority</i> column.</li> <li>In the <i>Min. bandwidth</i> [%] column, specify the value 5.</li> </ul>                                                                                                                                                                                                                                                                                                                                     |
|    | <ul> <li>To activate Weighted Fair Queuing for <i>Traffic class</i> = 1, proceed as follows:</li> <li>Unmark the checkbox in the <i>Strict priority</i> column.</li> <li>In the <i>Min. bandwidth</i> [%] column, specify the value 20.</li> </ul>                                                                                                                                                                                                                                                                                                                                    |
|    | <ul> <li>To activate Weighted Fair Queuing for <i>Traffic class</i> = 2, proceed as follows:</li> <li>Unmark the checkbox in the <i>Strict priority</i> column.</li> <li>In the <i>Min. bandwidth</i> [%] column, specify the value 30.</li> </ul>                                                                                                                                                                                                                                                                                                                                    |
|    | <ul> <li>To activate Weighted Fair Queuing for <i>Traffic class</i> = 3, proceed as follows:</li> <li>Unmark the checkbox in the <i>Strict priority</i> column.</li> <li>In the <i>Min. bandwidth</i> [%] column, specify the value 20.</li> </ul>                                                                                                                                                                                                                                                                                                                                    |
|    | <ul> <li>To activate Weighted Fair Queuing and Queue Shaping for <i>Traffic class</i> = 4, proceed as follows:</li> <li>Unmark the checkbox in the <i>Strict priority</i> column.</li> <li>In the <i>Min. bandwidth</i> [%] column, specify the value 10.</li> <li>In the <i>Max. bandwidth</i> [%] column, specify the value 10.</li> <li>When using a Weighted Fair Queuing and Queue Shaping combination for a specific traffic class, specify a higher value in the <i>Max. bandwidth</i> [%] column than the value specified in the <i>Min. bandwidth</i> [%] column.</li> </ul> |
|    | <ul> <li>To activate Weighted Fair Queuing for <i>Traffic class</i> = 5, proceed as follows:</li> <li>Unmark the checkbox in the <i>Strict priority</i> column.</li> <li>In the <i>Min. bandwidth</i> [%] column, specify the value 5.</li> </ul>                                                                                                                                                                                                                                                                                                                                     |
|    | <ul> <li>To activate Weighted Fair Queuing for <i>Traffic class</i> = 6, proceed as follows:</li> <li>Unmark the checkbox in the <i>Strict priority</i> column.</li> <li>In the <i>Min. bandwidth</i> [%] column, specify the value 10.</li> </ul>                                                                                                                                                                                                                                                                                                                                    |
|    | <ul> <li>To activate Strict Priority and Queue Shaping for <i>Traffic class</i> = 7, proceed as follows:</li> <li>Mark the checkbox in the <i>Strict priority</i> column.</li> <li>In the <i>Max. bandwidth</i> [%] column, specify the value 10.</li> </ul>                                                                                                                                                                                                                                                                                                                          |
|    | Save the changes temporarily. To do this, click the 🗸 button.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |

| enable                   |                | Change to the Privileged EXEC mode.                 |
|--------------------------|----------------|-----------------------------------------------------|
| configure                |                | Change to the Configuration mode.                   |
| cos-queue weighted 0     |                | Enabling Weighted Fair Queuing for traffic class 0. |
| cos-queue min-bandwidth: | 0 5            | Assigning a weight of 5 % to traffic class 0.       |
| cos-queue weighted 1     |                | Enabling Weighted Fair Queuing for traffic class 1. |
| cos-queue min-bandwidth: | 1 20           | Assigning a weight of 20 % to traffic class 1.      |
| cos-queue weighted 2     |                | Enabling Weighted Fair Queuing for traffic class 2. |
| cos-queue min-bandwidth: | 2 30           | Assigning a weight of 30 % to traffic class 2.      |
| cos-queue weighted 3     |                | Enabling Weighted Fair Queuing for traffic class 3. |
| cos-queue min-bandwidth: | 3 20           | Assigning a weight of 20 % to traffic class 3.      |
| show cos-queue           |                |                                                     |
| Queue Id Min. bandwidth  | Max. bandwidth | Scheduler type                                      |
|                          |                | · · · · · · · ·                                     |
| 0 5                      | 0              | weighted                                            |
| 1 20                     | 0              | weighted                                            |
| 2 30                     | 0              | weighted                                            |
| 3 20                     | 0              | weighted                                            |
| 4 0                      | 0              | strict                                              |
| 5 0                      | 0              | strict                                              |
| 6 0                      | 0              | strict                                              |
|                          |                |                                                     |

## **Combining Weighted Fair Queuing and Queue Shaping**

| enable    |                |                | Change to the Privileged EXEC mode.                 |
|-----------|----------------|----------------|-----------------------------------------------------|
| configure |                |                | Change to the Configuration mode.                   |
| cos-queue | weighted 4     |                | Enabling Weighted Fair Queuing for traffic class 4. |
| cos-queue | min-bandwidth: | 4 10           | Assigning a weight of 10 % to traffic class 4.      |
| cos-queue | max-bandwidth: | 4 10           | Assigning a weight of 10 % to traffic class 4.      |
| cos-queue | weighted 5     |                | Enabling Weighted Fair Queuing for traffic class 5. |
| cos-queue | min-bandwidth: | 5 5            | Assigning a weight of 5 % to traffic class 5.       |
| cos-queue | weighted 6     |                | Enabling Weighted Fair Queuing for traffic class 6. |
| cos-queue | min-bandwidth: | 6 10           | Assigning a weight of 10 % to traffic class 6.      |
| show cos- | queue          |                |                                                     |
| Queue Id  | Min. bandwidth | Scheduler type |                                                     |
| 0         | 5              | 0              | weighted                                            |
| 1         | 20             | 0              | weighted                                            |
| 2         | 30             | 0              | weighted                                            |
| 3         | 20             | 0              | weighted                                            |
|           |                |                |                                                     |
| 4         | 10             | 10             | weighted                                            |
| 4<br>5    | 10<br>5        | 10<br>0        | weighted<br>weighted                                |
| -         |                |                | -                                                   |

### **Setting up Queue Shaping**

Perform the following steps:

| enable    |                |                | Change to the Privileged EXEC mode.            |
|-----------|----------------|----------------|------------------------------------------------|
| configure |                |                | Change to the Configuration mode.              |
| cos-queue | max-bandwidth: | 7 10           | Assigning a weight of 10 % to traffic class 7. |
| show cos- | queue          |                |                                                |
| Queue Id  | Min. bandwidth | Scheduler type |                                                |
|           |                |                |                                                |
| 0         | 5              | 0              | weighted                                       |
| 1         | 20             | 0              | weighted                                       |
| 2         | 30             | 0              | weighted                                       |
| 3         | 20             | 0              | weighted                                       |
| 4         | 10             | 10             | weighted                                       |
| 5         | 5              | 0              | weighted                                       |
| 6         | 10             | 0              | weighted                                       |
| 7         | 0              | 10             | strict                                         |
|           |                |                |                                                |

#### **10.4.7** Management prioritization

In order for you to constantly have access to the device management, although there is a high network load, the device lets you prioritize management packets.

When prioritizing management packets, the device sends the management packets with priority information.

- On Layer 2, the device modifies the VLAN priority in the VLAN tag.
- The prerequisite for this function is that the corresponding ports are set to allow sending packets with a VLAN tag.
- ▶ On Layer 3, the device modifies the IP-DSCP value.

### 10.4.8 Setting prioritization

#### Assigning the port priority

- □ Open the Switching > QoS/Priority > Port Configuration dialog.
- □ In the *Port priority* column, you specify the priority with which the device forwards the data packets received on this port without a VLAN tag.
- □ In the *Trust mode* column, you specify the criteria the device uses to assign a traffic class to data packets received.
- □ Save the changes temporarily. To do this, click the ✓ button.

| enable          | Change to the Privileged EXEC mode.                             |
|-----------------|-----------------------------------------------------------------|
| configure       | Change to the Configuration mode.                               |
| interface 1/1   | Change to the interface configuration mode of interface $1/1$ . |
| vlan priority 3 | Assign interface $1/1$ the port priority 3.                     |
| exit            | Change to the Configuration mode.                               |

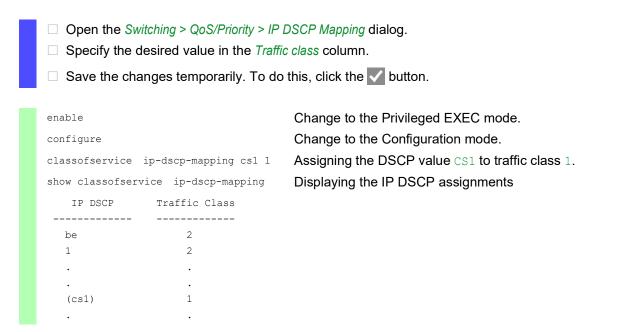
## Assigning VLAN priority to a traffic class

Perform the following steps:

- □ Open the Switching > QoS/Priority > 802.1D/p Mapping dialog.
- □ To assign a traffic class to a VLAN priority, insert the associated value in the *Traffic class* column.
- □ Save the changes temporarily. To do this, click the ✓ button.

| enable                            | Change to the Privileged EXEC mode.                |
|-----------------------------------|----------------------------------------------------|
| configure                         | Change to the Configuration mode.                  |
| classofservice dot1p-mapping 0 2  | Assigning a VLAN priority of 0 to traffic class 2. |
| classofservice dot1p-mapping 1 2  | Assigning a VLAN priority of 1 to traffic class 2. |
| exit                              | Change to the Privileged EXEC mode.                |
| show classofservice dot1p-mapping | Display the assignment.                            |

## Assign port priority to received data packets


| enable                                                               | Change to the Privileged EXEC mode.                                                                      |
|----------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|
| configure                                                            | Change to the Configuration mode.                                                                        |
| interface 1/1                                                        | Change to the interface configuration mode of interface 1/1.                                             |
| classofservice trust untrusted                                       | Assigning the untrusted mode to the interface.                                                           |
| classofservice dot1p-mapping 0 2<br>classofservice dot1p-mapping 1 2 | Assigning a VLAN priority of 0 to traffic class 2.<br>Assigning a VLAN priority of 1 to traffic class 2. |
| vlan priority 1                                                      | Specifying the value 1 for the port priority.                                                            |
| exit                                                                 | Change to the Configuration mode.                                                                        |

| exit                      |
|---------------------------|
| show classofservice trust |
| Interface Trust Mode      |
|                           |
| 1/1 untrusted             |
| 1/2 dot1p                 |
| 1/3 dot1p                 |
| 1/4 dot1p                 |
| 1/5 dot1p                 |
| 1/6 dot1p                 |
| 1/7 dot1p                 |

Change to the Privileged EXEC mode. Displaying the Trust mode of the ports/interfaces.

#### **Assigning DSCP to a traffic class**

Perform the following steps:



#### Assign the DSCP priority to received IP data packets

| enable                  | Change to the Privileged EXEC mode.                             |
|-------------------------|-----------------------------------------------------------------|
| configure               | Change to the Configuration mode.                               |
| interface 1/1           | Change to the interface configuration mode of interface $1/1$ . |
| classofservice trust ip | -dscp Assigning the trust ip-dscp mode globally.                |

| exit          |                           |  |  |  |  |  |  |
|---------------|---------------------------|--|--|--|--|--|--|
| show classofs | show classofservice trust |  |  |  |  |  |  |
| Interface     | Trust Mode                |  |  |  |  |  |  |
|               |                           |  |  |  |  |  |  |
| 1/1           | ip-dscp                   |  |  |  |  |  |  |
| 1/2           | dot1p                     |  |  |  |  |  |  |
| 1/3           | dot1p                     |  |  |  |  |  |  |
| •             | •                         |  |  |  |  |  |  |
|               | •                         |  |  |  |  |  |  |
| 1/5           | dot1p                     |  |  |  |  |  |  |
|               | •                         |  |  |  |  |  |  |

Change to the Configuration mode. Displaying the Trust mode of the ports/interfaces.

## Configuring traffic shaping on a port

Perform the following steps:

| enable     |              | Change to the Privileged EXEC mode.                             |
|------------|--------------|-----------------------------------------------------------------|
| configure  |              | Change to the Configuration mode.                               |
| interface  | 1/2          | Change to the interface configuration mode of interface $1/2$ . |
| traffic-sh | ape bw 50    | Limiting the maximum bandwidth of the port $1/2$ to 50%.        |
| exit       |              | Change to the Configuration mode.                               |
| exit       |              | Change to the Privileged EXEC mode.                             |
| show traff | ic-shape     | Display the Traffic Shaping configuration.                      |
| Interface  | Shaping rate |                                                                 |
| 1/1        | 0 %          |                                                                 |
| 1/2        | 50 %         |                                                                 |
| 1/3        | 0 %          |                                                                 |
| 1/4        | 0 %          |                                                                 |

## **Configuring Layer 2 management priority**

Perform the following steps:

| □ Open the Switching > QoS/Priority > Global dialog.                                                                                |  |  |  |
|-------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| □ In the VLAN priority for management packets field, specify the VLAN priority with which the device sends management data packets. |  |  |  |
| $\Box$ Save the changes temporarily. To do this, click the $\checkmark$ button.                                                     |  |  |  |
|                                                                                                                                     |  |  |  |
| enable Change to the Privileged EXEC mode.                                                                                          |  |  |  |

QGH59056.01 - 06/2021

| network management priority dot1p 7 | Assigning the VLAN priority of 7 to management packets. The device sends management packets with the highest priority. |
|-------------------------------------|------------------------------------------------------------------------------------------------------------------------|
| show network parms                  | Displaying the priority of the VLAN in which the device management is located.                                         |
| IPv4 Network                        |                                                                                                                        |
|                                     |                                                                                                                        |
|                                     |                                                                                                                        |
| Management VLAN priority            | 7                                                                                                                      |
|                                     |                                                                                                                        |

## **Configuring Layer 3 management priority**

| <ul> <li>Open the Switching &gt; QoS/Priority &gt; Global dialog.</li> <li>In the IP DSCP value for management packets field, specify the DSCP value with which the device sends management data packets.</li> </ul> |                                                                                                                      |  |  |  |  |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------|--|--|--|--|
| Save the changes temporarily. To do                                                                                                                                                                                  | this, click the 🗸 button.                                                                                            |  |  |  |  |
| enable                                                                                                                                                                                                               | Change to the Drivilaged EVEC mode                                                                                   |  |  |  |  |
| enable                                                                                                                                                                                                               | Change to the Privileged EXEC mode.                                                                                  |  |  |  |  |
| network management priority ip-dscp 56                                                                                                                                                                               | Assigning the DSCP value of 56 to management packets. The device sends management packets with the highest priority. |  |  |  |  |
| show network parms                                                                                                                                                                                                   | Displaying the priority of the VLAN in which the device management is located.                                       |  |  |  |  |
|                                                                                                                                                                                                                      |                                                                                                                      |  |  |  |  |
| IPv4 Network                                                                                                                                                                                                         |                                                                                                                      |  |  |  |  |
|                                                                                                                                                                                                                      |                                                                                                                      |  |  |  |  |
|                                                                                                                                                                                                                      |                                                                                                                      |  |  |  |  |
| Management IP-DSCP value                                                                                                                                                                                             |                                                                                                                      |  |  |  |  |

## **10.5** Flow control

If a large number of data packets are received in the priority queue of a port at the same time, then this can cause the port memory to overflow. This happens, for example, when the device receives data on a Gigabit port and forwards it to a port with a lower bandwidth. The device discards surplus data packets.

The flow control mechanism described in standard IEEE 802.3 helps ensure that no data packets are lost due to a port memory overflowing. Shortly before a port memory is completely full, the device signals to the connected devices that it is not accepting any more data packets from them.

In full-duplex mode, the device sends a pause data packet.

▶ In half-duplex mode, the device simulates a collision.

The following figure displays how flow control works. Workstations 1, 2, and 3 want to simultaneously transmit a large amount of data to Workstation 4. The combined bandwidth of Workstations 1, 2, and 3 is greater than the bandwidth of Workstation 4. This causes an overflow on the receive queue of port 4. The left funnel symbolizes this status.

When the flow control function on ports 1, 2 and 3 of the device is enabled, the device reacts before the funnel overflows. The funnel on the right illustrates ports 1, 2 and 3 sending a message to the transmitting devices to control the transmittion speed. This results in the receiving port no longer being overwhelmed and is able to process the incoming traffic.

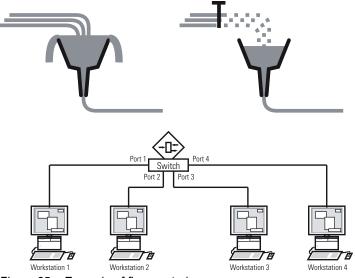



Figure 25: Example of flow control

## 10.5.1 Halfduplex or fullduplex link

### Flow Control with a half duplex link

In the example, there is a halfduplex link between Workstation 2 and the device.

Before the send queue of port 2 overflows, the device sends data back to Workstation 2. Workstation 2 detects a collision and stops transmitting.

### Flow Control with a full duplex link

In the example, there is a fullduplex link between Workstation 2 and the device.

Before the send queue of port 2 overflows, the device sends a request to Workstation 2 to include a small break in the sending transmission.

#### **10.5.2 Setting up the Flow Control**

Perform the following steps:

- $\Box$  Open the *Switching* > *Global* dialog.
- ☐ Mark the *Flow control* checkbox.
  - With this setting you enable flow control in the device.
- □ Open the *Basic Settings > Port* dialog, *Configuration* tab.
- □ To enable the Flow Control on a port, mark the checkbox in the *Flow control* column.
- $\Box$  Save the changes temporarily. To do this, click the  $\checkmark$  button.

**Note:** When you are using a redundancy function, you deactivate the flow control on the participating ports. If the flow control and the redundancy function are active at the same time, it is possible that the redundancy function operates differently than intended.

## **11 Configuring template-based TSN**

## **11.1 Underlying facts**

When you use the *TSN* function, the following basic conditions apply:

- The device operates using the "Store and Forward" method. Thus, the device has to receive the complete data packet before it makes a forwarding decision.
- You specify the Base time and Cycle time once in the device. Both settings are valid for each port participating in TSN.
- > You configure a Gate Control List per port based on predefined templates for easier setup.
- Verify that the sum of the Gate Control List entry times is less than or equal to the specified Cycle time.
- The device uses a guard band to help protect the time slot for high priority packets from packets that "leak" from the previous time slot. The decisive factor for the interval length of the guard band is the port speed of the sending port.

We recommend the following interval lengths for the guard band. The values are based on the port speed and the maximum allowed size of Ethernet packets:

- 2.5 Gbit/s: 5 μs
- − 1 Gbit/s: 13 µs
- 100 Mbit/s: 124 μs
- The Cycle time range is 50 000..10 000 000 ns.
- The Gate Control List interval range is 1 000..10 000 000 ns.
- Verify that the Cycle time as well as the Gate Control List intervals are multiples of 1 µs, 2 µs or 4 µs.

Table 23: Dependency between Cycle time and granularity

| Cycle time    | Granularity |
|---------------|-------------|
| 50 µs4 ms     | 1 µs        |
| 4.002 ms8 ms  | 2 µs        |
| 8.004 ms10 ms | 4 µs        |

## 11.2 Example

This example describes how to set up the devices for a scenario with the following conditions:

- Cycle time = 1 ms
- Time slot for high priority packets = 500 µs
- Time slot for low priority packets = 487 µs

In this example, each device is connected to the network with a port speed of 1 Gbit/s.

Table 24: Structure of the cycle

| Time slot             | Traffic classes | Duration |
|-----------------------|-----------------|----------|
| High priority packets | 7               | 500 µs   |
| Low priority packets  | 0,1,2,3,4,5,6   | 487 μs   |
| Guard band            | -               | 13 µs    |

## **11.2.1** Time calculation

The device automatically calculates the duration of the time slot for the low priority packets. The calculation is based on the following parameters:

- Cycle time
- Duration of the time slot for high priority packets
- Duration of the guard band

## 11.2.2 Set up the devices

Using the previously specified times, you set up the devices using the Graphical User Interface or the Command Line Interface. For each device involved, perform the following steps.

### Check and adjust the Cycle time

| Open the Switching > TSN > Configuration dialog.                                                  |  |  |  |  |  |  |
|---------------------------------------------------------------------------------------------------|--|--|--|--|--|--|
| □ Check in the <i>Configuration</i> frame the value in the <i>Cycle time</i> [ <i>ns</i> ] field. |  |  |  |  |  |  |
| ☐ If necessary, adjust the value.                                                                 |  |  |  |  |  |  |
|                                                                                                   |  |  |  |  |  |  |
| Configuration                                                                                     |  |  |  |  |  |  |
| Cycle time [ns] 1000000                                                                           |  |  |  |  |  |  |
| $\Box$ Save the changes temporarily. To do this, click the $\checkmark$ button.                   |  |  |  |  |  |  |

| enabl<br>confi |                       | •     | to the Privileged EXEC mode.<br>to the Configuration mode. |            |                               |
|----------------|-----------------------|-------|------------------------------------------------------------|------------|-------------------------------|
| show           | tsn configuration     |       |                                                            | 0          | 0                             |
| Port           |                       |       | -                                                          |            | Conf. base time               |
|                | Default gate states   | Curr. | cycle                                                      | time[ns]   |                               |
|                | Config change pending |       |                                                            |            | Time of last activation       |
| 1/1            | [x] disabled          | l     |                                                            | 1000000    | 1970-01-01 00:00:00.00000000  |
|                | 7,6,5,4,3,2,1,0       |       |                                                            | 1000000    | 1970-01-01 00:00:00.00000000  |
|                | [ ]                   |       |                                                            |            | 2018-07-12 08:10:58.813000000 |
| 1/2            | [x] disabled          | l     |                                                            | 1000000    | 1970-01-01 00:00:00.00000000  |
|                | 7,6,5,4,3,2,1,0       |       |                                                            | 1000000    | 1970-01-01 00:00:00.00000000  |
|                | []                    |       |                                                            |            | 2018-07-11 07:24:35.204000000 |
| 1/3            | [] disabled           |       |                                                            | 1000000    | 1970-01-01 00:00:00.00000000  |
|                | 7,6,5,4,3,2,1,0       |       |                                                            | 0          | 1970-01-01 00:00:00.00000000  |
|                | [ ]                   |       |                                                            |            | 1970-01-01 00:00:00.00000000  |
| 1/4            | [] disabled           |       |                                                            | 1000000    | 1970-01-01 00:00:00.00000000  |
|                | 7,6,5,4,3,2,1,0       |       |                                                            | 0          | 1970-01-01 00:00:00.00000000  |
|                | [ ]                   |       |                                                            |            | 1970-01-01 00:00:00.00000000  |
| tsn d          | cycle-time 1000000    |       |                                                            | If necessa | ary, adjust the value.        |

### Select a template and set up the Gate Control List

The device provides predefined templates to help you set up the Gate Control List. In this example, we use the template *default 2 time slots*. After you select the template, you can adjust the duration of the time slots. Perform the following steps for each port for which you want to use the *TSN* function.

Perform the following steps:

□ Open the Switching > TSN > Gate Control List > Configured dialog.

□ Select the tab for the port for which you want to specify the settings.

- □ Select a template in the *Configuration* frame.
  - Perform the following steps:
  - Click the *Template* button.
  - Select the default 2 time slots item.
  - Click the Ok button.
- Adjust the values in the *Interval [ns]* column:
  - Enter the value 500000 in the row for high priority packets.
  - Enter the value 13000 in the row for the guard band.
  - The device calculates the third value automatically when saving the changes.

|                                             | 1/1           | 1/2 | 1/3      | 1/4      | 1/5 | 1/6           |   |  |  |
|---------------------------------------------|---------------|-----|----------|----------|-----|---------------|---|--|--|
| С                                           | Configuration |     |          |          |     |               |   |  |  |
| Status default 2 time slots Template Delete |               |     |          |          |     |               |   |  |  |
|                                             | Index         |     | Gate s   | tates    |     | Interval [ns] |   |  |  |
|                                             | 1             |     | 7        |          |     | 500,000       |   |  |  |
|                                             | 2             |     | 0, 1, 2, | 3, 4, 5, | 6   | 976,000       |   |  |  |
|                                             | 3             |     | -        |          |     | 13000         | ] |  |  |

□ Save the changes temporarily. To do this, click the ✓ button.

| enable                           | Change to the Privileged EXEC mode.                                                                                                                                                                                                    |
|----------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| configure                        | Change to the Configuration mode.                                                                                                                                                                                                      |
| interface 1/1                    | Change to the interface configuration mode of interface $1/1$ .                                                                                                                                                                        |
| tsn gcl modify 1 interval 500000 | Adjust the duration in nanoseconds of the time slot for high priority packets.                                                                                                                                                         |
| tsn gcl modify 3 interval 13000  | Adjust the duration in nanoseconds of the time slot<br>for the guard band.<br>The device automatically calculates the duration of<br>the time slot for low priority packets. You cannot set<br>the time slot for low priority packets. |

## 12 VLANs

In the simplest case, a virtual LAN (VLAN) consists of a group of network participants in one network segment who can communicate with each other as though they belonged to a separate LAN.

More complex VLANs span out over multiple network segments and are also based on logical (instead of only physical) connections between network participants. VLANs are an element of flexible network design. It is easier to reconfiguring logical connections centrally than cable connections.

The device supports independent VLAN learning in accordance with the IEEE 802.1Q standard which defines the *VLAN* function.

Using VLANs has many benefits. The following list displays the top benefits:

Network load limiting

VLANs reduce the network load considerably as the devices transmit Broadcast, Multicast, and Unicast packets with unknown (unlearned) destination addresses only inside the virtual LAN. The rest of the data network forwards traffic as normal.

Flexibility

You have the option of forming user groups based on the function of the participants apart from their physical location or medium.

Clarity

VLANs give networks a clear structure and make maintenance easier.

## 12.1 Examples of VLANs

The following practical examples provide a quick introduction to the structure of a VLAN.

**Note:** When configuring VLANs you use an interface for accessing the device management that will remain unchanged. For this example, you use either interface 1/6 or the serial connection to configure the VLANs.

## 12.1.1 Example 1

The example displays a minimal VLAN configuration (port-based VLAN). An administrator has connected multiple end devices to a transmission device and assigned them to 2 VLANs. This effectively prohibits any data transmission between the VLANs, whose members communicate only within their own VLANs.

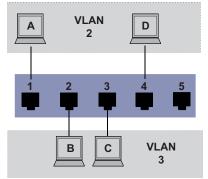



Figure 26: Example of a simple port-based VLAN

When setting up the VLANs, you create communication rules for every port, which you enter in ingress (incoming) and egress (outgoing) tables.

The ingress table specifies which VLAN ID a port assigns to the incoming data packets. Hereby, you use the port address of the end device to assign it to a VLAN.

The egress table specifies on which ports the device sends the packets from this VLAN.

- $\blacktriangleright$  T = Tagged (with a tag field, marked)
- ▶ U = Untagged (without a tag field, unmarked)

For this example, the status of the TAG field of the data packets has no relevance, so you use the setting  $\ensuremath{\mathbb{U}}$  .

| Terminal | Port | Port VLAN identifier (PVID) |
|----------|------|-----------------------------|
| A        | 1    | 2                           |
| В        | 2    | 3                           |
| С        | 3    | 3                           |
| D        | 4    | 2                           |
|          | 5    | 1                           |

Table 25: Ingress table

| Table 26: | Egress | table |
|-----------|--------|-------|
|-----------|--------|-------|

| VLAN ID | Port |   |   |   |   |  |
|---------|------|---|---|---|---|--|
|         | 1    | 2 | 3 | 4 | 5 |  |
| 1       |      |   |   |   | U |  |
| 2       | U    |   |   | U |   |  |
| 3       |      | U | U |   |   |  |

Perform the following steps: Setting up the VLAN

- □ Open the Switching > VLAN > Configuration dialog.
- Click the button.
   The dialog displays the *Create* window.
- □ In the VLAN ID field, specify the value 2.
- Click the *Ok* button.
- For the VLAN, specify the name VLAN2:
   Double-click in the Name column and specify the name.
   For VLAN 1, in the Name column, change the value Default to VLAN1.
- □ Repeat the previous steps to create a VLAN 3 with the name VLAN3.

| enable C                             | Change to the Privileged EXEC mode.     |
|--------------------------------------|-----------------------------------------|
| vlan database C                      | Change to the VLAN configuration mode.  |
| vlan add 2 C                         | Creates a new VLAN with the VLAN ID 2.  |
| name 2 VLAN2                         | Assign the name 2 to the VLAN VLAN2.    |
| vlan add 3 C                         | Creates a new VLAN with the VLAN ID 3.  |
| name 3 VLAN3                         | Assign the name 3 to the VLAN VLAN3.    |
| name 1 VLAN1 A                       | ssign the name 1 to the VLAN VLAN1.     |
| exit C                               | Change to the Privileged EXEC mode.     |
| show vlan brief                      | Display the current VLAN configuration. |
| Max. VLAN ID                         | 4042                                    |
| Max. supported VLANs                 | 128                                     |
| Number of currently configured VLANs | 3                                       |
| vlan unaware mode                    | disabled                                |
| VLAN ID VLAN Name VLAN               | I Type VLAN Creation Time               |
|                                      |                                         |
| 1 VLAN1 defa                         | ult 0 days, 00:00:05                    |
| 2 VLAN2 stat                         | cic 0 days, 02:44:29                    |
| 3 VLAN3 stat                         | ic 0 days, 02:52:26                     |

□ Setting up the ports

| □ Open the <i>Switching</i> > <i>VLAN</i> > <i>Port</i> dialog.                                                                                                                            |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| To assign the port to a VLAN, specify the desired value in the corresponding column.<br>Possible values:                                                                                   |
| <ul> <li>T = The port is a member of the VLAN. The port transmits tagged data packets.</li> <li>U = The port is a member of the VLAN. The port transmits untagged data packets.</li> </ul> |
| F = The port is not a member of the VLAN.<br>Changes using the GVRP function are disabled.                                                                                                 |
| - = The port is not a member of this VLAN.<br>Changes using the GVRP function are allowed.                                                                                                 |
| Because end devices usually interpret untagged data packets, you specify the value ${\mathbb U}$ .                                                                                         |
| $\Box$ Save the changes temporarily. To do this, click the $\checkmark$ button.                                                                                                            |
| □ Open the <i>Switching</i> > <i>VLAN</i> > <i>Port</i> dialog.                                                                                                                            |
| <ul> <li>In the Port-VLAN ID column, specify the VLAN ID of the related VLAN:</li> <li>2 or 3</li> </ul>                                                                                   |

□ Because end devices usually interpret untagged data packets, in the *Acceptable packet types* column, you specify the value admitAll for end device ports.

 $\hfill\square$  Save the changes temporarily. To do this, click the  $\checkmark$  button.

The value in the Ingress filtering column has no affect on how this example functions.

| enable                       | Change to the Privileged EXEC mode.                                                                |
|------------------------------|----------------------------------------------------------------------------------------------------|
| configure                    | Change to the Configuration mode.                                                                  |
| interface 1/1                | Change to the interface configuration mode of interface $1/1$ .                                    |
| vlan participation include 2 | The port $1/1$ becomes a member of the VLAN $2$ and transmits the data packets without a VLAN tag. |
| vlan pvid 2                  | Assign the port VLAN ID 1/1 to port 2.                                                             |
| exit                         | Change to the Configuration mode.                                                                  |
| interface 1/2                | Change to the interface configuration mode of interface $1/2$ .                                    |
| vlan participation include 3 | The port $1/2$ becomes a member of the VLAN 3 and transmits the data packets without a VLAN tag.   |
| vlan pvid 3                  | Assign the port VLAN ID 1/2 to port 3.                                                             |
| exit                         | Change to the Configuration mode.                                                                  |
| interface 1/3                | Change to the interface configuration mode of interface $1/3$ .                                    |
| vlan participation include 3 | The port $1/3$ becomes a member of the VLAN $3$ and transmits the data packets without a VLAN tag. |
| vlan pvid 3                  | Assign the port VLAN ID 1/3 to port 3.                                                             |
| exit                         | Change to the Configuration mode.                                                                  |
| interface 1/4                | Change to the interface configuration mode of interface $1/4$ .                                    |
| vlan participation include 2 | The port $1/4$ becomes a member of the VLAN 2 and transmits the data packets without a VLAN tag.   |
| vlan pvid 2                  | Assign the port VLAN ID 1/4 to port 2.                                                             |
| exit                         | Change to the Configuration mode.                                                                  |
| exit                         | Change to the Privileged EXEC mode.                                                                |
| show vlan id 3               | Displays details for VLAN 3.                                                                       |
| VLAN ID : 3                  |                                                                                                    |
| VLAN Name : VLAN3            |                                                                                                    |
| VLAN Type : Static           |                                                                                                    |
| Interface Current Configured | Tagging<br>                                                                                        |
| 1/1 - Autodetect             | Tagged                                                                                             |
| 1/2 Include Include          | Untagged                                                                                           |
| 1/3 Include Include          | Untagged                                                                                           |
| 1/4 - Autodetect             |                                                                                                    |
| 1/5 - Autodetect             | Tagged                                                                                             |

## 12.1.2 Example 2

The second example displays a more complex configuration with 3 VLANs (1 to 3). Along with the Switch from example 1, you use a 2nd Switch (on the right in the example).

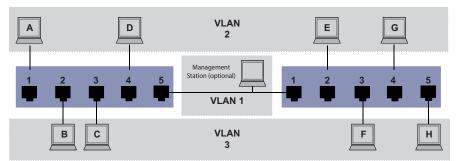



Figure 27: Example of a more complex VLAN configuration

The terminal devices of the individual VLANs (A to H) are spread over 2 transmission devices (Switches). Such VLANs are therefore known as distributed VLANs. If the VLAN is configured correctly, then an optional network management station is also shown, which enables access to every network component.

**Note:** In this case, VLAN 1 has no significance for the end device communication, but it is required for the administration of the transmission devices via what is known as the Management VLAN.

As in the previous example, uniquely assign the ports with their connected terminal devices to a VLAN. With the direct connection between the 2 transmission devices (uplink), the ports transport packets for both VLANs. To differentiate these uplinks you use "VLAN tagging", which handles the data packets accordingly. Thus, you maintain the assignment to the respective VLANs.

Perform the following steps:

- Add Uplink Port 5 to the ingress and egress tables from example 1.
- □ Create new ingress and egress tables for the right switch, as described in the first example.

The egress table specifies on which ports the device sends the packets from this VLAN.

- ▶ T = Tagged (with a tag field, marked)
- U = Untagged (without a tag field, unmarked)

In this example, tagged packets are used in the communication between the transmission devices (Uplink), as packets for different VLANs are differentiated at these ports.

| Terminal | Port | Port VLAN identifier (PVID) |
|----------|------|-----------------------------|
| A        | 1    | 2                           |
| В        | 2    | 3                           |
| С        | 3    | 3                           |
| D        | 4    | 2                           |
| Uplink   | 5    | 1                           |

| Terminal | Port | Port VLAN identifier (PVID) |
|----------|------|-----------------------------|
| Uplink   | 1    | 1                           |
| E        | 2    | 2                           |
| F        | 3    | 3                           |
| G        | 4    | 2                           |
| Н        | 5    | 3                           |

Table 28: Ingress table for device on right

Table 29: Egress table for device on left

| VLAN ID | Port |   |   |   |   |  |
|---------|------|---|---|---|---|--|
|         | 1    | 2 | 3 | 4 | 5 |  |
| 1       |      |   |   |   | U |  |
| 2       | U    |   |   | U | Т |  |
| 3       |      | U | U |   | Т |  |

Table 30: Egress table for device on right

| VLAN ID | Port |   |   |   |   |  |
|---------|------|---|---|---|---|--|
|         | 1    | 2 | 3 | 4 | 5 |  |
| 1       | U    |   |   |   |   |  |
| 2       | Т    | U |   | U |   |  |
| 3       | Т    |   | U |   | U |  |

The communication relationships here are as follows: end devices on ports 1 and 4 of the left device and end devices on ports 2 and 4 of the right device are members of VLAN 2 and can thus communicate with each other. The behavior is the same for the end devices on ports 2 and 3 of the left device and the end devices on ports 3 and 5 of the right device. These belong to VLAN 3.

The end devices "see" their respective part of the network. Participants outside this VLAN cannot be reached. The device also sends Broadcast, Multicast, and Unicast packets with unknown (unlearned) destination addresses only inside a VLAN.

Here, the devices use VLAN tagging (IEEE 801.1Q) within the VLAN with the ID 1 (Uplink). The letter T in the egress table of the ports indicates VLAN tagging.

The configuration of the example is the same for the device on the right. Proceed in the same way, using the ingress and egress tables created above to adapt the previously configured left device to the new environment.

Perform the following steps: Setting up the VLAN

□ Open the Switching > VLAN > Configuration dialog.

- Click the R button.
  - The dialog displays the Create window.
- $\Box$  In the VLAN ID field, specify the VLAN ID, for example 2.

 Click the Ok button.
 For the VLAN, specify the name VLAN2: Double-click in the Name column and specify the name. For VLAN 1, in the Name column, change the value Default to VLAN1.
 Repeat the previous steps to create a VLAN 3 with the name VLAN3.
 enable
 Change to the Privileged EXEC mode

| ellabie                              | Change to the Phylieged EXEC mode.      |
|--------------------------------------|-----------------------------------------|
| vlan database                        | Change to the VLAN configuration mode.  |
| vlan add 2                           | Creates a new VLAN with the VLAN ID 2.  |
| name 2 VLAN2                         | Assign the name 2 to the VLAN VLAN2.    |
| vlan add 3                           | Creates a new VLAN with the VLAN ID 3.  |
| name 3 VLAN3                         | Assign the name 3 to the VLAN VLAN3.    |
| name 1 VLAN1                         | Assign the name 1 to the VLAN VLAN1.    |
| exit                                 | Change to the Privileged EXEC mode.     |
| show vlan brief                      | Display the current VLAN configuration. |
| Max. VLAN ID                         |                                         |
| Max. supported VLANs                 | 128                                     |
| Number of currently configured VLANs | 3                                       |
| vlan unaware mode                    | disabled                                |
| VLAN ID VLAN Name V                  | LAN Type VLAN Creation Time             |
|                                      |                                         |
| 1 VLAN1 d                            | efault 0 days, 00:00:05                 |
| 2 VLAN2 s                            | tatic 0 days, 02:44:29                  |
| 3 VLAN3 s                            | tatic 0 days, 02:52:26                  |
|                                      |                                         |

### Setting up the ports

- □ Open the *Switching* > *VLAN* > *Port* dialog.
- To assign the port to a VLAN, specify the desired value in the corresponding column. Possible values:
  - T = The port is a member of the VLAN. The port transmits tagged data packets.
  - ▶ U = The port is a member of the VLAN. The port transmits untagged data packets.
  - F = The port is not a member of the VLAN.

Changes using the GVRP function are disabled.

- = The port is not a member of this VLAN.

Changes using the GVRP function are disabled.

Because end devicees usually interpret untagged data packets, you specify the value U. You specify the T setting on the uplink port on which the VLANs communicate with each other.

- □ Save the changes temporarily. To do this, click the ✓ button.
- □ Open the *Switching* > *VLAN* > *Port* dialog.
- □ In the *Port-VLAN ID* column, specify the VLAN ID of the related VLAN: 1, 2 or 3
- □ Because end devices usually interpret untagged data packets, in the *Acceptable packet types* column, you specify the value admitAll for end device ports.

□ For the uplink port, in the Acceptable packet types column, specify the value admitOnlyVlanTagged.

- Mark the checkbox in the *Ingress filtering* column for the uplink ports to evaluate VLAN tags on this port.
- $\Box$  Save the changes temporarily. To do this, click the  $\checkmark$  button.

```
Change to the Privileged EXEC mode.
enable
configure
                                         Change to the Configuration mode.
interface 1/1
                                         Change to the interface configuration mode of
                                         interface 1/1.
vlan participation include 1
                                         The port 1/1 becomes a member of the VLAN 1
                                         and transmits the data packets without a VLAN tag.
vlan participation include 2
                                         The port 1/1 becomes a member of the VLAN 2
                                         and transmits the data packets without a VLAN tag.
vlan tagging 2 enable
                                         The port 1/1 becomes a member of the VLAN 2
                                         and transmits the data packets with a VLAN tag.
vlan participation include 3
                                         The port 1/1 becomes a member of the VLAN 3
                                         and transmits the data packets without a VLAN tag.
vlan tagging 3 enable
                                         The port 1/1 becomes a member of the VLAN 3
                                         and transmits the data packets with a VLAN tag.
vlan pvid 1
                                         Assigning the Port VLAN ID 1 to port 1/1.
vlan ingressfilter
                                         Activate ingress filtering on port 1/1.
vlan acceptframe vlanonly
                                         Port 1/1 only forwards packets with a VLAN tag.
                                         Change to the Configuration mode.
exit
interface 1/2
                                         Change to the interface configuration mode of
                                         interface 1/2.
vlan participation include 2
                                         The port 1/2 becomes a member of the VLAN 2
                                         and transmits the data packets without a VLAN tag.
vlan pvid 2
                                         Assigning the Port VLAN ID _2 to port 1/2.
exit
                                         Change to the Configuration mode.
interface 1/3
                                         Change to the interface configuration mode of
                                         interface 1/3.
vlan participation include 3
                                         The port 1/3 becomes a member of the VLAN 3
                                         and transmits the data packets without a VLAN tag.
                                         Assigning the Port VLAN ID 3 to port 1/3.
vlan pvid 3
exit
                                         Change to the Configuration mode.
interface 1/4
                                         Change to the interface configuration mode of
                                         interface 1/4.
                                         The port 1/4 becomes a member of the VLAN 2
vlan participation include 2
                                         and transmits the data packets without a VLAN tag.
vlan pvid 2
                                         Assigning the Port VLAN ID 2 to port 1/4.
exit
                                         Change to the Configuration mode.
interface 1/5
                                         Change to the interface configuration mode of
                                         interface 1/5.
vlan participation include 3
                                         The port 1/5 becomes a member of the VLAN 3
                                         and transmits the data packets without a VLAN tag.
vlan pvid 3
                                         Assigning the Port VLAN ID 3 to port 1/5.
exit
                                         Change to the Configuration mode.
```

```
exit
                             Change to the Privileged EXEC mode.
show vlan id 3
                             Displays details for VLAN 3.
VLAN Name.....VLAN3
VLAN Type.....Static
VLAN Creation Time.....0 days, 00:07:47 (System Uptime)
VLAN Routing.....disabled
Interface Current Configured Tagging
_____
        ----- ------ ------
       Include Include Tagged
1/1
1/2
        - Autodetect Untagged
1/3
       Include Include Untagged
1/4
       - Autodetect Untagged
1/5
       Include Include
                        Untagged
```

## 12.2 Guest VLAN / Unauthenticated VLAN

A Guest VLAN lets a device provide port-based Network Access Control (IEEE 802.1x) to non-802.1x capable supplicants. This feature provides a mechanism to allow guests to access external networks only. If you connect non-802.1x capable supplicants to an active unauthorized 802.1x port, then the supplicants send no responds to 802.1x requests. Since the supplicants send no responses, the port remains in the unauthorized state. The supplicants have no access to external networks.

The Guest VLAN supplicant is a per-port basis configuration. When you configure a port as a Guest VLAN and connect non-802.1x capable supplicants to this port, the device assigns the supplicants to the Guest VLAN. Adding supplicants to a Guest VLAN causes the port to change to the authorized state allowing the supplicants to access to external networks.

An Unauthenticated VLAN lets the device provide service to 802.1x capable supplicants which authenticate incorrectly. This function lets the unauthorized supplicants have access to limited services. If you configure an Unauthenticated VLAN on a port with 802.1x port authentication and the global operation enabled, then the device places the port in an Unauthenticated VLAN. When a 802.1x capable supplicant incorrectly authenticates on the port, the device adds the supplicant to the Unauthenticated VLAN. If you also configure a Guest VLAN on the port, then non-802.1x capable supplicants use the Guest VLAN.

If the port has an Unauthenticated VLAN assigned, then the reauthentication timer counts down. When the time specified in the *Reauthentication period* [s] column expires and supplicants are present on the port, the Unauthenticated VLAN reauthenticates. When no supplicants are present, the device places the port in the configured Guest VLAN.

The following example explains how to create a Guest VLAN. Create an Unauthorized VLAN in the same manner.

- □ Open the Switching > VLAN > Configuration dialog.
- Click the button.
   The dialog displays the *Create* window.
- $\Box$  In the VLAN ID field, specify the value 10.
- Click the Ok button.
- For the VLAN, specify the name Guest:
   Double-click in the Name column and specify the name.
- Click the button.
   The dialog displays the *Create* window.
- $\Box$  In the VLAN ID field, specify the value 20.
- Click the Ok button.
- □ For the VLAN, specify the name Not authorized: Double-click in the *Name* column and specify the name.
- □ Open the Network Security > 802.1X Port Authentication > Global dialog.
- □ To enable the function, select the *On* radio button in the *Operation* frame.
- □ Save the changes temporarily. To do this, click the ✓ button.

□ Open the Network Security > 802.1X Port Authentication > Port Configuration dialog.

- $\Box$  Specify the following settings for port 1/4:
  - The value auto in the Port control column
  - The value 10 in the Guest VLAN ID column
  - The value 20 in the Unauthenticated VLAN ID column
- $\Box$  Save the changes temporarily. To do this, click the  $\checkmark$  button.

| enable                           | Change to the Privileged EXEC mode.                             |
|----------------------------------|-----------------------------------------------------------------|
| vlan database                    | Change to the VLAN configuration mode.                          |
| vlan add 10                      | Creates VLAN 10.                                                |
| vlan add 20                      | Creates VLAN 20.                                                |
| name 10 Guest                    | Renames VLAN 10 to Guest.                                       |
| name 20 Unauth                   | Renames VLAN 20 to Unauth.                                      |
| exit                             | Change to the Privileged EXEC mode.                             |
| configure                        | Change to the Configuration mode.                               |
| dotlx system-auth-control enable | Enable the 802.1X Port Authentication function globally.        |
| dot1x port-control auto          | Enables port control on port 1/4.                               |
| interface 1/4                    | Change to the interface configuration mode of interface $1/4$ . |
| dot1x guest-vlan 10              | Assign the guest vlan to port 1/4.                              |
| dot1x unauthenticated-vlan 20    | Assign the unauthorized vlan to port 1/4.                       |
| exit                             | Change to the Configuration mode.                               |

## 12.3 RADIUS VLAN assignment

The RADIUS VLAN assignment feature makes it possible for a RADIUS VLAN ID attribute to be associated with an authenticated client. When a client authenticates successfully, and the RADIUS server sends a VLAN attribute, the device associates the client with the RADIUS assigned VLAN. As a result, the device adds the physical port as an member to the appropriate VLAN and sets the port VLAN ID (PVID) with the given value. The port transmits the data packets without a VLAN tag.

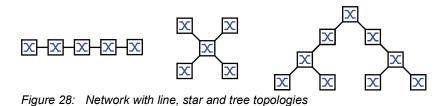
## 12.4 Creating a Voice VLAN

Use the Voice VLAN feature to separate voice and data traffic on a port, by VLAN and/or priority. A primary benefit of using Voice VLAN is to safeguard the sound quality of an IP phone in cases where there is high data traffic on the port.

The device uses the source MAC address to identify and prioritize the voice data flow. Using a MAC address to identify devices helps prevent a rogue client from connecting to the same port causing the voice traffic to deteriorate.

Another benefit of the Voice VLAN feature is that a VoIP phone obtains a VLAN ID or priority information using LLDP-MED. As a result, the VoIP phone sends voice data as tagged, priority tagged or untagged. This depends on the Voice VLAN Interface configuration.

The following Voice VLAN interface modes are possible. The first 3 methods segregate and prioritize voice and data traffic. Traffic segregation results in an increased voice traffic quality during high traffic periods.


- Configuring the port to using the vlan mode lets the device tag the voice data coming from a VoIP phone with the user-defined voice VLAN ID. The device assigns regular data to the default port VLAN ID.
- Configuring the port to use the dotlp-priority mode lets the device tag the data coming from a VoIP phone with VLAN 0 and the user-defined priority. The device assigns the default priority of the port to regular data.
- Configure both the voice VLAN ID and the priority using the vlan/dot1p-priority mode. In this mode the VoIP phone sends voice data with the user-defined voice VLAN ID and priority information. The device assigns the default PVID and priority of the port to regular data.
- ▶ When configured as untagged, the phone sends untagged packets.
- When configured as none, the phone uses its own configuration to send voice traffic.

## **13 Redundancy**

## **13.1** Network Topology vs. Redundancy Protocols

When using Ethernet, a significant prerequisite is that data packets follow a single (unique) path from the sender to the receiver. The following network topologies support this prerequisite:

- Line topology
- Star topology
- Tree topology



To maintain communication in case a connection fails, install additional physical connections between the network nodes. Redundancy protocols help ensure that the additional connections remain switched off while the original connection is still working. When the connection fails, the redundancy protocol generates a new path from the sender to the receiver via the alternative connection.

To introduce redundancy onto Layer 2 of a network, you first define which network topology you require. Depending on the network topology selected, you then choose from the redundancy protocols that can be used with this network topology.

### 13.1.1 Network topologies

### **Meshed topology**

For networks with star or tree topologies, redundancy procedures are only possible in connection with physical loop creation. The result is a meshed topology.

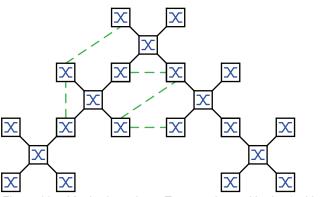



Figure 29: Meshed topology: Tree topology with physical loops

For operating in this network topology, the device provides you with the following redundancy protocols:

Rapid Spanning Tree (RSTP)

### **Ring topology**

In networks with a line topology, you can use redundancy procedures by connecting the ends of the line. This creates a ring topology.



Figure 30: Ring topology: Line topology with connected ends

For operating in this network topology, the device provides you with the following redundancy protocols:

Media Redundancy Protocol (MRP)

Rapid Spanning Tree (RSTP)

### 13.1.2 Redundancy Protocols

For operating in different network topologies, the device provides you with the following redundancy protocols:

| Redundancy protocol   | Network<br>topology | Comments                                                                                                                                                                                                                                                                                               |  |
|-----------------------|---------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| MRP                   | Ring                | The switching time can be selected and is practically<br>independent of the number of devices.<br>An MRP-Ring consists of up to 50 devices that support the MR<br>protocol according to IEC 62439.<br>When you only use Schneider Electric devices, up to<br>100 devices are possible in the MRP-Ring. |  |
| Subring               | Ring                | The <i>Sub Ring</i> function enables you to easily couple network segments to existing redundancy rings.                                                                                                                                                                                               |  |
| Ring/Network coupling | Ring                |                                                                                                                                                                                                                                                                                                        |  |
| RSTP                  | Random<br>structure | <ul> <li>The switching time depends on the network topology and the number of devices.</li> <li>▶ typ. &lt; 1 s with RSTP</li> <li>▶ typ. &lt; 30 s with STP</li> </ul>                                                                                                                                |  |
| Link<br>Aggregation   | Random<br>structure | A Link Aggregation Group is the combining of 2 or more, full-<br>duplex point-to-point links operating at the same rate, on a single<br>switch to increase bandwidth.                                                                                                                                  |  |

Table 31: Overview of redundancy protocols

| Redundancy protocol    | Network<br>topology | Comments                                                                                                                                                                         |
|------------------------|---------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Link Backup            | Random<br>structure | When the device detects an error on the primary link, the device transfers traffic to the backup link. You typically use Link Backup in service-provider or enterprise networks. |
| HIPER Ring<br>Client   | Ring                | Extend an existing HIPER ring or replace a device already participating as a client in a HIPER ring.                                                                             |
| HIPER Ring<br>over LAG | Ring                | Link devices together over a Link Aggregation Group (LAG). The ring clients and Ring Manager behave in the same manner as a ring without a LAG instance.                         |

| Table 31: | Overview of redundancy protocols (cont |
|-----------|----------------------------------------|
|-----------|----------------------------------------|

If the flow control and the redundancy function are active at the same time, it is possible that the redundancy function operates differently than intended.

# A WARNING

### UNINTENDED EQUIPMENT OPERATION

If you are using a redundancy function, then you deactivate the flow control on the participating device ports.

Failure to follow these instructions can result in death, serious injury, or equipment damage.

### 13.1.3 Combinations of Redundancies

Table 32: Overview of redundancy protocols

|              | MRP                    | RSTP | Link Aggreg.           | Link Backup | Subring | HIPER Ring |
|--------------|------------------------|------|------------------------|-------------|---------|------------|
| MRP          |                        |      |                        |             |         |            |
| RSTP         | <b>▲</b> <sup>1)</sup> |      |                        |             |         |            |
| Link Aggreg. | <b>▲</b> <sup>2)</sup> | ▲2)  |                        |             |         |            |
| Link Backup  |                        |      |                        |             |         |            |
| Subring      |                        |      | ▲ <sup>2)</sup>        |             |         |            |
| HIPER Ring   |                        | ▲ 1) | <b>▲</b> <sup>2)</sup> | <b>A</b>    |         |            |

▲ Combination applicable

- A redundant coupling between these network topologies will possibly lead to loops. To redundantly couple these topologies, refer to chapter "FuseNet" on page 215.
- 2) Combination applicable on the same port

## **13.2 Media Redundancy Protocol (MRP)**

Since May 2008, the Media Redundancy Protocol (MRP) has been a standardized solution for ring redundancy in the industrial environment.

MRP is compatible with redundant ring coupling, supports VLANs, and is distinguished by very short reconfiguration times.

An MRP-Ring consists of up to 50 devices that support the MRP protocol according to IEC 62439. When you only use Schneider Electric devices, up to 100 devices are possible in the MRP-Ring.

When you use the fixed MRP redundant port (Fixed Backup) and the primary ring link fails, the Ring Manager forwards data to the secondary ring link. When the primary link is restored, the secondary link continues to be in use.

### 13.2.1 Network Structure

The concept of ring redundancy lets you construct high-availability ring-shaped network structures.

With the help of the RM (**R**ing**M**anager) function, the two ends of a backbone in a line structure can be closed to a redundant ring. The Ring Manager keeps the redundant line open as long as the line structure is intact. When a segment becomes inoperable, the Ring Manager immediately closes the redundant line, and line structure is intact again.



Figure 31: Line structure

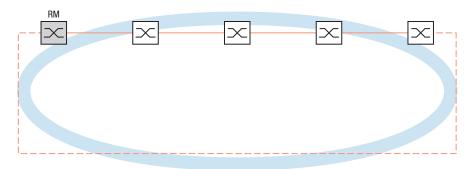



Figure 32: Redundant ring structure RM = Ring Manager — main line - - - redundant line

#### **13.2.2 Reconfiguration time**

When a line section fails, the Ring Manager changes the MRP-Ring back into a line structure. You define the maximum time for the reconfiguration of the line in the Ring Manager.

Possible values for the maximum delay time:

- 500ms
- 30ms

**Note:** If every device in the ring supports the shorter delay time, then you can configure the reconfiguration time with a value less than *500ms*.

Otherwise the devices that only support longer delay times might not be reachable due to overloading. Loops can occur as a result.

#### 13.2.3 Advanced mode

For times even shorter than the specified reconfiguration times, the device provides the advanced mode. When the ring participants inform the Ring Manager of interruptions in the ring via link-down notifications, the advanced mode speeds up the link failure recognition.

Schneider Electric devices support link-down notifications. Therefore, you generally activate the advanced mode in the Ring Manager.

When you are using devices that do not support link-down notifications, the Ring Manager reconfigures the line in the selected maximum reconfiguration time.

#### 13.2.4 **Prerequisites for MRP**

Before setting up an MRP-Ring, verify that the following conditions are fulfilled:

- ▶ All ring participants support MRP.
- The ring participants are connected to each other via the ring ports. Apart from the device's neighbors, no other ring participants are connected to the respective device.
- All ring participants support the configuration time specified in the Ring Manager.
- There is only one Ring Manager in the ring.

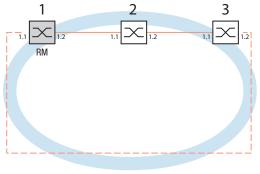
If you are using VLANs, then configure every ring port with the following settings:

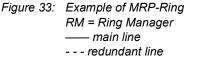
□ Deactivate ingress filtering - see the *Switching* > *VLAN* > *Port* dialog.

- □ Define the port VLAN ID (PVID) see the Switching > VLAN > Port dialog.
  - PVID = 1 in cases where the device transmits the MRP data packets untagged (VLAN ID = 0 in *Switching > L2-Redundancy > MRP* dialog)
     By setting the PVID = 1, the device automatically assigns the received untagged packets to

By setting the PVID = 1, the device automatically assigns the received untagged packets to VLAN 1.

PVID = any in cases where the device transmits the MRP data packets in a VLAN (VLAN ID ≥ 1 in the Switching > L2-Redundancy > MRP dialog)


Define egress rules - see *Switching > VLAN > Configuration* dialog.


- U (untagged) for the ring ports of VLAN 1 in cases where the device transmits the MRP data packets untagged (VLAN ID = 0 in the *Switching* > *L2-Redundancy* > *MRP* dialog, the MRP ring is not assigned to a VLAN).

### 13.2.5 Example Configuration

A backbone network contains 3 devices in a line structure. To increase the availability of the network, you convert the line structure to a redundant ring structure. Devices from different manufacturers are used. All devices support MRP. On every device you define ports 1.1 and 1.2 as ring ports.

When the primary ring link fails, the Ring Manager sends data on the secondary ring link. When the primary link is restored, the secondary link reverts back to the backup mode.





The following example configuration describes the configuration of the Ring Manager device (1). You configure the 2 other devices (2 to 3) in the same way, but without activating the *Ring manager* function. This example does not use a VLAN. You specify the value *30ms* as the ring recovery time. Every device supports the advanced mode of the Ring Manager.

- □ Set up the network to meet your demands.
- □ Configure every port so that the transmission speed and the duplex settings of the lines correspond to the following table:

| Port type | Bit rate   | Port on | Automatic configuration | Manual configuration |
|-----------|------------|---------|-------------------------|----------------------|
| ТХ        | 100 Mbit/s | marked  | unmarked                | 100 Mbit/s FDX       |
| ТХ        | 1 Gbit/s   | marked  | marked                  | _                    |
| Optical   | 100 Mbit/s | marked  | unmarked                | 100 Mbit/s FDX       |
| Optical   | 1 Gbit/s   | marked  | marked                  | -                    |
| Optical   | 2.5 Gbit/s | marked  | _                       | 2.5 Gbit/s FDX       |

Table 33: Port settings for ring ports

**Note:** You configure optical ports without support for autonegotiation (automatic configuration) with 100 Mbit/s full duplex (FDX) or 1000 Mbit/s full duplex (FDX).

**Note:** You configure optical ports without support for autonegotiation (automatic configuration) with 100 Mbit/s full duplex (FDX).

**Note:** Configure every device of the MRP-Ring individually. Before you connect the redundant line, verify that you have completed the configuration of every device of the MRP-Ring. You thus help avoid loops during the configuration phase.

# A WARNING

#### UNINTENDED EQUIPMENT OPERATION

To help avoid loops during the configuration phase, configure each device of the *MRP* configuration individually. Before you connect the redundant lines, complete the configuration of the other devices of the ring configuration.

Failure to follow these instructions can result in death, serious injury, or equipment damage.

You deactivate the flow control on the participating ports.

If the flow control and the redundancy function are active at the same time, it is possible that the redundancy function operates differently than intended. (Default setting: flow control deactivated globally and activated on every port.)

Disable the *Spanning Tree* function in every device in the network. To do this, perform the following steps:

□ Open the Switching > L2-Redundancy > Spanning Tree > Global dialog.

Disable the function.
 In the state on delivery, Spanning Tree is enabled in the device.

| enable                     | Change to the Privileged EXEC mode.   |
|----------------------------|---------------------------------------|
| configure                  | Change to the Configuration mode.     |
| no spanning-tree operation | Switches Spanning Tree off.           |
| show spanning-tree global  | Displays the parameters for checking. |

Enable MRP on every device in the network. To do this, perform the following steps:

□ Open the Switching > L2-Redundancy > MRP dialog.

 $\Box$  Specify the desired ring ports.

In the Command Line Interface you first define an additional parameter, the MRP domain ID. Configure every ring participant with the same MRP domain ID. The MRP domain ID is a sequence of 16 number blocks (8-bit values).

| mrp domain add default-domain      | Creates a new MRP domain with the ID default-domain. |
|------------------------------------|------------------------------------------------------|
| mrp domain modify port primary 1/1 | Specifies port 1/1 as ring port 1.                   |
| mrp domain modify port secondary 1 | <sup>2</sup> Specifies port 1/2 as ring port 2.      |

Enable the *Fixed backup* port. To do this, perform the following steps:

|                                                                                                                                                                                                    | <ul> <li>Enable the Ring Manager.</li> <li>For the other devices in the ring, leav</li> </ul>                                           | e the setting as <i>Off.</i>                                                                                                               |  |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------|--|
|                                                                                                                                                                                                    | □ To allow the device to continue sending data on the secondary port after the ring is restored, mark the <i>Fixed backup</i> checkbox. |                                                                                                                                            |  |
|                                                                                                                                                                                                    | <b>Note:</b> When the device reverts back to th be exceeded.                                                                            | e primary port, the maximum ring recovery time can                                                                                         |  |
|                                                                                                                                                                                                    | When you unmark the <i>Fixed backup</i> che blocks the secondary port and unbloc                                                        | neckbox, and the ring is restored, the Ring Manager<br>sks the primary port.                                                               |  |
|                                                                                                                                                                                                    | mrp domain modify port secondary 1/2<br>fixed-backup enable                                                                             | Activates the <i>Fixed backup</i> function on the secondary port. The secondary port continues forwarding data after the ring is restored. |  |
|                                                                                                                                                                                                    |                                                                                                                                         |                                                                                                                                            |  |
|                                                                                                                                                                                                    | <ul> <li>Enable the Ring Manager.</li> <li>For the other devices in the ring, leav</li> </ul>                                           | e the setting as <i>Off</i> .                                                                                                              |  |
|                                                                                                                                                                                                    | mrp domain modify mode manager                                                                                                          | Specifies that the device operates as the <i>Ring manager</i> . For the other devices in the ring, leave the default setting.              |  |
|                                                                                                                                                                                                    |                                                                                                                                         |                                                                                                                                            |  |
|                                                                                                                                                                                                    | Select the checkbox in the Advanced r                                                                                                   | node field.                                                                                                                                |  |
|                                                                                                                                                                                                    | mrp domain modify advanced-mode<br>enabled                                                                                              | Activates the advanced mode.                                                                                                               |  |
|                                                                                                                                                                                                    |                                                                                                                                         |                                                                                                                                            |  |
|                                                                                                                                                                                                    | □ In the <i>Ring recovery</i> field, select the va                                                                                      | alue 30ms.                                                                                                                                 |  |
|                                                                                                                                                                                                    | mrp domain modify recovery-delay<br>200ms                                                                                               | Specifies the value <i>30ms</i> as the max. delay time for the reconfiguration of the ring.                                                |  |
| <b>Note:</b> If selecting the value <i>30ms</i> for the ring recovery does not provide the ring stability necessary to meet the requirements of your network, then select the value <i>500ms</i> . |                                                                                                                                         |                                                                                                                                            |  |

Switch the operation of the MRP-Ring on.
Save the changes temporarily. To do this, click the velocity button.

mrp domain modify operation enable Activates the MRP-Ring.

When every ring participant is configured, close the line to the ring. To do this, you connect the devices at the ends of the line via their ring ports.

Check the messages from the device. To do this, perform the following steps:

show mrp

Displays the parameters for checking.

The Operation field displays the operating state of the ring port.

Possible values:

- forwarding
  - The port is enabled, connection exists.
- blocked
  - The port is blocked, connection exists.
- disabled
  - The port is disabled.
- not-connected
  - No connection exists.

The *Information* field displays messages for the redundancy configuration and the possible causes of errors.

When the device is operating as a ring client or a Ring Manager, the following messages are possible:

- Redundancy available
  - The redundancy is set up. When a component of the ring is down, the redundant line takes over its function.
- Configuration error: Error on ringport link. Error in the cabling of the ring ports.

When the device is operating as a Ring Manager, the following messages are possible:

- Configuration error: Packets from another ring manager received. Another device exists in the ring that is operating as the Ring Manager. Activate the Ring manager function on exactly one device in the ring.
- Configuration error: Ring link is connected to wrong port. A line in the ring is connected with a different port instead of with a ring port. The device only receives test data packets on one ring port.

When applicable, integrate the MRP ring into a VLAN. To do this, perform the following steps:

- In the VLAN ID field, define the MRP VLAN ID. The MRP VLAN ID determines in which of the configured VLANs the device transmits the MRP packets.
   To set the MRP VLAN ID, first configure the VLANs and the corresponding egress rules in the *Switching* > VLAN > Configuration dialog.
   If the MRP-Ring is not assigned to a VLAN (like in this example), then leave the VLAN ID as 0.
  - In the *Switching* > *VLAN* > *Configuration* dialog, specify the VLAN membership as U (untagged) for the ring ports in VLAN 1.
  - If the MRP-Ring is assigned to a VLAN, then enter a VLAN ID >0.
     In the *Switching* > *VLAN* > *Configuration* dialog, specify the VLAN membership as T (tagged) for the ring ports in the selected VLAN.

mrp domain modify vlan <0..4042> Assigns the VLAN ID.

### 13.2.6 MRP over LAG

Schneider Electric devices allow you to combine Link Aggregation Groups (LAG) to increase bandwidth with the Media Redundancy Protocol (MRP) providing redundancy. The function lets you increase the bandwidth on individual segments or on the entire network.

The *Link Aggregation* function helps you overcome bandwidth limitations of individual ports. LAG lets you combine 2 or more links in parallel, creating one logical link between 2 devices. The parallel links increase the bandwidth for the data stream between the 2 devices.

An MRP ring consists of up to 50 devices that support the MRP protocol according to IEC 62439. When you use only Schneider Electric devices, the protocol lets you configure MRP rings with up to 100 devices.

You use MRP over LAG in the following cases:

- to increase bandwidth only on specific segments of an MRP ring
- to increase bandwidth on the entire MRP ring

#### **Network Structure**

When configuring an MRP ring with LAGs, the Ring Manager (RM) monitors both ends of the backbone for continuity. The RM blocks data on the secondary (redundant) port as long as the backbone is intact. When the RM detects an interruption of the data stream on the ring, it begins forwarding data on the secondary port, which restores backbone continuity.

You use LAG instances in MRP rings to increase bandwidth only, in this case MRP provides the redundancy.

In order for the RM to detect an interruption on the ring, MRP requires a device to block every port in the LAG instance in cases where a port in the instance is down.

#### LAG on a single segment of an MRP ring

The device lets you configure a LAG instance on specific segments of an MRP ring.

You use the LAG Single Switch method for devices in the MRP ring. The Single Switch method provides you an inexpensive way to grow your network by using only one device on each side of a segment to provide the physical ports. You group the ports of the device into a LAG instance to provide increased bandwidth on specific segments where needed.

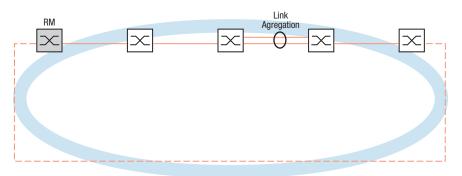



Figure 34: Link Aggregation over a single link of an MRP ring.

#### LAG on an entire MRP ring

Besides being able to configure a LAG instance on specific segments of an MRP ring, Schneider Electric devices also allow you to configure LAG instances on every segment, which increases bandwidth on the entire MRP ring.

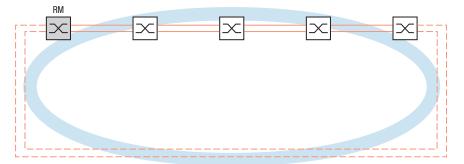



Figure 35: Link Aggregation over the entire MRP ring.

#### **Detecting interruptions on the ring**

When configuring the LAG instance, specify the *Active ports (min.)* value to equal the total number of ports used in the LAG instance. When a device detects an interruption on a port in the LAG instance, it blocks data on the other ports of the instance. With every port of an instance blocked, the RM senses that the ring is open and begins forwarding data on the secondary port. This way the RM is able to restore continuity to the devices on the other side of the interrupted segment.

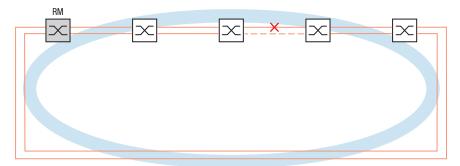



Figure 36: Interruption of a link in an MRP ring.

#### **Example Configuration**

In the following example, switch A and switch B link two departments together. The departments produce traffic too high for the individual port bandwidth to handle. You configure a LAG instance for the single segment of the MRP ring, increasing the bandwidth of the segment.

The prerequisite for the example configuration is that you begin with an operational MRP ring.

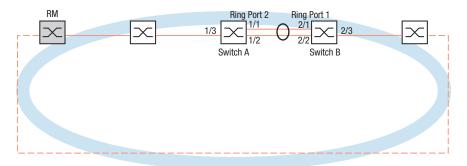



Figure 37: MRP over LAG Configuration Example

Configure switch A first. To do this, perform the following steps. Then configure switch B using the same steps, substituting the appropriate port and ring port numbers.

- □ Open the Switching > L2-Redundancy > Link Aggregation dialog.
- Click the the button.
   The dialog displays the *Create* window.
- □ In the *Trunk port* drop-down list, select the instance number of the link aggregation group.
- $\Box$  In the *Port* drop-down list, select port 1/1.
- Click the Ok button.
- $\Box$  Repeat the preceding steps and select the port 1/2.
- Click the *Ok* button.
- □ In the *Active ports (min.)* column enter 2, which in this case is the total number of ports in the instance. When combining MRP and LAG you specify the total number of ports as the *Active ports (min.)*. When the device detects an interruption on a port, it blocks the other ports in the instance causing the ring to open. The Ring Manager senses that the ring is open, then begins forwarding data on its secondary ring port which restores the connectivity to the other devices in the network.
- □ Save the changes temporarily. To do this, click the ✓ button.
- □ Open the Switching > L2-Redundancy > MRP dialog.
- □ In the *Ring port* 2 frame, select port lag/1 in the *Port* drop-down list.
- $\Box$  Save the changes temporarily. To do this, click the  $\checkmark$  button.

| enable                                       | Change to the Privileged EXEC mode.          |
|----------------------------------------------|----------------------------------------------|
| configure                                    | Change to the Configuration mode.            |
| link-aggregation add lag/1                   | Creates a Link Aggregation Group lag/1.      |
| link-aggregation modify lag/1 addport<br>1/1 | Adds port 1/1 to the Link Aggregation Group. |

| link-aggregation modify lag/1 addport<br>1/2 | Adds port 1/2 to the Link Aggregation Group.                                                        |
|----------------------------------------------|-----------------------------------------------------------------------------------------------------|
| mrp domain modify port secondary lag/1       | Specifies port lag/1 as ring port 2.                                                                |
| copy config running-config nvm               | Save the current settings in the non-volatile memory (nvm) in the "selected" configuration profile. |

# 13.3 HIPER Ring Client

# A WARNING

#### UNINTENDED EQUIPMENT OPERATION

To help avoid loops during the configuration phase, configure each device of the *HIPER Ring* configuration individually. Before you connect the redundant lines, complete the configuration of the other devices of the ring configuration.

Failure to follow these instructions can result in death, serious injury, or equipment damage.

The concept of HIPER Ring Redundancy enables the construction of high-availability, ring-shaped network structures. The *HIPER Ring* Client function lets the network administrator extend an existing HIPER Ring or replace a client device already participating in a HIPER Ring.

When the device senses that the link on a ring port goes down, the device sends a LinkDown packet to the Ring Manager (RM) and flushes the FDB table. Once the RM receives the LinkDown packet, it immediately forwards the data stream over both the primary and secondary ring ports. Thus, the RM is able to maintain the integrity of the HIPER Ring.

The device only supports Fast Ethernet and Gigabit Ethernet ports as ring ports. Furthermore, you can include the ring ports in a LAG instance.

In the default state, the HIPER Ring client is inactive, and the primary and secondary ports are set to no  $\ensuremath{\texttt{Port}}$  .

**Note:** Deactivate the Spanning Tree Protocol (STP) for the ring ports in the *Switching* > *L2*-*Redundancy* > *Spanning Tree* > *Port* dialog, because STP and HIPER Ring have different reaction times.

| Port type | Bit rate   | Port on | Automatic configuration | Manual configuration |
|-----------|------------|---------|-------------------------|----------------------|
| ТХ        | 100 Mbit/s | marked  | unmarked                | 100 Mbit/s FDX       |
| ТХ        | 1 Gbit/s   | marked  | marked                  | -                    |
| Optical   | 100 Mbit/s | marked  | unmarked                | 100 Mbit/s FDX       |
| Optical   | 1 Gbit/s   | marked  | marked                  | -                    |
| Optical   | 2.5 Gbit/s | marked  | _                       | 2.5 Gbit/s FDX       |

#### Table 34: Port settings for ring ports

#### 13.3.1 VLANS on the HIPER Ring

The device lets you forward VLAN data over the HIPER Ring. Thus the device provides redundancy for your VLAN data. The ring device forwards management data around the ring for example, on VLAN 1. In order for the data to reach the management station, the ring devices forward the untagged management data on the ring ports. Also, specify the ring ports as members in VLAN 1.

When you have other VLANs traversing your ring devices, the ring devices forward the other VLAN data as tagged.

Specify the VLAN settings. To do this, perform the following steps:

- □ Open the Switching > VLAN > Configuration dialog.
- Forward untagged VLAN management data on the ring ports.
   In the VLAN 1 row, select the U item in the drop-down list in the columns related to the ring port.
- Block management packets from being forwarded to the non-ring ports.
   In the VLAN 1 row, select the item in the drop-down list in the columns **not** related to the ring port.
- □ Allow a ring device to forward VLAN data to and from ports with VLAN membership. In the VLAN row, select the 
  <sup>T</sup> item in the drop-down list in the columns related to the ring port.
- □ Open the *Switching* > *VLAN* > *Port* dialog.
- Assign VLAN 1 membership to the ring ports.
   Enter the value 1 in the *Port-VLAN ID* column of the ring port rows.
- Assign VLAN membership to the non-ring ports.
   Enter the appropriate VLAN ID in the *Port-VLAN ID* column of the non-ring port rows.

#### 13.3.2 HIPER Ring over LAG

The *HIPER Ring* function lets you link the devices together over a Link Aggregation Group (LAG). The ring clients and Ring Manager behave in the same manner as a ring without a LAG instance.

If a LAG link goes down, then the other link in the instance also goes down making a break in the ring. After detecting a break in the ring, the affected ports send a Link Down packet to the Ring Manager. The Ring Manager unblocks the secondary port, sending data in both directions around the ring, and replies with a Delete packet. Upon receiving a Delete packet the ring participates flush their FDB.

# **13.4** Spanning Tree

**Note:** The Spanning Tree Protocol is a protocol for MAC bridges. For this reason, the following description uses the term bridge for the device.

Local networks are getting bigger and bigger. This applies to both the geographical expansion and the number of network participants. Therefore, it is advantageous to use multiple bridges, for example:

- to reduce the network load in sub-areas,
- to set up redundant connections and
- ▶ to overcome distance limitations.

However, using multiple bridges with multiple redundant connections between the subnetworks can lead to loops and thus interruption of communication across the network. In order to help avoid this, you can use Spanning Tree. Spanning Tree enables loop-free switching through the systematic deactivation of redundant connections. Redundancy enables the systematic reactivation of individual connections as needed.

RSTP is a further development of the Spanning Tree Protocol (STP) and is compatible with it. When a connection or a bridge becomes inoperable, the STP requires a maximum of 30 seconds to reconfigure. This is no longer acceptable in time-sensitive applications. RSTP achieves average reconfiguration times of less than a second. When you use RSTP in a ring topology with 10 to 20 devices, you can even achieve reconfiguration times in the order of milliseconds.

**Note:** RSTP reduces a layer 2 network topology with redundant paths into a tree structure (Spanning Tree) that does not contain any more redundant paths. One of the devices takes over the role of the root bridge here. The maximum number of devices permitted in an active branch (from the root bridge to the tip of the branch) is specified by the variable *Max age* for the current root bridge. The preset value for *Max age* is 20, which can be increased up to 40.

If the device working as the root is inoperable and another device takes over its function, then the *Max age* setting of the new root bridge determines the maximum number of devices allowed in a branch.

**Note:** The RSTP standard requires that every device within a network operates with the (Rapid) Spanning Tree Algorithm. When STP and RSTP are used at the same time, the advantages of faster reconfiguration with RSTP are lost in the network segments that are operated in combination.

A device that only supports RSTP works together with MSTP devices by not assigning an MST region to itself, but rather the CST (Common Spanning Tree).

### 13.4.1 Basics

Because RSTP is a further development of the STP, every of the following descriptions of the STP also apply to RSTP.

#### The tasks of the STP

The Spanning Tree Algorithm reduces network topologies built with bridges and containing ring structures due to redundant links to a tree structure. In doing so, STP opens ring structures according to preset rules by deactivating redundant paths. When a path is interrupted because a network component becomes inoperable, STP reactivates the previously deactivated path again. This lets redundant links increase the availability of communication.

STP determines a bridge that represents the STP tree structure's base. This bridge is called root bridge.

Features of the STP algorithm:

- automatic reconfiguration of the tree structure in the case of a bridge becoming inoperable or the interruption of a data path
- ▶ the tree structure is stabilized up to the maximum network size,
- stabilization of the topology within a short time period
- ▶ topology can be specified and reproduced by the administrator
- transparency for the end devices
- low network load relative to the available transmission capacity due to the tree structure created

#### **Bridge parameters**

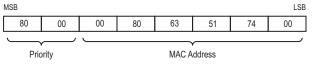
In the context of Spanning Tree, each bridge and its connections are uniquely described by the following parameters:

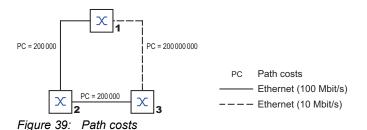
- Bridge Identifier
- Root Path Cost for the bridge ports,
- Port Identifier

#### **Bridge Identifier**

The Bridge Identifier consists of 8 bytes. The 2 highest-value bytes are the priority. When configuring the network, the Management Administrator can change the default setting for the priority number which is 32768 (8000H). The 6 lowest-value bytes of the bridge identifier are the bridge's MAC address. The MAC address lets each bridge have unique bridge identifiers.

The bridge with the smallest number for the bridge identifier has the highest priority.





Figure 38: Bridge Identifier, Example (values in hexadecimal notation)

#### **Root Path Cost**

Each path that connects 2 bridges is assigned a cost for the transmission (path cost). The device determines this value based on the transmission speed (see table 35). The device assigns a higher path cost to paths with lower transmission speeds.

Alternatively, the Administrator can set the path cost. Like the device, the Administrator assigns a higher path cost to paths with lower transmission speeds. However, since the Administrator can choose this value freely, he has a tool with which he can give a certain path an advantage among redundant paths.

The root path cost is the sum of the individual costs of those paths that a data packet has to traverse from a connected bridge's port to the root bridge.



| Data rate   | Recommended value       | Recommended range | Possible range |
|-------------|-------------------------|-------------------|----------------|
| ≤100 kbit/s | 200 000000 <sup>1</sup> | 2000000-200000000 | 1-200000000    |
| 1 Mbit/s    | 20000000 <sup>a</sup>   | 2000000-200000000 | 1-200000000    |
| 10 Mbit/s   | 2000000 <sup>a</sup>    | 200000-20000000   | 1-200000000    |
| 100 Mbit/s  | 200000 <sup>a</sup>     | 20000-2000000     | 1-200000000    |
| 1 Gbit/s    | 20000                   | 2000-200000       | 1-200000000    |
| 10 Gbit/s   | 2000                    | 200-20000         | 1-200 000000   |
| 100 Gbit/s  | 200                     | 20-2000           | 1-200000000    |
| 1 TBit/s    | 20                      | 2-200             | 1-200000000    |
| 10 TBit/s   | 2                       | 1-20              | 1-200000000    |

Table 35: Recommended path costs for RSTP based on the data rate.

 Bridges that conform with IEEE 802.1D 1998 and only support 16-bit values for the path costs should use the value 65,535 (FFFFH) for path costs in cases where they are used in conjunction with bridges that support 32-bit values for the path costs.

#### **Port Identifier**

The port identifier consists of 2 bytes. One part, the lower-value byte, contains the physical port number. This provides a unique identifier for the port of this bridge. The second, higher-value part is the port priority, which is specified by the Administrator (default value: 128). It also applies here that the port with the smallest number for the port identifier has the highest priority.



Priority Port number Figure 40: Port Identifier

#### **Max Age and Diameter**

The "Max Age" and "Diameter" values largely determine the maximum expansion of a Spanning Tree network.

#### Diameter

The number of connections between the devices in the network that are furthest removed from each other is known as the network diameter.

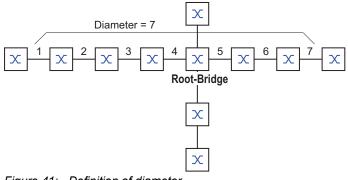



Figure 41: Definition of diameter

The network diameter that can be achieved in the network is MaxAge-1.

In the state on delivery, MaxAge = 20 and the maximum diameter that can be achieved = 19. When you set the maximum value of 40 for MaxAge, the maximum diameter that can be achieved = 39.

#### MaxAge

Every STP-BPDU contains a "MessageAge" counter. When a bridge is passed through, the counter increases by 1.

Before forwarding a STP-BPDU, the bridge compares the "MessageAge" counter with the "MaxAge" value specified in the device:

- □ When MessageAge < MaxAge, the bridge forwards the STP-BPDU to the next bridge.
- □ When MessageAge = MaxAge, the bridge discards the STP-BPDU.

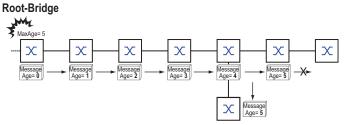



Figure 42: Transmission of an STP-BPDU depending on MaxAge

### **13.4.2** Rules for Creating the Tree Structure

#### **Bridge information**

To determine the tree structure, the bridges need more detailed information about the other bridges located in the network.

To obtain this information, each bridge sends a BPDU (Bridge Protocol Data Unit) to the other bridges.

The contents of a BPDU include:

- Bridge identifier
- Root path costs
- Port identifier

(see IEEE 802.1D)

#### Setting up the tree structure

The bridge with the smallest number for the bridge identifier is called the root bridge. It is (or will become) the root of the tree structure.

The structure of the tree depends on the root path costs. Spanning Tree selects the structure so that the path costs between each individual bridge and the root bridge become as small as possible.

- When there are multiple paths with the same root path costs, the bridge further away from the root decides which port it blocks. For this purpose, it uses the bridge identifiers of the bridge closer to the root. The bridge blocks the port that leads to the bridge with the numerically higher ID (a numerically higher ID is the logically worse one). When 2 bridges have the same priority, the bridge with the numerically larger MAC address has the numerically higher ID, which is logically the worse one.
- When multiple paths with the same root path costs lead from one bridge to the same bridge, the bridge further away from the root uses the port identifier of the other bridge as the last criterion (see figure 40). In the process, the bridge blocks the port that leads to the port with the numerically higher ID (a numerically higher ID is the logically worse one). When 2 ports have the same priority, the port with the higher port number has the numerically higher ID, which is logically the worse one.

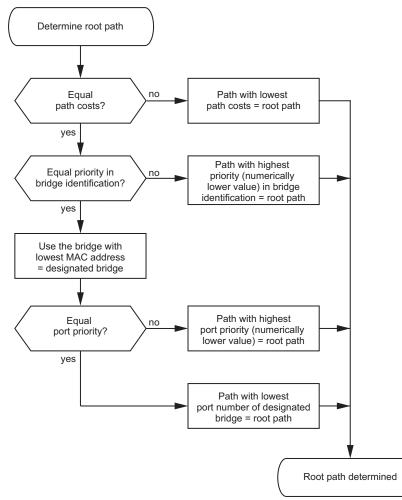



Figure 43: Flow diagram for specifying the root path

## 13.4.3 Examples

#### Example of determining the root path

You can use the network plan (see figure 44) to follow the flow chart (see figure 43) for determining the root path. The administrator has specified a priority in the bridge identification for each bridge. The bridge with the smallest numerical value for the bridge identification takes on the role of the root bridge, in this case, bridge 1. In the example every sub-path has the same path costs. The protocol blocks the path between bridge 2 and bridge 3 as a connection from bridge 3 via bridge 2 to the root bridge would result in higher path costs.

The path from bridge 6 to the root bridge is interesting:

- The path via bridge 5 and bridge 3 creates the same root path costs as the path via bridge 4 and bridge 2.
- STP selects the path using the bridge that has the lowest MAC address in the bridge identification (bridge 4 in the illustration).
- There are also 2 paths between bridge 6 and bridge 4. The port identifier is decisive here (Port 1 < Port 3).</p>

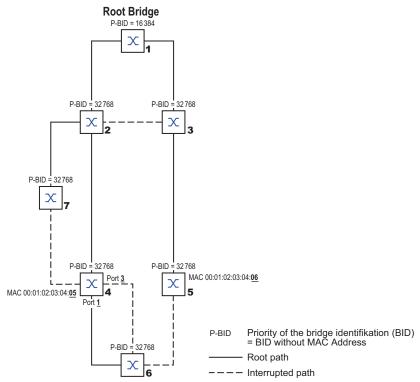



Figure 44: Example of determining the root path

**Note:** When the current root bridge goes down, the MAC address in the bridge identifier alone determines which bridge becomes the new root bridge, because the Administrator does not change the default values for the priorities of the bridges in the bridge identifier, apart from the value for the root bridge.

#### Example of manipulating the root path

You can use the network plan (see figure 45) to follow the flow chart (see figure 43) for determining the root path. The Administrator has performed the following:

- Left the default value of 32768 (8000H) for every bridge apart from bridge 1 and bridge 5, and
- assigned to bridge 1 the value 16384 (4000H), thus making it the root bridge.
- To bridge 5 he assigned the value 28672 (7000H).

The protocol blocks the path between bridge 2 and bridge 3 as a connection from bridge 3 via bridge 2 to the root bridge would mean higher path costs.

The path from bridge 6 to the root bridge is interesting:

The bridges select the path via bridge 5 because the value 28672 for the priority in the bridge identifier is smaller than value 32768.

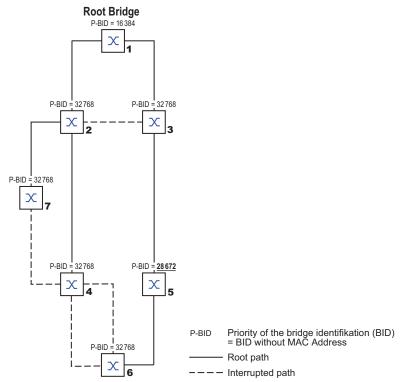
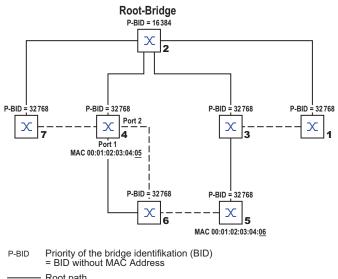




Figure 45: Example of manipulating the root path

#### Example of manipulating the tree structure

The Management Administrator soon discovers that this configuration with bridge 1 as the root bridge is invalid. On the paths from bridge 1 to bridge 2 and bridge 1 to bridge 3, the control packets which the root bridge sends to every other bridge add up.

When the Management Administrator configures bridge 2 as the root bridge, the burden of the control packets on the subnetworks is distributed much more evenly. The result is the configuration shown here (see figure 46). The path costs for most of the bridges to the root bridge have decreased.



Root path

Figure 46: Example of manipulating the tree structure

# **13.5 The Rapid Spanning Tree Protocol**

The RSTP uses the same algorithm for determining the tree structure as STP. When a link or bridge becomes inoperable, RSTP merely changes parameters, and adds new parameters and mechanisms that speed up the reconfiguration.

The ports play a significant role in this context.

#### 13.5.1 Port roles

RSTP assigns each bridge port one of the following roles (see figure 47):

Root Port:

This is the port at which a bridge receives data packets with the lowest path costs from the root bridge.

When there are multiple ports with equally low path costs, the bridge ID of the bridge that leads to the root (designated bridge) decides which of its ports is given the role of the root port by the bridge further away from the root.

When a bridge has multiple ports with equally low path costs to the same bridge, the bridge uses the port ID of the bridge leading to the root (designated bridge) to decide which port it selects locally as the root port (see figure 43).

The root bridge itself does not have a root port.

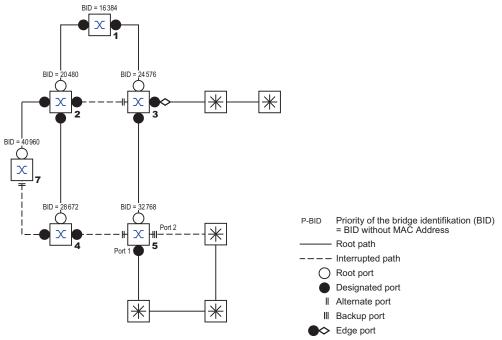
Designated port:

The bridge in a network segment that has the lowest root path costs is the designated bridge. When more than one bridge has the same root path costs, the bridge with the smallest value bridge identifier becomes the designated bridge. The designated port on this bridge is the port that connects a network segment leading away from the root bridge. When a bridge is connected to a network segment with more than one port (via a hub, for example), the bridge gives the role of the designated port to the port with the better port ID.

Edge port

Every network segment with no additional RSTP bridges is connected with exactly one designated port. In this case, this designated port is also an edge port. The distinction of an edge port is the fact that it does not receive any RST BPDUs (Rapid Spanning Tree Bridge Protocol Data Units).

Alternate port


When the connection to the root bridge is lost, this blocked port takes over the task of the root port. The alternate port provides a backup for the connection to the root bridge.

#### Backup port

This is a blocked port that serves as a backup in case the connection to the designated port of this network segment (without any RSTP bridges) is lost

Disabled port

This is a port that does not participate in the Spanning Tree Operation, that means, the port is switched off or does not have any connection.



*Figure 47: Port role assignment* 

#### 13.5.2 Port states

Depending on the tree structure and the state of the selected connection paths, the RSTP assigns the ports their states.

| STP port state | Administrative bridge port state | MAC<br>Operational | RSTP Port state         | Active topology (port role)  |
|----------------|----------------------------------|--------------------|-------------------------|------------------------------|
| DISABLED       | Disabled                         | FALSE              | Discarding <sup>1</sup> | Excluded (disabled)          |
| DISABLED       | Enabled                          | FALSE              | Discarding <sup>a</sup> | Excluded (disabled)          |
| BLOCKING       | Enabled                          | TRUE               | Discarding <sup>2</sup> | Excluded (alternate, backup) |
| LISTENING      | Enabled                          | TRUE               | Discarding <sup>b</sup> | Included (root, designated)  |
| LEARNING       | Enabled                          | TRUE               | Learning                | Included (root, designated)  |
| FORWARDING     | Enabled                          | TRUE               | Forwarding              | Included (root, designated)  |

Table 36: Relationship between port state values for STP and RSTP

1. The dot1d-MIB displays "Disabled".

2. The dot1d-MIB displays "Blocked".

Meaning of the RSTP port states:

- Disabled: Port does not belong to the active topology
- Discarding: No address learning in FDB, no data traffic except for STP-BPDUs

- Learning: Address learning active (FDB), no data traffic apart from STP-BPDUs
- Forwarding: Address learning active (FDB), sending and receiving of every packet type (not only STP-BPDUs)

#### 13.5.3 Spanning Tree Priority Vector

To assign roles to the ports, the RSTP bridges exchange configuration information with each other. This information is known as the Spanning Tree Priority Vector. It is part of the RSTP BPDUs and contains the following information:

- Bridge identification of the root bridge
- Root path costs of the sending bridge
- Bridge identification of the sending bridge
- > Port identifiers of the ports through which the message was sent
- Port identifiers of the ports through which the message was received

Based on this information, the bridges participating in RSTP are able to determine port roles themselves and define the port states of their own ports.

#### 13.5.4 Fast reconfiguration

Why can RSTP react faster than STP to an interruption of the root path?

Introduction of edge-ports:

During a reconfiguration, RSTP sets an edge port into the transmission mode after 3 seconds (default setting). To ascertain that no bridge sending BPDUs is connected, RSTP waits for the "Hello Time" to elapse.

When you verify that an end device is and remains connected to this port, there are no waiting times at this port in the case of a reconfiguration.

- Introduction of alternate ports: As the port roles are already distributed in normal operation, a bridge can immediately switch from the root port to the alternate port after the connection to the root bridge is lost.
- Communication with neighboring bridges (point-to-point connections): Decentralized, direct communication between neighboring bridges enables reaction without wait periods to status changes in the spanning tree topology.
- Address table: With STP, the age of the entries in the FDB determines the updating of communication. RSTP immediately deletes the entries in those ports affected by a reconfiguration.
- Reaction to events: Without having to adhere to any time specifications, RSTP immediately reacts to events such as connection interruptions, connection reinstatements, etc.

**Note:** Data packages could be duplicated and/or arrive at the recipient in the wrong order during the reconfiguration phase of the RSTP topology. You may also use the Spanning Tree Protocol or select another redundancy procedure described in this manual.

## 13.5.5 Configuring the device

# A WARNING

#### UNINTENDED EQUIPMENT OPERATION

To help avoid loops during the configuration phase, configure each device of the *Spanning Tree* configuration individually. Before you connect the redundant lines, complete the configuration of the other devices of the *Spanning Tree* configuration.

Failure to follow these instructions can result in death, serious injury, or equipment damage.

RSTP configures the network topology completely autonomously. The device with the lowest bridge priority automatically becomes the root bridge. However, to define a specific network structure regardless, you specify a device as the root bridge. In general, a device in the backbone takes on this role.

Perform the following steps:

- Set up the network to meet your requirements, initially without redundant lines.
- You deactivate the flow control on the participating ports. If the flow control and the redundancy function are active at the same time, it is possible that the redundancy function operates differently than intended. (Default setting: flow control deactivated globally and activated on every port.)
- □ Disable MRP on every device.
- Enable Spanning Tree on every device in the network.
   In the state on delivery, Spanning Tree is switched on in the device.

Perform the following steps:

- □ Open the Switching > L2-Redundancy > Spanning Tree > Global dialog.
- Enable the function.
- $\Box$  Save the changes temporarily. To do this, click the  $\checkmark$  button.

| enable                    | Change to the Privileged EXEC mode.   |
|---------------------------|---------------------------------------|
| configure                 | Change to the Configuration mode.     |
| spanning-tree operation   | Enables Spanning Tree.                |
| show spanning-tree global | Displays the parameters for checking. |

Now connect the redundant lines.

Define the settings for the device that takes over the role of the root bridge.

Perform the following steps:

- In the *Priority* field you enter a numerically lower value. The bridge with the numerically lowest bridge ID has the highest priority and becomes the root bridge of the network.
- $\Box$  Save the changes temporarily. To do this, click the  $\checkmark$  button.

| <pre>spanning-tree mst priority 0 &lt;061440&gt;</pre>                                                                                                                                                                                | Specifies the bridge priority of the device.                                                           |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------|
|                                                                                                                                                                                                                                       | <b>Note:</b> Specify the bridge priority in the range 061440 in steps of 4096.                         |
|                                                                                                                                                                                                                                       |                                                                                                        |
| <ul> <li>After saving, the dialog shows the followi</li> <li>The <i>Bridge is root</i> checkbox is marked.</li> <li>The <i>Root port</i> field shows the value 0.</li> <li>The <i>Root path cost</i> field shows the value</li> </ul> | 0.                                                                                                     |
| show spanning-tree global                                                                                                                                                                                                             | Displays the parameters for checking.                                                                  |
|                                                                                                                                                                                                                                       |                                                                                                        |
| <ul> <li>If applicable, then change the values</li> <li>The root bridge transmits the chan</li> </ul>                                                                                                                                 | in the <i>Forward delay</i> [s] and <i>Max age</i> fields.<br>ged values to the other devices.         |
| □ Save the changes temporarily. To do                                                                                                                                                                                                 | this, click the 🗸 button.                                                                              |
| <pre>spanning-tree forward-time &lt;430&gt;</pre>                                                                                                                                                                                     | Specifies the delay time for the status change in seconds.                                             |
| spanning-tree max-age <640>                                                                                                                                                                                                           | Specifies the maximum permissible branch length, for example the number of devices to the root bridge. |
| show spanning-tree global                                                                                                                                                                                                             | Displays the parameters for checking.                                                                  |

Note: The parameters Forward delay [s] and Max age have the following relationship:

Forward delay  $[s] \ge (Max age/2) + 1$ 

If you enter values in the fields that contradict this relationship, then the device replaces these values with the last valid values or with the default value.

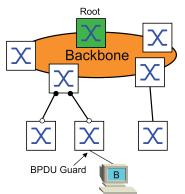
Note: When possible, do not change the value in the "Hello Time" field.

Check the following values in the other devices:

- Bridge ID (bridge priority and MAC address) of the corresponding device and the root bridge.
- Number of the device port that leads to the root bridge.
- Path cost from the root port of the device to the root bridge.

Perform the following steps:

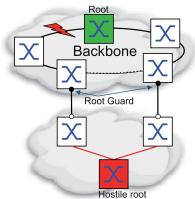
show spanning-tree global


Displays the parameters for checking.

### 13.5.6 Guards

The device lets you activate various protection functions (guards) in the device ports.

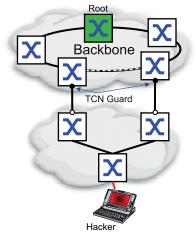
The following protection functions help protect your network from incorrect configurations, loops and attacks with STP-BPDUs:


- BPDU Guard for manually specified edge ports (end device ports)
  - You activate this protection function globally in the device.



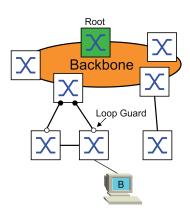
Terminal device ports do not normally receive any STP-BPDUs. If an attacker still attempts to feed in STP-BPDUs on this port, then the device deactivates the device port.

Root Guard – for designated ports


You activate this protection function separately for every device port.



When a designated port receives an STP-BPDU with better path information to the root bridge, the device discards the STP-BPDU and sets the transmission state of the port to discarding instead of root.


When there are no STP-BPDUs with better path information to the root bridge, after  $2 \times Hello$  *time* [s] the device resets the state of the port to a value according to the port role.

TCN Guard – for ports that receive STP-BPDUs with a Topology Change flag You activate this protection function separately for every device port.



If the protection function is activated, then the device ignores Topology Change flags in received STP-BPDUs. This does not change the content of the address table (FDB) of the device port. However, additional information in the BPDU that changes the topology is processed by the device.

Loop Guard – for root, alternate and backup ports You activate this protection function separately for every device port.



If the port does not receive any more STP-BPDUs, then this protection function helps prevent the transmission status of a port from unintentionally being changed to forwarding. If this situation occurs, then the device designates the loop status of the port as inconsistent, but does not forward any data packets.

## **Activating the BPDU Guard**

Perform the following steps:



□ Open the Switching > L2-Redundancy > Spanning Tree > Global dialog. □ Mark the *BPDU guard* checkbox.

□ Save the changes temporarily. To do this, click the ✓ button.

enable

Change to the Privileged EXEC mode.

configure spanning-tree bpdu-guard show spanning-tree global Change to the Configuration mode. Activates the BPDU Guard. Displays the parameters for checking.

○ Open the Switching > L2-Redundancy > Spanning Tree > Port dialog.
 ○ Switch to the CIST tab.
 ○ For end device ports, mark the checkbox in the Admin edge portcolumn.
 ○ Save the changes temporarily. To do this, click the ✓ button.
 ○ interface <x/y>
 ○ Spanning-tree edge-port
 ○ Change to the interface configuration mode of interface <x/y>.
 ○ Designates the port as a terminal device port (edge port).

show spanning-tree port  $\mathbf{x}/\mathbf{y}$  exit

Displays the parameters for checking.

Leaves the interface mode.

When an edge port receives an STP-BPDU, the device behaves as follows:

- The device deactivates this port.
  - In the Basic Settings > Port dialog, Configuration tab, the checkbox for this port in the Port on column is unmarked.
- The device designates the port.

You can determine if a port has disabled itself because of a received a BPDU. To do this, perform the following steps:

In the *Switching* > *L2-Redundancy* > *Spanning Tree* > *Port* dialog, *Guards* tab, the checkbox in the *BPDU guard effect* column is marked.

show spanning-tree port x/y

Displays the parameters of the port for checking. The value of the *BPDU guard effect* parameter is enabled.

Reset the status of the device port to the value forwarding. To do this, perform the following steps: When the port still receives BPDUs:

- Remove the manual definition as an edge port (end device port).
  - or
- Deactivate the BPDU Guard.
- □ Activate the device port again.

## Activating Root Guard / TCN Guard / Loop Guard

Perform the following steps:

| <ul> <li>Open the Switching &gt; L2-Redundancy &gt; Spanning Tree &gt; Port dialog.</li> <li>Switch to the Guards tab.</li> <li>For designated ports, select the checkbox in the Root guard column.</li> <li>For ports that receive STP-BPDUs with a Topology Change flag, select the checkbox in the TCN guard column.</li> <li>For root, alternate or backup ports, mark the checkbox in the Loop guard column.</li> </ul> |                                                                                            |  |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------|--|
| <b>Note:</b> The <i>Root guard</i> and <i>Loop guard</i> functions are mutually exclusive. If you try to activate the <i>Root guard</i> function while the <i>Loop guard</i> function is active, then the device deactivates the <i>Loop guard</i> function.                                                                                                                                                                 |                                                                                            |  |
| $\Box$ Save the changes temporarily. To do this, click the $\checkmark$ button.                                                                                                                                                                                                                                                                                                                                              |                                                                                            |  |
| enable                                                                                                                                                                                                                                                                                                                                                                                                                       | Change to the Privileged EXEC mode.                                                        |  |
| configure                                                                                                                                                                                                                                                                                                                                                                                                                    | Change to the Configuration mode.                                                          |  |
| interface <x y=""></x>                                                                                                                                                                                                                                                                                                                                                                                                       | Change to the interface configuration mode of interface $\langle x/y \rangle$ .            |  |
| spanning-tree guard-root                                                                                                                                                                                                                                                                                                                                                                                                     | Switches the Root Guard on at the designated port.                                         |  |
| spanning-tree guard-tcn                                                                                                                                                                                                                                                                                                                                                                                                      | Switches the TCN Guard on at the port that receives STP-BPDUs with a Topology Change flag. |  |
| spanning-tree guard-loop                                                                                                                                                                                                                                                                                                                                                                                                     | Switches the Loop Guard on at a root, alternate or backup port.                            |  |
| exit                                                                                                                                                                                                                                                                                                                                                                                                                         | Leaves the interface mode.                                                                 |  |
| show spanning-tree port $x/y$                                                                                                                                                                                                                                                                                                                                                                                                | Displays the parameters of the port for checking.                                          |  |

# 13.6 Link Aggregation

The *Link Aggregation* function using the single switch method helps you overcome 2 limitations with Ethernet links, namely bandwidth, and redundancy.

The *Link Aggregation* function helps you overcome bandwidth limitations of individual ports. The *Link Aggregation* function lets you combine 2 or more links in parallel, creating 1 logical link between 2 devices. The parallel links increase the bandwidth for traffic between the 2 devices.

You typically use the *Link Aggregation* function on the network backbone. The function provides you an inexpensive way to incrementally increase bandwidth.

Furthermore, the *Link Aggregation* function provides for redundancy with a seamless failover. When a link goes down, with 2 or more links configured in parallel, the other links in the group continue to forward traffic.

The default settings for a new *Link Aggregation* instance are as follows:

- In the Active column, the checkbox is marked.
- ▶ In the Send trap (Link up/down) column, the checkbox is marked.
- ▶ In the *Static link aggregation* column, the checkbox is unmarked.
- ▶ In the Active ports (min.) column, the value is 1.

#### **13.6.1 Methods of Operation**

The device operates on the Single Switch method. The Single Switch method provides you an inexpensive way to grow your network. The single switch method states that you need one device on each side of a link to provide the physical ports. The device balances the traffic load across the group member ports.

The device also uses the Same Link Speed method in which the group member ports are fullduplex, point-to-point links having the same transmission rate. The first port that you add to the group is the master port and determines the bandwidth for the other member ports of the Link Aggregation Group.

The device lets you set up up to 2 Link Aggregation groups. The number of useable ports per Link Aggregation group depends on the device.

#### 13.6.2 Link Aggregation Example

# A WARNING

#### UNINTENDED EQUIPMENT OPERATION

To help avoid loops during the configuration phase, configure each device of the *Link Aggregation* configuration individually. Before you connect the redundant lines, complete the configuration of the other devices of the *Link Aggregation* configuration.

Failure to follow these instructions can result in death, serious injury, or equipment damage.

Connect multiple workstations using one aggregated link group between Switch 1 and 2. By aggregating multiple links, higher speeds are achievable without a hardware upgrade.

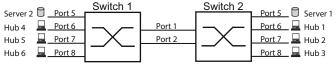



Figure 48: Link Aggregation Switch to Switch Network

Configure Switch 1 and 2 in the Graphical User Interface. To do this, perform the following steps:

- □ Open the Switching > L2-Redundancy > Link Aggregation dialog.
- Click the button.
   The dialog displays the *Create* window.
- □ In the *Trunk port* drop-down list, select the instance number of the link aggregation group.
- $\Box$  In the *Port* drop-down list, select port 1/1.
- Click the Ok button.
- $\Box$  Repeat the preceding steps and select the port 1/2.
- Click the Ok button.
- □ Save the changes temporarily. To do this, click the ✓ button.

| enable                                    | Change to the Privileged EXEC mode.          |  |
|-------------------------------------------|----------------------------------------------|--|
| configure                                 | Change to the Configuration mode.            |  |
| link-aggregation add lag/1                | Creates a Link Aggregation Group lag/1.      |  |
| link-aggregation modify lag/1 addport 1/1 | Adds port 1/1 to the Link Aggregation Group. |  |
| link-aggregation modify lag/1 addport 1/2 | Adds port 1/2 to the Link Aggregation Group. |  |

# 13.7 Link Backup

Link Backup provides a redundant link for traffic on Layer 2 devices. When the device detects an error on the primary link, the device transfers traffic to the backup link. You typically use Link Backup in service-provider or enterprise networks.

You set up the backup links in pairs, one as a primary and one as a backup. When providing redundancy for enterprise networks for example, the device lets you set up more than one pair. The maximum number of link backup pairs is: total number of physical ports / 2. Furthermore, when the state of a port participating in a link backup pair changes, the device sends an SNMP trap.

When configuring link backup pairs, remember the following rules:

- A link pair consists of any combination of physical ports. For example, one port is a 100 Mbit port and the other is a 1000 Mbit SFP port.
- A specific port is a member of one link backup pair at any given time.
- Verify that the ports of a link backup pair are members of the same VLAN with the same VLAN ID. When the primary port or backup port is a member of a VLAN, assign the second port of the pair to the same VLAN.

The default setting for this function is inactive without any link backup pairs.

Note: Verify that the Spanning Tree Protocol is disabled on the Link Backup ports.

### 13.7.1 Fail Back Description

Link Backup also lets you set up a Fail Back option. When you activate the fail back function and the primary link returns to normal operation, the device first blocks traffic on the backup port and then forwards traffic on the primary port. This process helps protect the device from causing loops in the network.

When the primary port returns to the link up and active state, the device supports 2 modes of operation:

- When you inactivate *Fail back*, the primary port remains in the blocking state until the backup link fails.
- When you activate Fail back, and after the Fail back delay [s] timer expires, the primary port returns to the forwarding state and the backup port changes to down.

In the cases listed above, the port forcing its link to forward traffic, first sends a "flush FDB" packet to the remote device. The flush packet helps the remote device quickly relearn the MAC addresses.

### 13.7.2 Example Configuration



#### UNINTENDED EQUIPMENT OPERATION

To help avoid loops during the configuration phase, configure each device of the *Link Backup* configuration individually. Before you connect the redundant lines, complete the configuration of the other devices of the *Link Backup* configuration.

Failure to follow these instructions can result in death, serious injury, or equipment damage.

In the example network below, you connect ports 2/3 and 2/4 on Switch A to the uplink Switches B and C. When you set up the ports as a Link Backup pair, one of the ports forwards traffic and the other port is in the blocking mode.

The primary, port 2/3 on Switch A, is the active port and is forwarding traffic to port 1 on Switch B. Port 2/4 on Switch A is the backup port and blocks traffic.

When Switch A disables port 2/3 because of a detected error, port 2/4 on Switch A starts forwarding traffic to port 2 on Switch C.

When port 2/3 returns to the active state, "no shutdown", with *Fail back* activated, and *Fail back delay* [s] set to 30 seconds. After the timer expires, port 2/4 first blocks the traffic and then port 2/3 starts forwarding the traffic.

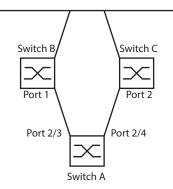



Figure 49: Link Backup example network

The following tables contain examples of parameters to configure Switch A.

Perform the following steps:

Open the Switching > L2-Redundancy > Link Backup dialog.
 Enter a new Link Backup pair in the table:

 Click the button.
 The dialog displays the Create window.
 In the Primary port drop-down list, select port 2/3.
 In the Backup port drop-down list, select port 2/4.
 Click the Ok button.

 In the Description textbox, enter Link\_Backup\_1 as the name for the backup pair.
 To activate the Fail back function for the link backup pair, mark the Fail back checkbox.

Set the fail back timer for the link backup pair, enter 30 s in *Fail back delay* [s].

□ To activate the link backup pair, mark the *Active* checkbox.

 $\Box$  To enable the function, select the *On* radio button in the *Operation* frame.

| enable                                              | Change to the Privileged EXEC mode.                                                                |  |
|-----------------------------------------------------|----------------------------------------------------------------------------------------------------|--|
| configure                                           | Change to the Configuration mode.                                                                  |  |
| interface 2/3                                       | Change to the interface configuration mode of interface 2/3.                                       |  |
| link-backup add 2/4                                 | Creates a Link Backup instance where port 2/3 is the primary port and port 2/4 is the backup port. |  |
| link-backup modify 2/4 description<br>Link_Backup_1 | Specifies the string Link_Backup_1 as the name of the backup pair.                                 |  |
| link-backup modify 2/4 failback-status<br>enable    | Enable the fail back timer.                                                                        |  |
| link-backup modify 2/4 failback-time 30             | Specify the fail back delay time as 30 s.                                                          |  |
| link-backup modify 2/4 status enable                | Enable the Link Backup instance.                                                                   |  |
| exit                                                | Change to the Configuration mode.                                                                  |  |
| link-backup operation                               | Enable the <i>Link Backup</i> function globally in the device.                                     |  |

# 13.8 FuseNet

The *FuseNet* protocols let you couple rings that are operating with one of the following redundancy protocols:

- . MRP
- HIPER ring
- RSTP

**Note:** The prerequisite for coupling a network to the main ring using the *Ring/Network Coupling* protocol is that the connected network contains only network devices that support the *Ring/Network Coupling* protocol.

Use the following table to select the *FuseNet* coupling protocol to be used in your network:

| Main Ring  | Connected Network      |                       |                         |
|------------|------------------------|-----------------------|-------------------------|
|            | MRP                    | HIPER ring            | RSTP                    |
| MRP        | Sub Ring <sup>1)</sup> | Ring/Network Coupling | Ring/Network Coupling   |
| HIPER ring | Sub Ring               | Ring/Network Coupling | - Ring/Network Coupling |
| RSTP       | -                      | -                     | -                       |

no suitable coupling protocol

1) with *MRP* configured on different VLANs

# 13.9 Subring

The *Sub Ring* function is an extension of the Media Redundancy Protocol (MRP). This function lets you couple a subring to a main ring using various network structures.

The Subring protocol provides redundancy for devices by coupling both ends of an otherwise flat network to a main ring.

Setting up subrings has the following advantages:

- Through the coupling process, you include the new network segment in the redundancy concept.
- Subrings allow easy integration of new areas into existing networks.
- Subrings allow you easy mapping of the organizational structure of an area in a network topology.
- ▶ In an MRP ring, the failover times of the subring in redundancy cases are typically < 100 ms.

### 13.9.1 Subring description

The subring concept lets you couple new network segments to suitable devices in an existing ring (main ring). The devices with which you couple the subring to the main ring are Subring Managers (SRM).

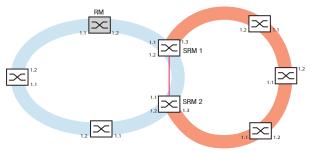
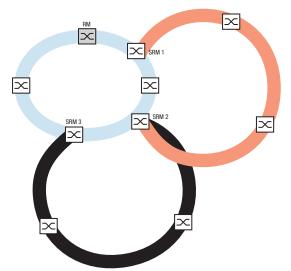
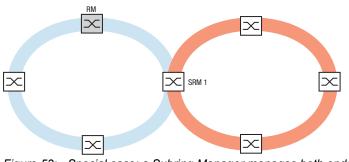



Figure 50: Example of a subring structure blue ring = Main ring orange ring = Subring red line = Redundant link of Subring SRM = Subring Manager RM = Ring Manager

The Subring Manager capable devices support up to 8 instances and thus manage up to 8 subrings at the same time.


The *Sub Ring* function lets you integrate devices that support MRP as participants. The devices with which you couple the subring to the main ring require the *Sub Ring* Manager function.

Each subring can consist of up to 200 participants, excluding the Subring Managers themselves and the devices between the Subring Managers in the main ring.


RM SRM 1 SRM 2 SRM 2 SRM 4 SRM 3 SRM 4 SRM 4

The following figures display examples of possible subring topologies:

Figure 51: Example of an overlapping subring structure



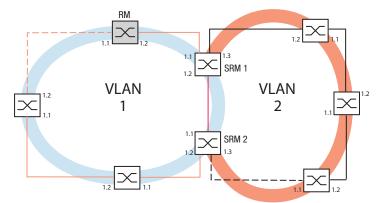
*Figure 52:* Special case: A Subring Manager manages 2 subrings (2 instances). The Subring Manager is capable of managing up to 8 instances.

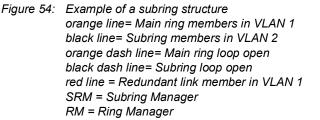


*Figure 53:* Special case: a Subring Manager manages both ends of a subring on different ports (Single Subring Manger).

**Note:** In the previous examples, the Subring Managers only couple subrings to existing main rings. The *Sub Ring* function prohibits cascaded subrings, for example coupling a new subring to another existing subring.

If you use MRP for the main ring and the subring, then specify the VLAN settings as follows:


- VLAN x for the main ring
  - on the ring ports of the main ring participants
  - on the main ring ports of the Subring Manager
- ► VLAN Y for the Subring
  - on the ring ports of the Subring participants
  - on the subring ports of the Subring Manager


You can use the same VLAN for multiple subrings.

### **13.9.2** Subring example

In the following example, you couple a new network segment with 3 devices to an existing main ring which uses the MRP protocol. When you couple the network at both ends instead of one end, the subring provides increased availability with the corresponding configuration.

You couple the new network segment as a subring. You couple the subring to the existing devices of the main ring using the following configuration types.





To configure the subring, perform the following steps:

- □ Configure the three devices of the new network segment as participants in an MRP ring:
  - Configure the transmission rate and the duplex mode for the ring ports in accordance with the following table:

| Port type | Bit rate   | Port on | Automatic configuration | Manual configuration |
|-----------|------------|---------|-------------------------|----------------------|
| ТХ        | 100 Mbit/s | marked  | unmarked                | 100 Mbit/s FDX       |
| ТХ        | 1 Gbit/s   | marked  | marked                  | -                    |
| Optical   | 100 Mbit/s | marked  | unmarked                | 100 Mbit/s FDX       |
| Optical   | 1 Gbit/s   | marked  | marked                  | -                    |
| Optical   | 2.5 Gbit/s | marked  | _                       | 2.5 Gbit/s FDX       |

The following steps contain additional settings for subring configuration:

- □ To help prevent loops during configuration, deactivate the Subring Manager function on the main ring and subring devices. After you completely configure every device participating in the main ring and subrings activate the global *Sub Ring* function and Subring Managers.
- □ Disable the RSTP function on the MRP ring ports used in the subring.
- □ Verify that the *Link Aggregation* function is inactive on ports participating in the main ring and subring.
- □ Specify a different VLAN membership for the main ring ports and subring ports although the main ring is using the MRP protocol. For example, use VLAN ID 1 for the main ring and the redundant link, then use VLAN ID 2 for the subring.
  - For the devices participating in the main ring for example, open the Switching > VLAN > Configuration dialog. Create VLAN 1 in the static VLAN table. To tag the main ring ports for membership in VLAN 1, select the T item in the drop-down list of the appropriate port columns.
  - For the devices participating in the subring use the step above and add the ports to VLAN 2 in the static VLAN table.
- □ Activate the *MRP* function for the main ring and subring devices.
  - In the Switching > L2-Redundancy > MRP dialog, configure the 2 ring ports participating in the main ring on the main ring devices.
  - For the devices participating in the subring use the step above and configure the 2 ring ports participating in the subring on the subring devices.
  - Assign the same MRP domain ID to the main ring and subring devices. When you only use Schneider Electric devices, the default values suffice for the MRP domain ID.

**Note:** The *MRP domain* is a sequence of 16 numbers in the range from 0 to 255. The default value is 255 . 255 . 255 . 255 . 255 . 255 . 255 . 255 . 255 . 255 . 255 . 255 . 255 . 255 . 255 . 255 . 255 . 255 . 255 . 255 . 255 . 255 . 255 . 255 . 255 . 255 . 255 . 255 . 255 . 255 . 255 . 255 . 255 . 255 . 255 . 255 . 255 . 255 . 255 . 255 . 255 . 255 . 255 . 255 . 255 . 255 . 255 . 255 . 255 . 255 . 255 . 255 . 255 . 255 . 255 . 255 . 255 . 255 . 255 . 255 . 255 . 255 . 255 . 255 . 255 . 255 . 255 . 255 . 255 . 255 . 255 . 255 . 255 . 255 . 255 . 255 . 255 . 255 . 255 . 255 . 255 . 255 . 255 . 255 . 255 . 255 . 255 . 255 . 255 . 255 . 255 . 255 . 255 . 255 . 255 . 255 . 255 . 255 . 255 . 255 . 255 . 255 . 255 . 255 . 255 . 255 . 255 . 255 . 255 . 255 . 255 . 255 . 255 . 255 . 255 . 255 . 255 . 255 . 255 . 255 . 255 . 255 . 255 . 255 . 255 . 255 . 255 . 255 . 255 . 255 . 255 . 255 . 255 . 255 . 255 . 255 . 255 . 255 . 255 . 255 . 255 . 255 . 255 . 255 . 255 . 255 . 255 . 255 . 255 . 255 . 255 . 255 . 255 . 255 . 255 . 255 . 255 . 255 . 255 . 255 . 255 . 255 . 255 . 255 . 255 . 255 . 255 . 255 . 255 . 255 . 255 . 255 . 255 . 255 . 255 . 255 . 255 . 255 . 255 . 255 . 255 . 255 . 255 . 255 . 255 . 255 . 255 . 255 . 255 . 255 . 255 . 255 . 255 . 255 . 255 . 255 . 255 . 255 . 255 . 255 . 255 . 255 . 255 . 255 . 255 . 255 . 255 . 255 . 255 . 255 . 255 . 255 . 255 . 255 . 255 . 255 . 255 . 255 . 255 . 255 . 255 . 255 . 255 . 255 . 255 . 255 . 255 . 255 . 255 . 255 . 255 . 255 . 255 . 255 . 255 . 255 . 255 . 255 . 255 . 255 . 255 . 255 . 255 . 255 . 255 . 255 . 255 . 255 . 255 . 255 . 255 . 255 . 255 . 255 . 255 . 255 . 255 . 255 . 255 . 255 . 255 . 255 . 255 . 255 . 255 . 255 . 255 . 255 . 255 . 255 . 255 . 255 . 255 . 255 . 255 . 255 . 255 . 255 . 255 . 255 . 255 . 255 . 255 . 255 . 255 . 255 . 255 . 255 . 255 . 255 . 255 . 255 . 255 . 255 . 255 . 255 . 255 . 255 . 255 . 255 . 255 . 255 . 255 . 255 . 255 . 255 . 255 . 255 . 255 . 255 . 255 . 255 . 255 . 255 . 255 . 255 . 255 . 255 . 255 . 255 . 255 . 255 . 255 . 255 .

The *Sub Ring* dialog lets you change the MRP domain ID. Alternatively, use the Command Line Interface. To do this, perform the following steps:

enable
configure
mrp domain delete
mrp domain add domain-id
0.0.1.1.2.2.3.4.4.111.
222.123.0.0.66.99

Change to the Privileged EXEC mode.

Change to the Configuration mode.

Deletes the current MRP domain.

Creates a new MRP domain with the specified MRP domain ID. Any subsequent MRP domain changes apply to this domain ID.

# 13.9.3 Subring example configuration



# UNINTENDED EQUIPMENT OPERATION

To help avoid loops during the configuration phase, configure each device of the *Sub Ring* configuration individually. Before you connect the redundant lines, complete the configuration of the other devices of the ring configuration.

Failure to follow these instructions can result in death, serious injury, or equipment damage.

**Note:** Help avoid loops during configuration. Configure every device of the subring individually. Before you activate the redundant link, completely configure every subring device.

Configure the 2 Subring Managers in the example. To do this, perform the following steps:

| □ Open the Switching > L2-Redundancy > Sub Ring dialog.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                          |  |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------|--|
| <ul> <li>To add a table entry, click the button.</li> <li>In the <i>Port</i> column, select the port that couples the device to the subring.<br/>Use port 1/3 for this example.<br/>For coupling, use one of the available ports with the exception of the ports which are already connected to the main ring.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                  |                                                                          |  |
| ☐ In the Name column, assign a name to<br>For this example enter Test.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | o the subring.                                                           |  |
| <ul> <li>In the SRM mode column, select Subring Manager mode.<br/>You thus specify which port for coupling the subring to the main ring becomes the redundant manager.<br/>The options for the coupling are:</li> <li>manager<br/>When you specify both Subring Managers with the same value, the device with the higher MAC address manages the redundant link.</li> <li>redundant manager<br/>This device manages the redundant link, as long as you have specified the other Subring Manager as a manager. Otherwise the device with the higher MAC address manages the redundant link.</li> <li>Specify Subring Manager 1 as manager, in accordance with the figure depicting this example.</li> </ul> |                                                                          |  |
| Leave the values in the VLAN column and MRP domain column unchanged.<br>The default values are correct for the example configuration.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                          |  |
| $\Box$ Save the changes temporarily. To do this, click the $\checkmark$ button.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                          |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                          |  |
| enable                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Change to the Privileged EXEC mode.<br>Change to the Configuration mode. |  |
| sub-ring add 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Creates a new subring with the subring ID 1.                             |  |
| sub-ring modify 1 port 1/3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Specify port $1/3$ as subring port.                                      |  |
| sub-ring modify 1 name Test                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Assign the name Test to the subring 1.                                   |  |
| sub-ring modify 1 mode manager                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Assign the manager mode to the subring 1.                                |  |
| show sub-ring ring                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Display the subrings state on this device.                               |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Display the submigs state on this device.                                |  |

Display the subring global state on this device.

Configure the 2nd Subring Manager in the same way.
 Specify Subring Manager 2 as redundant manager, in accordance with the figure depicting this example.

show sub-ring global

- □ To activate the Subring Manager function, mark the *Active* checkbox in the appropriate row.
- □ After you have configured both Subring Managers and the devices participating in the subring, enable the function and close the redundant link.
- $\Box$  Save the changes temporarily. To do this, click the  $\checkmark$  button.

| enable                                         | Change to the Privileged EXEC mode.                                                             |
|------------------------------------------------|-------------------------------------------------------------------------------------------------|
| configure                                      | Change to the Configuration mode.                                                               |
| sub-ring enable 1                              | Activate subring 1.                                                                             |
| sub-ring enable 2                              | Activate subring 2.                                                                             |
| exit                                           | Change to the Privileged EXEC mode.                                                             |
| show sub-ring ring <domain id=""></domain>     | Display the settings of the selected subrings.                                                  |
| show sub-ring global                           | Display global subring settings.                                                                |
| copy config running-config nvm profile<br>Test | Save the current settings in the configuration profile named Test in non-volatile memory (nvm). |

# 13.10 Subring with LAG

# A WARNING

### UNINTENDED EQUIPMENT OPERATION

To help avoid loops during the configuration phase, configure each device of the *Sub Ring* configuration individually. Before you connect the redundant lines, complete the configuration of the other devices of the ring configuration.

Failure to follow these instructions can result in death, serious injury, or equipment damage.

When at least two parallel redundant connecting lines exist (known as a trunk) between two devices, and these lines are combined into one logical connection, this is a Link Aggregation (LAG) connection.

The device lets you use the LAG ports as ring ports with the Sub Ring protocol.

# 13.10.1 Example

The following example is a simple setup between an MRP ring and a Subring.

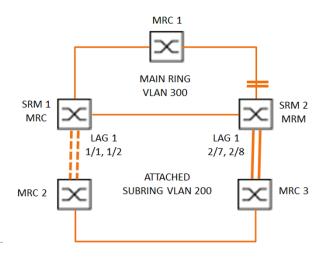



Figure 55: Subring with Link Aggregation

The following table describes the device roles as seen in the figure above. The table provides information of how you use the ring ports and Subring ports as LAG ports.

| Device Name | Ring Port  | Main Ring Role | Sub Ring Role        | Subring Port |
|-------------|------------|----------------|----------------------|--------------|
| MRC1        | 1/3, 1/4   | MRP client     | -                    | -            |
| SRM1        | 1/3, 1/4   | MRP client     | Redundant<br>Manager | lag/1        |
| SRM2        | 2/4, 2/5   | MRP manager    | Manager              | lag/1        |
| MRC2        | lag/1, 1/3 | -              | MRP client           | -            |
| MRC3        | lag/1, 1/3 | -              | MRP client           | -            |

Table 38: Devices, Ports and Roles

## **MRP** ring configuration

The devices participating in the Main ring are members of VLAN 300.

Perform the following steps:

#### SRM2

| enable                               | Change to the Privileged EXEC mode.                                                                                                   |
|--------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------|
| configure                            | Change to the Configuration mode.                                                                                                     |
| mrp domain add default-domain        | Creates a new MRP domain with the ID ${\tt default-domain}$ .                                                                         |
| mrp domain modify port primary 2/4   | Specifies port 2/4 as ring port 1.                                                                                                    |
| mrp domain modify port secondary 2/5 | Specifies port 2/5 as ring port 2.                                                                                                    |
| mrp domain modify mode manager       | Specifies that the device operates as the <i>Ring manager</i> . Do not activate the <i>Ring manager</i> function on any other device. |
| mrp domain modify operation enable   | Activates the MRP-Ring.                                                                                                               |
| mrp domain modify vlan 300           | Specifies the VLAN ID as 300.                                                                                                         |
| mrp operation                        | Enable the <i>MRP</i> function in the device.                                                                                         |

#### MRC1, SRM1

| enable                               | Change to the Privileged EXEC mode.                  |
|--------------------------------------|------------------------------------------------------|
| configure                            | Change to the Configuration mode.                    |
| mrp domain add default-domain        | Creates a new MRP domain with the ID default-domain. |
| mrp domain modify port primary 1/3   | Specifies port 1/3 as ring port 1.                   |
| mrp domain modify port secondary 1/4 | Specifies port 1/4 as ring port 2.                   |
| mrp domain modify mode client        | Specifies the device role as ring client.            |
| mrp domain modify operation enable   | Activates the MRP-Ring.                              |
| mrp domain modify vlan 300           | Specifies the VLAN ID as 300.                        |
| mrp operation                        | Enable the MRP function in the device.               |

# **Subring configuration**

The devices participating in the attached Sub-ring are members of VLAN 200.

# Perform the following steps:

#### SRM1

| enable                                       | Change to the Privileged EXEC mode.          |
|----------------------------------------------|----------------------------------------------|
| configure                                    | Change to the Configuration mode.            |
| link-aggregation add lag/1                   | Creates a Link Aggregation Group lag/1.      |
| link-aggregation modify lag/1 addport<br>1/1 | Adds port 1/1 to the Link Aggregation Group. |
| link-aggregation modify lag/1 addport 1/2    | Adds port 1/2 to the Link Aggregation Group. |
| link-aggregation modify lag/1 adminmode      | Activate the Link Aggregation Group.         |

| enable                                                           | Change to the Privileged EXEC mode.                                                                                                                                                                                                     |
|------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| configure                                                        | Change to the Configuration mode.                                                                                                                                                                                                       |
| sub-ring add 1                                                   | Creates a new subring with the subring ID $1$ .                                                                                                                                                                                         |
| sub-ring modify 1 name SRM1                                      | Assign the name SRM1 to the subring 1.                                                                                                                                                                                                  |
| sub-ring modify 1 mode redundant-<br>manager vlan 200 port lag/1 | Assign the device the role of Sub-ring redundant managerin subring 1. If the subring is closed, then the device blocks the ring port. VLAN 200 is the set for the VLAN ID of the domain. The lag/1 port is set as a member in VLAN 200. |
| sub-ring enable 1                                                | Activate subring 1.                                                                                                                                                                                                                     |
| sub-ring operation                                               | Enable the global Subring Manager functionality on this device.                                                                                                                                                                         |

#### SRM2

| enable                                       | Change to the Privileged EXEC mode.          |
|----------------------------------------------|----------------------------------------------|
| configure                                    | Change to the Configuration mode.            |
| link-aggregation add lag/1                   | Creates a Link Aggregation Group lag/1.      |
| link-aggregation modify lag/1 addport<br>2/7 | Adds port 2/7 to the Link Aggregation Group. |
| link-aggregation modify lag/1 addport<br>2/8 | Adds port 2/8 to the Link Aggregation Group. |
| link-aggregation modify lag/1 adminmode      | Activate the Link Aggregation Group.         |

| enable                                                | Change to the Privileged EXEC mode.                                                                                                                           |
|-------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------|
| configure                                             | Change to the Configuration mode.                                                                                                                             |
| sub-ring add 1                                        | Creates a new subring with the subring ID 1.                                                                                                                  |
| sub-ring modify 1 mode manager vlan 200<br>port lag/1 | Assign the device the role of Subring manager in subring 1. VLAN 200 is the set for the VLAN ID of the domain. The lag/1 port is set as a member in VLAN 200. |

# Redundancy 13.10 Subring with LAG

|          | sub-ring modify 1 name SRM2<br>sub-ring enable 1 | Assign the name SRM2 to the subring 1.<br>Activate subring 1.   |
|----------|--------------------------------------------------|-----------------------------------------------------------------|
|          | sub-ring operation                               | Enable the global Subring Manager functionality on this device. |
| MRC 2, 3 |                                                  |                                                                 |

| enable                               | Change to the Privileged EXEC mode.                  |
|--------------------------------------|------------------------------------------------------|
| configure                            | Change to the Configuration mode.                    |
| mrp domain add default-domain        | Creates a new MRP domain with the ID default-domain. |
| mrp domain modify port primary lag/1 | Specifies port lag/1 as ring port 1.                 |
| mrp domain modify port secondary 1/3 | Specifies port 1/3 as ring port 2.                   |
| mrp domain modify mode client        | Specifies the device role as ring client.            |
| mrp domain modify operation enable   | Activates the MRP-Ring.                              |
| mrp domain modify vlan 200           | Specifies the VLAN ID as 200.                        |
| mrp operation                        | Enable the <i>MRP</i> function in the device.        |

# **Disable STP**

Disable the Spanning Tree function on every port that you specified as an MRP or Sub-ring port. The following example uses port 1/3.

Perform the following steps:

| enable                     | Change to the Privileged EXEC mode.                                  |
|----------------------------|----------------------------------------------------------------------|
| configure                  | Change to the Configuration mode.                                    |
| interface 1/3              | Change to the interface configuration mode of interface <i>1/3</i> . |
| no spanning-tree operation | Disable the Spanning Tree function on the port.                      |

# 13.11 Ring/Network Coupling

Based on a ring, the *Ring/Network Coupling* function couples rings or network segments redundantly. *Ring/Network Coupling* connects 2 rings/network segments through 2 separate paths.

When the devices in the coupled network are Schneider Electric devices, the *Ring/Network Coupling* function supports the coupling following ring protocols in the primary and secondary rings:

- HIPER Ring
- Fast HIPER Ring
- MRP

The Ring/Network Coupling function can also couple network segments of a bus and mesh structures.

# 13.11.1 Methods of Ring/Network Coupling

### **The One-Switch coupling**

Two ports of **one** device in the first ring/network connect to one port each of two devices in the second ring/network (see figure 56). In the One-Switch coupling method, the main line forwards data and the device blocks the redundant line.

When the main line no longer functions, the device immediately unblocks the redundant line. When the main line is restored, the device blocks data on the redundant line. The main line forwards data again.

The ring coupling detects and handles an error within 500 ms (typically 150 ms).

# The Two-Switch coupling

One port each from **two** devices in the first ring/network connect to one port each of two devices in the second ring/network segment (see figure 58).

The device in the redundant line and the device in the main line use control packets to inform each other about their operating states, using the Ethernet or a control line.

When the main line no longer functions, the redundant device (Stand-by) immediately unblocks the redundant line. As soon as the main line is restored, the device on the main line informs the redundant device of this. The Stand-by device blocks data on the redundant line. The main line forwards data again.

The ring coupling detects and handles an error within 500 ms (typically 150 ms).

The type of coupling configuration is primarily determined by the network topological and the desired level of availability (see table 39).

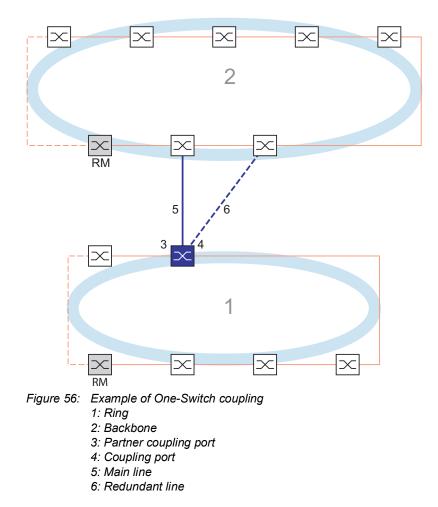
|              | One-Switch coupling                                                                                                                                                     | Two-Switch coupling                                                                                                                        | Two-Switch coupling with<br>Control line                                                                                                                                                                                                                                      |
|--------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Application  | The 2 devices are in<br>impractical topological<br>positions.<br>Therefore, putting a link<br>between them would<br>involve a lot of effort for<br>two-Switch coupling. | The 2 devices are in<br>practical topological<br>positions.<br>Installing a control line<br>would involve a lot of<br>effort.              | The 2 devices are in<br>practical topological<br>positions.<br>Installing a control line<br>would not involve much<br>effort.                                                                                                                                                 |
| Disadvantage | If the Switch configured for<br>the redundant coupling<br>becomes inoperable, then<br>no connection remains<br>between the networks.                                    | More effort for connecting<br>the 2 devices to the<br>network (compared with<br>one-Switch coupling).                                      | More effort for connecting<br>the two devices to the<br>network (compared with<br>one-Switch and two-<br>Switch coupling).                                                                                                                                                    |
| Advantage    | Less effort involved in<br>connecting the 2 devices<br>to the network (compared<br>with two-Switch coupling).                                                           | When one of the devices<br>configured for the<br>redundant coupling<br>becomes inoperable, the<br>coupled networks are still<br>connected. | When one of the devices<br>configured for the<br>redundant coupling<br>becomes inoperable, the<br>coupled networks are still<br>connected.<br>The partner determination<br>between the coupling<br>devices occurs more<br>secure and faster than<br>without the control line. |

Table 39: Selection criteria for the configuration types for redundant coupling

# 13.11.2 Prepare the Ring/Network Coupling

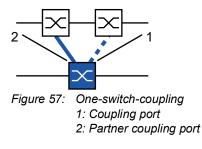
|                                                                                                | A WARNING                                                                                                                                                                                                                              |
|------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| UNINTE                                                                                         | ENDED EQUIPMENT OPERATION                                                                                                                                                                                                              |
| Coupling                                                                                       | avoid loops during the configuration phase, configure each device of the <i>Ring/Network</i> g configuration individually. Before you connect the redundant lines, complete the ration of the other devices of the ring configuration. |
| •                                                                                              | avoid loops, use the <i>Ring/Network Coupling</i> function only on ports on which the Rapid ng Tree Protocol is inactive.                                                                                                              |
| Failure to follow these instructions can result in death, serious injury, or equipment damage. |                                                                                                                                                                                                                                        |

In the following screen shots and diagrams, the following conventions are used:


- Blue boxes and lines indicate devices or connections of the items currently being described.
- Solid lines indicate a main connection.

- Dash lines indicate a stand-by connection.
- Dotted lines indicate the control line.

Perform the following steps:


Open the Switching > L2-Redundancy > Ring/Network Coupling dialog.
 In the Mode frame, Type option list, select the required radio button.
 one-switch coupling
 two-switch coupling, master
 two-switch coupling, slave
 two-switch coupling with control line, master
 two-switch coupling with control line, slave

### **One-Switch coupling**



The main line, indicated by the solid blue line, which is connected to the partner coupling port provides coupling between the two networks in the normal mode of operation. If the main line is inoperable, then the redundant line, indicated by the dashed blue line, which is connected to the coupling port takes over the ring/network coupling. **One** switch performs the coupling switch-over.

The following settings apply to the device displayed in blue in the selected graphic.



Perform the following steps:

- □ Open the Switching > L2-Redundancy > Ring/Network Coupling dialog.
- □ In the *Mode* frame, *Type* option list, select the *one-switch* coupling radio button.

Note: Configure the Partner coupling port and the ring ports on different ports.

- □ In the *Coupling port* frame, select the port on which you connect the redundant line in the *Port* drop-down list.
- □ In the *Partner coupling port* frame, select the port on which you connect the main line in the *Port* drop-down list.
- □ To enable the function, select the *On* radio button in the *Operation* frame.
- $\Box$  Save the changes temporarily. To do this, click the  $\checkmark$  button.
- Connect the redundant line to the Partner coupling port.
   In the *Partner coupling port* frame, the *State* field displays the status of the Partner coupling port.
- Connect the main line to the Coupling port.
   In the *Coupling port* frame, the *State* field displays the status of the Coupling port.

In the *Information* frame, the *Redundancy available* field displays if the redundancy is available. The *Configuration failure* field displays if the settings are complete and correct.

For the coupling ports, perform the following steps:

Note: The following settings are required for the coupling ports.

- □ Open the Basic Settings > Port dialog, Configuration tab.
- □ For the ports selected as the coupling ports, specify the settings according to the parameters in the following table.
- $\Box$  Save the changes temporarily. To do this, click the  $\checkmark$  button.

#### Table 40: Port settings for ring ports

| Port type | Bit rate   | Port on | Automatic configuration | Manual configuration |
|-----------|------------|---------|-------------------------|----------------------|
| ТХ        | 100 Mbit/s | marked  | unmarked                | 100 Mbit/s FDX       |
| ТХ        | 1 Gbit/s   | marked  | marked                  | -                    |
| Optical   | 100 Mbit/s | marked  | unmarked                | 100 Mbit/s FDX       |
| Optical   | 1 Gbit/s   | marked  | marked                  | -                    |
| Optical   | 2.5 Gbit/s | marked  | _                       | 2.5 Gbit/s FDX       |

If you have configured VLANs on the coupling ports, then you specify the VLAN settings on the coupling and partner coupling ports. To do this, perform the following steps:

- □ Open the *Switching* > *VLAN* > *Port* dialog.
  - □ Change the *Port-VLAN ID* setting to the value of the VLAN ID configured on the ports.
  - □ Unmark the Ingress filtering checkbox for both coupling ports.
  - □ Open the Switching > VLAN > Configuration dialog.
  - □ To tag the redundant connections for VLAN 1 and VLAN Membership, enter the value T in the cells corresponding to both coupling ports on the VLAN 1 row.
  - $\Box$  Save the changes temporarily. To do this, click the  $\checkmark$  button.

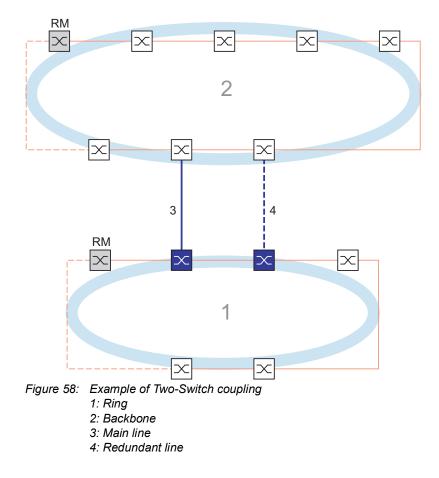
The coupling devices send the redundancy packets with the highest priority on VLAN 1.

- □ In the *Configuration* frame, *Redundancy mode* option list, specify the type of redundancy:
  - With the redundant ring/network coupling setting, either the main line or the redundant line is active. The setting lets the devices toggle between both lines.
  - When you activate the extended redundancy setting, the main line and the redundant line are active simultaneously. The setting lets you add redundancy to the coupling network. When the connection between the coupling devices in the second network becomes inoperable the coupling devices continue to transmit and receive data.

**Note:** During the reconfiguration period, packet duplications can occur. Therefore, if your devices detect package duplications, then select this setting.

The *Coupling mode* describes the type of the backbone network to which you connect the ring network (see figure 56).

□ In the *Configuration* frame, *Coupling mode* option list, specify the type of the second network:


- □ If you connect to a ring network, then select the *ring coupling* radio button.
- □ If you connect to a bus or mesh structure, then select the *network coupling* radio button.

 $\Box$  Save the changes temporarily. To do this, click the  $\checkmark$  button.

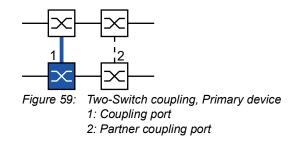
Reset the coupling settings to the default state. To do this, perform the following steps:

 $\Box$  Click the  $\equiv$  button and then the *Reset* item.

# **Two-Switch coupling**



The coupling between 2 networks is performed by the main line, indicated by the solid blue line. If the main line or one of the adjacent devices becomes inoperable, then the redundant line, indicated by the dashed black line, takes over the network coupling. The coupling is performed by 2 devices.


The devices send control packages to each other over the Ethernet.

The primary device connected to the main line, and the stand-by device connected to the redundant line are partners with regard to the coupling.

 $\Box$  Connect the 2 partners using the ring ports.

# **Two-Switch coupling, Primary device**

The following settings apply to the device displayed in blue in the selected graphic.



Perform the following steps:

- □ Open the Switching > L2-Redundancy > Ring/Network Coupling dialog.
- □ In the *Mode* frame, *Type* option list, select the *two-switch coupling*, *master* radio button.
- □ In the *Coupling port* frame, select the port on which you connect the network segments in the *Port* drop-down list.

Configure the Coupling port and the ring ports on different ports.

- □ To enable the function, select the *On* radio button in the *Operation* frame.
- $\Box$  Save the changes temporarily. To do this, click the  $\checkmark$  button.
- Connect the main line to the *Coupling port*.
   In the *Coupling port* frame, the *State* field displays the status of the Coupling port.
   When the partner is already operating in the network, the *IP address* field in the *Partner coupling port* frame displays the IP address of the partner port.

In the *Information* frame, the *Redundancy available* field displays if the redundancy is available. The *Configuration failure* field displays if the settings are complete and correct.

**Note:** If you operate the *Ring manager* function and a two-switch coupling function on the same device, then there is the possibility of creating a loop.

To help prevent continuous loops while the connections are in operation on the ring coupling ports, perform one of the following actions. The device sets the port state of the coupling port to "off":

- disable the operation
- change the configuration

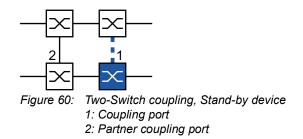
For the coupling ports, perform the following steps:

- □ Open the Basic Settings > Port dialog, Configuration tab.
- □ For the ports selected as the coupling ports, specify the settings according to the parameters in the following table.
- $\Box$  Save the changes temporarily. To do this, click the  $\checkmark$  button.

| Port type | Bit rate   | Port on | Automatic configuration | Manual configuration |
|-----------|------------|---------|-------------------------|----------------------|
| ТХ        | 100 Mbit/s | marked  | unmarked                | 100 Mbit/s FDX       |
| ТХ        | 1 Gbit/s   | marked  | marked                  | -                    |
| Optical   | 100 Mbit/s | marked  | unmarked                | 100 Mbit/s FDX       |
| Optical   | 1 Gbit/s   | marked  | marked                  | _                    |
| Optical   | 2.5 Gbit/s | marked  | _                       | 2.5 Gbit/s FDX       |

Table 41: Port settings for ring ports

If you have configured VLANs on the coupling ports, then you specify the VLAN settings on the coupling and partner coupling ports. To do this, perform the following steps:


- □ Open the *Switching* > *VLAN* > *Port* dialog.
- □ Change the *Port-VLAN ID* setting to the value of the VLAN ID configured on the ports.
- □ Unmark the Ingress filtering checkbox for both coupling ports.
- □ Open the Switching > VLAN > Configuration dialog.

- $\Box$  To tag the redundant connections for VLAN 1 and VLAN Membership, enter the value T in the cells corresponding to both coupling ports on the VLAN 1 row.
- $\Box$  Save the changes temporarily. To do this, click the  $\checkmark$  button.

The coupling devices send the redundancy packets with the highest priority on VLAN 1.

### **Two-Switch coupling, Stand-by device**

The following settings apply to the device displayed in blue in the selected graphic.



Perform the following steps:

- □ Open the Switching > L2-Redundancy > Ring/Network Coupling dialog.
- □ In the *Mode* frame, *Type* option list, select the *two-switch* coupling, *slave* radio button.
- □ In the *Coupling port* frame, select the port on which you connect the network segments in the *Port* drop-down list.

Configure the *Coupling port* and the ring ports on different ports.

- □ To enable the function, select the *On* radio button in the *Operation* frame.
- □ Save the changes temporarily. To do this, click the ✓ button.
- Connect the redundant line to the *Coupling port*.
   In the *Coupling port* frame, the *State* field displays the status of the Coupling port.
   When the partner is already operating in the network, the *IP address* field in the *Partner coupling port* frame displays the IP address of the partner port.

In the *Information* frame, the *Redundancy available* field displays if the redundancy is available. The *Configuration failure* field displays if the settings are complete and correct.

**Note:** If you operate the *Ring manager* function and a two-switch coupling function on the same device, then there is the possibility of creating a loop.

To help prevent continuous loops while the connections are in operation on the ring coupling ports, perform one of the following actions. The device sets the port state of the coupling port to "off":

- disable the operation
- change the configuration

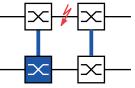
For the coupling ports, perform the following steps:

- □ Open the Basic Settings > Port dialog, Configuration tab.
- □ For the ports selected as the coupling ports, specify the settings according to the parameters in the following table.
- $\Box$  Save the changes temporarily. To do this, click the  $\checkmark$  button.

| Port type | Bit rate   | Port on | Automatic configuration | Manual configuration |
|-----------|------------|---------|-------------------------|----------------------|
| ТХ        | 100 Mbit/s | marked  | unmarked                | 100 Mbit/s FDX       |
| ТХ        | 1 Gbit/s   | marked  | marked                  | _                    |
| Optical   | 100 Mbit/s | marked  | unmarked                | 100 Mbit/s FDX       |
| Optical   | 1 Gbit/s   | marked  | marked                  | _                    |
| Optical   | 2.5 Gbit/s | marked  | _                       | 2.5 Gbit/s FDX       |

Table 42: Port settings for ring ports

If you have configured VLANs on the coupling ports, then you specify the VLAN settings on the coupling and partner coupling ports. To do this, perform the following steps:


- □ Open the *Switching* > *VLAN* > *Port* dialog.
- □ Change the *Port-VLAN ID* setting to the value of the VLAN ID configured on the ports.
- Unmark the *Ingress filtering* checkbox for both coupling ports.
- □ Open the Switching > VLAN > Configuration dialog.
- □ To tag the redundant connections for VLAN 1 and VLAN Membership, enter the value T in the cells corresponding to both coupling ports on the VLAN 1 row.
- $\Box$  Save the changes temporarily. To do this, click the  $\checkmark$  button.

The coupling devices send the redundancy packets with the highest priority on VLAN 1.

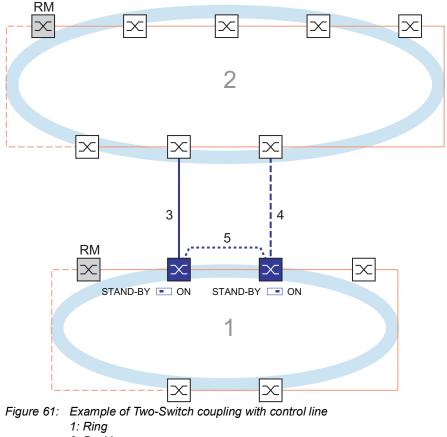
Specify the Redundancy mode and Coupling mode settings. To do this, perform the following steps:

- □ Open the Switching > L2-Redundancy > Ring/Network Coupling dialog.
- □ In the *Configuration* frame, *Redundancy mode* option list, select one of the following radio buttons:
  - redundant ring/network coupling
    - With this setting, either the main line or the redundant line is active. The setting lets the devices toggle between both lines.
  - extended redundancy

With this setting, the main line and the redundant line are active simultaneously. The setting lets you add redundancy to the second network. When the connection between the coupling devices in the second network becomes inoperable, the coupling devices continue to transmit and receive data.



During the reconfiguration period, packet duplications can occur. Therefore, select this setting only if your devices detect package duplications.


- □ In the *Configuration* frame, *Coupling mode* option list, select one of the following radio buttons:
  - □ If you connect to a ring network, then select the *ring coupling* radio button.

□ If you connect to a bus or mesh structure, then select the *network coupling* radio button. The *Coupling mode* describes the type of the backbone network to which you connect the ring network (see figure 58).

 $\Box$  Save the changes temporarily. To do this, click the  $\checkmark$  button.

Reset the coupling settings to the default state. To do this, perform the following steps:

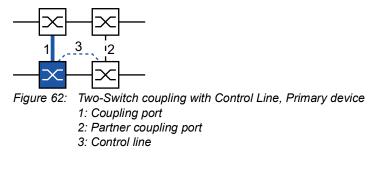
 $\Box$  Click the  $\equiv$  button and then the *Reset* item.



# **Two-Switch Coupling with Control Line**

- 2: Backbone
- 3: Main line
- 4: Redundant line
- 5: Control line

The coupling between 2 networks is performed by the main line, indicated by the solid blue line. If the main line or one of the adjacent devices become inoperable, then the redundant line, indicated by the dashed blue line, takes over coupling the 2 networks. The ring coupling is performed by 2 devices.


The devices send control packets over a control line indicated by the dotted blue line in the figure below (see figure 62).

The primary device connected to the main line, and the stand-by device connected to the redundant line are partners with regard to the coupling.

□ Connect the 2 partners using the ring ports.

## **Two-Switch coupling with Control Line, Primary device**

The following settings apply to the device displayed in blue in the selected graphic.



Perform the following steps:

- □ Open the Switching > L2-Redundancy > Ring/Network Coupling dialog.
- □ In the Mode frame, Type option list, select the two-switch coupling with control line, master radio button.
- □ In the *Coupling port* frame, select the port on which you connect the network segments in the *Port* drop-down list.

Configure the *Coupling port* and the ring ports on different ports.

□ In the *Control port* frame, select the port on which you connect the control line in the *Port* drop-down list.

Configure the *Coupling port* and the ring ports on different ports.

- □ To enable the function, select the *On* radio button in the *Operation* frame.
- □ Save the changes temporarily. To do this, click the ✓ button.
- Connect the redundant line to the Coupling port.
   In the *Coupling port* frame, the *State* field displays the status of the Coupling port.
   When the partner is already operating in the network, the *IP address* field in the *Partner coupling port* frame displays the IP address of the partner port.
- Connect the control line to the Control port.
   In the *Control port* frame, the *State* field displays the status of the Control port.
   When the partner is already operating in the network, the *IP address* field in the *Partner coupling port* frame displays the IP address of the partner port.

In the *Information* frame, the *Redundancy available* field displays if the redundancy is available. The *Configuration failure* field displays if the settings are complete and correct.

**Note:** If you operate the *Ring manager* function and a two-switch coupling function on the same device, then there is the possibility of creating a loop.

To help prevent continuous loops while the connections are in operation on the ring coupling ports, perform one of the following actions. The device sets the port state of the coupling port to "off":

- disable the operation
- change the configuration

For the coupling ports, perform the following steps:

- □ Open the Basic Settings > Port dialog, Configuration tab.
- □ For the ports selected as the coupling ports, specify the settings according to the parameters in the following table.
- $\Box$  Save the changes temporarily. To do this, click the  $\checkmark$  button.

| Port type | Bit rate   | Port on | Automatic configuration | Manual configuration |
|-----------|------------|---------|-------------------------|----------------------|
| ТХ        | 100 Mbit/s | marked  | unmarked                | 100 Mbit/s FDX       |
| ТХ        | 1 Gbit/s   | marked  | marked                  | -                    |
| Optical   | 100 Mbit/s | marked  | unmarked                | 100 Mbit/s FDX       |
| Optical   | 1 Gbit/s   | marked  | marked                  | -                    |
| Optical   | 2.5 Gbit/s | marked  | _                       | 2.5 Gbit/s FDX       |

Table 43: Port settings for ring ports

If you have configured VLANs on the coupling ports, then you specify the VLAN settings on the coupling and partner coupling ports. To do this, perform the following steps:

- □ Open the *Switching* > *VLAN* > *Port* dialog.
- □ Change the *Port-VLAN ID* setting to the value of the VLAN ID configured on the ports.
- □ Unmark the *Ingress filtering* checkbox for both coupling ports.
- $\Box$  Open the Switching > VLAN > Configuration dialog.
- □ To tag the redundant connections for VLAN 1 and VLAN Membership, enter the value T in the cells corresponding to both coupling ports on the VLAN 1 row.
- $\Box$  Save the changes temporarily. To do this, click the  $\checkmark$  button.

The coupling devices send the redundancy packets with the highest priority on VLAN 1.

# Two-Switch coupling with Control Line, Stand-by device

The following settings apply to the device displayed in blue in the selected graphic.

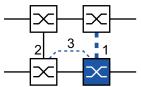



Figure 63: Two-Switch coupling with Control Line, Stand-by device

- 1: Coupling port
- 2: Partner coupling port
- 3: Control line

Perform the following steps:

- □ Open the Switching > L2-Redundancy > Ring/Network Coupling dialog.
- □ In the Mode frame, Type option list, select the two-switch coupling with control line, slave radio button.
- □ In the *Coupling port* frame, select the port on which you connect the network segments in the *Port* drop-down list.

Configure the *Coupling port* and the ring ports on different ports.

□ In the *Control port* frame, select the port on which you connect the control line in the *Port* drop-down list.

Configure the Coupling port and the ring ports on different ports.

- □ To enable the function, select the *On* radio button in the *Operation* frame.
- $\Box$  Save the changes temporarily. To do this, click the  $\checkmark$  button.
- Connect the redundant line to the Coupling port.
   In the *Coupling port* frame, the *State* field displays the status of the Coupling port.
   When the partner is already operating in the network, the *IP address* field in the *Partner coupling port* frame displays the IP address of the partner port.
- Connect the control line to the Control port.
   In the *Control port* frame, the *State* field displays the status of the Control port.
   When the partner is already operating in the network, the *IP address* field in the *Partner coupling port* frame displays the IP address of the partner port.

In the *Information* frame, the *Redundancy available* field displays if the redundancy is available. The *Configuration failure* field displays if the settings are complete and correct.

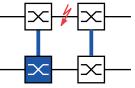
**Note:** If you operate the *Ring manager* function and a two-switch coupling function on the same device, then there is the possibility of creating a loop.

To help prevent continuous loops while the connections are in operation on the ring coupling ports, perform one of the following actions. The device sets the port state of the coupling port to "off":

- disable the operation
- change the configuration

For the coupling ports, perform the following steps:

- □ Open the *Switching* > *VLAN* > *Port* dialog.
- □ Change the *Port-VLAN ID* setting to the value of the VLAN ID configured on the ports.
- Unmark the *Ingress filtering* checkbox for both coupling ports.
- □ Open the Switching > VLAN > Configuration dialog.
- □ To tag the redundant connections for VLAN 1 and VLAN Membership, enter the value T in the cells corresponding to both coupling ports on the VLAN 1 row.
- $\Box$  Save the changes temporarily. To do this, click the  $\checkmark$  button.


The coupling devices send the redundancy packets with the highest priority on VLAN 1.

Specify the *Redundancy mode* and *Coupling mode* settings. To do this, perform the following steps:

□ Open the Switching > L2-Redundancy > Ring/Network Coupling dialog.

- □ In the *Configuration* frame, *Redundancy mode* option list, select one of the following radio buttons:
  - redundant ring/network coupling
    - With this setting, either the main line or the redundant line is active. The setting lets the devices toggle between both lines.
  - extended redundancy

With this setting, the main line and the redundant line are active simultaneously. The setting lets you add redundancy to the second network. When the connection between the coupling devices in the second network becomes inoperable, the coupling devices continue to transmit and receive data.



During the reconfiguration period, packet duplications can occur. Therefore, select this setting only if your devices detect package duplications.

- □ In the *Configuration* frame, *Coupling mode* option list, select one of the following radio buttons:
  - □ If you connect to a ring network, then select the *ring coupling* radio button.

□ If you connect to a bus or mesh structure, then select the *network coupling* radio button. The *Coupling mode* describes the type of the backbone network to which you connect the ring network (see figure 61).

 $\Box$  Save the changes temporarily. To do this, click the  $\checkmark$  button.

Reset the coupling settings to the default state. To do this, perform the following steps:

 $\Box$  Click the  $\equiv$  button and then the *Reset* item.

# **14 Operation diagnosis**

The device provides you with the following diagnostic tools:

- Sending SNMP traps
- Monitoring the Device Status
- Out-of-Band signaling using the signal contact
- Port status indication
- Event counter at port level
- Detecting non-matching duplex modes
- Auto-Disable
- Displaying the SFP status
- Topology discovery
- Detecting IP address conflicts
- Detecting loops
- Help protect against layer 2 network loops
- Reports
- Monitoring data traffic on a port (port mirroring)
- Syslog
- Event log
- Cause and action management during selftest

# 14.1 Sending SNMP traps

The device immediately reports unusual events which occur during normal operation to the network management station. This is done by messages called SNMP traps that bypass the polling procedure ("polling" means querying the data stations at regular intervals). SNMP traps allow you to react quickly to unusual events.

Examples of such events are:

- Hardware reset
- Changes to the configuration
- Segmentation of a port

The device sends SNMP traps to various hosts to increase the transmission reliability for the messages. The unacknowledged SNMP trap message consists of a packet containing information about an unusual event.

The device sends SNMP traps to those hosts entered in the trap destination table. The device lets you configure the trap destination table with the network management station using SNMP.

# 14.1.1 List of SNMP traps

The following table displays possible SNMP traps sent by the device.

Table 44: Possible SNMP traps

| Name of the SNMP trap                                       | Meaning                                                                                                                                                             |
|-------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| authenticationFailure                                       | When a station attempts to access an agent without authorisation, this trap is sent.                                                                                |
| coldStart                                                   | Sent after a restart.                                                                                                                                               |
| sa2DevMonSenseExtNvmRemova<br>1                             | When the external memory has been removed, this trap is sent.                                                                                                       |
| linkDown                                                    | When the connection to a port is interrupted, this trap is sent.                                                                                                    |
| linkUp                                                      | When connection is established to a port, this trap is sent.                                                                                                        |
| sa2DevMonSensePSState                                       | When the status of a power supply unit changes, this trap is sent.                                                                                                  |
| sa2SigConStateChange                                        | When the status of the signal contact changes in the operation monitoring, this trap is sent.                                                                       |
| newRoot                                                     | When the sending agent becomes the new root of the spanning tree, this trap is sent.                                                                                |
| topologyChange                                              | When the port changes from blocking to forwarding or from forwarding to blocking, this trap is sent.                                                                |
| alarmRisingThreshold                                        | When the RMON input exceeds its upper threshold, this trap is sent.                                                                                                 |
| alarmFallingThreshold                                       | When the RMON input goes below its lower threshold, this trap is sent.                                                                                              |
| <pre>sa2AgentPortSecurityViolat ion</pre>                   | When a MAC address detected on this port does not match the current settings of the parameter sa2AgentPortSecurityEntry, this trap is sent.                         |
| sa2DiagSelftestActionTrap                                   | When a self test for the four categories "task", "resource",<br>"software", and "hardware" is performed according to the<br>configured settings, this trap is sent. |
| sa2MrpReconfig                                              | When the configuration of the MRP ring changes, this trap is sent.                                                                                                  |
| <pre>sa2DiagIfaceUtilizationTra p</pre>                     | When the threshold of the interface exceeds or undercuts the upper or lower threshold specified, this trap is sent.                                                 |
| sa2LogAuditStartNextSector                                  | When the audit trail after completing one sector starts a new one, this trap is sent.                                                                               |
| sa2PtpSynchronizationChanc<br>e                             | When the status of the PTP synchronization has been changed, this trap is sent.                                                                                     |
| sa2ConfigurationSavedTrap                                   | After the device has successfully saved its configuration locally, this trap is sent.                                                                               |
| <pre>sa2ConfigurationChangedTra p</pre>                     | When you change the configuration of the device for the first time after it has been saved locally, this trap is sent.                                              |
| <pre>sa2PlatformStpInstanceLoop InconsistentStartTrap</pre> | When the port in this STP instance changes to the "loop inconsistent" status, this trap is sent.                                                                    |
| <pre>sa2PlatformStpInstanceLoop InconsistentEndTrap</pre>   | When the port in this STP instance leaves the "loop inconsistent" status receiving a BPDU packet, this trap is sent.                                                |

## 14.1.2 SNMP traps for configuration activity

After you save a configuration in the memory, the device sends a sa2ConfigurationSavedTrap. This SNMP trap contains both the state variables of non-volatile memory (*NVM*) and external memory (*ENVM*) indicating if the running configuration is in sync with the non-volatile memory, and with the external memory. You can also trigger this SNMP trap by copying a configuration file to the device, replacing the active saved configuration.

Furthermore, the device sends a sa2ConfigurationChangedTrap, whenever you change the local configuration, indicating a mismatch between the running and saved configuration.

### 14.1.3 SNMP trap setting

The device lets you send an SNMP trap as a reaction to specific events. Create at least one trap destination that receives SNMP traps.

Perform the following steps:

- □ Open the Diagnostics > Status Configuration > Alarms (Traps) dialog.
- Click the E button.
  - The dialog displays the Create window.
- □ In the *Name* frame, specify the name that the device uses to identify itself as the source of the SNMP trap.
- □ In the *Address* frame, specify the IP address of the trap destination to which the device sends the SNMP traps.
- □ In the *Active* column you select the entries that the device should take into account when it sends SNMP traps.
- $\Box$  Save the changes temporarily. To do this, click the  $\checkmark$  button.

For example, in the following dialogs you specify when the device triggers an SNMP trap:

- Basic Settings > Port dialog
- Basic Settings > Power over Ethernet > Global dialog
- Network Security > Port Security dialog
- Switching > L2-Redundancy > Link Aggregation dialog
- Diagnostics > Status Configuration > Device Status dialog
- Diagnostics > Status Configuration > Security Status dialog
- Diagnostics > Status Configuration > Signal Contact dialog
- Diagnostics > Status Configuration > MAC Notification dialog
- Diagnostics > System > IP Address Conflict Detection dialog
- Diagnostics > System > Selftest dialog
- Diagnostics > Ports > Port Monitor dialog
- Advanced > Digital IO Module dialog

# 14.1.4 ICMP messaging

The device lets you use the Internet Control Message Protocol (ICMP) for diagnostic applications, for example ping and trace route. The device also uses ICMP for time-to-live and discarding messages in which the device forwards an ICMP message back to the packet source device.

Use the ping network tool to test the path to a particular host across an IP network. The traceroute diagnostic tool displays paths and transit delays of packets across a network.

# **14.2** Monitoring the Device Status

The device status provides an overview of the overall condition of the device. Many process visualization systems record the device status for a device in order to present its condition in graphic form.

The device displays its current status as *error* or *ok* in the *Device status* frame. The device determines this status from the individual monitoring results.

The device enables you to:

- Out-of-Band signalling using a signal contact
- signal the changed device status by sending an SNMP trap
- b detect the device status in the Basic Settings > System dialog of the Graphical User Interface
- query the device status in the Command Line Interface

The *Global* tab of the *Diagnostics* > *Status Configuration* > *Device Status* dialog lets you configure the device to send a trap to the management station for the following events:

- Incorrect supply voltage
  - at least one of the 2 supply voltages is not operating
  - the internal supply voltage is not operating
- When the device is operating outside of the user-defined temperature threshold
- Loss of the redundancy (in ring manager mode)
- The interruption of link connection(s)
- Configure at least one port for this feature. When the link is down, you specify which ports the device signals in the *Port* tab of the *Diagnostics > Status Configuration > Device Status* dialog in the *Propagate connection error* row.
- The removal of the external memory. The configuration in the external memory is out-of-sync with the configuration in the device.

Select the corresponding entries to decide which events the device status includes.

**Note:** With a non-redundant voltage supply, the device reports the absence of a supply voltage. To disable this message, feed the supply voltage over both inputs or ignore the monitoring.

### 14.2.1 Events which can be monitored

| Table 45: | Device Status events |  |
|-----------|----------------------|--|
|           |                      |  |

| Name                        | Meaning                                                                                                                                   |
|-----------------------------|-------------------------------------------------------------------------------------------------------------------------------------------|
| Temperature                 | Monitors in case the temperature exceeds or falls below the value specified.                                                              |
| Ring redundancy             | When ring redundancy is present, enable this function.                                                                                    |
| Connection errors           | Enable this function to monitor every port link event in which the <i>Propagate connection error</i> checkbox is active.                  |
| External memory<br>removal  | Enable this function to monitor the presence of an external storage device.                                                               |
| External memory not in sync | The device monitors synchronization between the device configuration and the configuration stored in the external memory ( <i>ENVM</i> ). |
| Power supply                | Enable this function to monitor the power supply.                                                                                         |

# 14.2.2 Configuring the Device Status

Perform the following steps:

- □ Open the *Diagnostics* > *Status Configuration* > *Device Status* dialog, *Global* tab.
- $\hfill\square$  For the parameters to be monitored, mark the checkbox in the *Monitor* column.
- □ To send an SNMP trap to the management station, activate the *Send trap* function in the *Traps* frame.
- □ In the *Diagnostics* > *Status Configuration* > *Alarms (Traps)* dialog, create at least one trap destination that receives SNMP traps.
- $\Box$  Save the changes temporarily. To do this, click the  $\checkmark$  button.
- □ Open the *Basic Settings* > *System* dialog.
- □ To monitor the temperature, at the bottom of the *System data* frame, you specify the temperature thresholds.
- □ Save the changes temporarily. To do this, click the ✓ button.

| enable                                 | Change to the Privileged EXEC mode.                                                                                                                                                                                                                                                                                                                                                        |
|----------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| configure                              | Change to the Configuration mode.                                                                                                                                                                                                                                                                                                                                                          |
| device-status trap                     | When the device status changes, send an SNMP trap.                                                                                                                                                                                                                                                                                                                                         |
| device-status monitor envm-not-in-sync | <ul> <li>Monitors the configuration profiles in the device<br/>and in the external memory.</li> <li>The <i>Device status</i> changes to <i>error</i> in the following<br/>situations:</li> <li>The configuration profile only exists in the<br/>device.</li> <li>The configuration profile in the device differs<br/>from the configuration profile in the external<br/>memory.</li> </ul> |
| device-status monitor envm-removal     | Monitors the active external memory. When you remove the active external memory from the device, the value in the <i>Device status</i> frame changes to <i>error</i> .                                                                                                                                                                                                                     |
| device-status monitor power-supply 1   | Monitors the power supply unit 1. When the device has a detected power supply fault, the value in the <i>Device status</i> frame changes to <i>error</i> .                                                                                                                                                                                                                                 |
| device-status monitor ring-redundancy  | <ul> <li>Monitors the ring redundancy.</li> <li>The <i>Device status</i> changes to <i>error</i> in the following situations:</li> <li>The redundancy function becomes active (loss of redundancy reserve).</li> <li>The device is a normal ring participant and detects an error in its settings.</li> </ul>                                                                              |
| device-status monitor temperature      | Monitors the temperature in the device. When the temperature exceeds or falls below the specified limit, the value in the <i>Device status</i> frame changes to <i>error</i> .                                                                                                                                                                                                             |

In order to enable the device to monitor an active link without a connection, first enable the global function, then enable the individual ports.

Perform the following steps:

| □ Open the Diagnostics > Status Configuration > Device Status dialog, Global tab.                              |                                                                                                                                                                   |  |
|----------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| □ For the Connection errors parameter, mark the checkbox in the Monitor column.                                |                                                                                                                                                                   |  |
| □ Open the Diagnostics > Status Configuration > Device Status dialog, Port tab.                                |                                                                                                                                                                   |  |
| For the Propagate connection error parameter, mark the checkbox in the column of the ports<br>to be monitored. |                                                                                                                                                                   |  |
| $\ \square$ Save the changes temporarily. To d                                                                 | lo this, click the 🗸 button.                                                                                                                                      |  |
| -                                                                                                              |                                                                                                                                                                   |  |
| enable                                                                                                         | Change to the Privileged EXEC mode.                                                                                                                               |  |
| configure                                                                                                      | Change to the Configuration mode.                                                                                                                                 |  |
| device-status monitor link-failure                                                                             | Monitors the ports/interfaces link. When the link interrupts on a monitored port/interface, the value in the <i>Device status</i> frame changes to <i>error</i> . |  |
| interface 1/1                                                                                                  | Change to the interface configuration mode of interface 1/1.                                                                                                      |  |
| device-status link-alarm                                                                                       | Monitors the port/interface link. When the link interrupts on the port/interface, the value in the <i>Device status</i> frame changes to <i>error</i> .           |  |

**Note:** The above commands activate monitoring and trapping for the supported components. When you want to activate or deactivate monitoring for individual components, you will find the corresponding syntax in the "Command Line Interface" reference manual or in the help of the Command Line Interface console. To display the help in Command Line Interface, insert a question mark ? and press the <Enter> key.

# 14.2.3 Displaying the Device Status

Perform the following steps:



□ Open the *Basic Settings* > *System* dialog.

show device-status all

In the EXEC Privilege mode: Displays the device status and the setting for the device status determination.

# 14.3 Security Status

The Security Status provides an overview of the overall security of the device. Many processes aid in system visualization by recording the security status of the device and then presenting its condition in graphic form. The device displays the overall security status in the *Basic Settings* > System dialog, *Security status* frame.

In the *Global* tab of the *Diagnostics* > *Status Configuration* > *Security Status* dialog the device displays its current status as *error* or *ok* in the *Security status* frame. The device determines this status from the individual monitoring results.

The device enables you to:

- Out-of-Band signalling using a signal contact
- ▶ signal the changed security status by sending an SNMP trap
- b detect the security status in the *Basic Settings > System* dialog of the Graphical User Interface
- query the security status in the Command Line Interface

# 14.3.1 Events which can be monitored

Perform the following steps:

- □ Specify the events that the device monitors.
- □ For the corresponding parameter, mark the checkbox in the *Monitor* column.

Table 46: Security Status events

| Name                                                             | Meaning                                                                                                                                                     |
|------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Password default settings<br>unchanged                           | After installation change the passwords to increase security.<br>When active and the default passwords remain unchanged, the<br>device displays an alarm.   |
| Min. password length < 8                                         | Create passwords more than 8 characters long to maintain a high security posture. When active, the device monitors the <i>Min. password length</i> setting. |
| Password policy settings deactivated                             | The device monitors the settings located in the <i>Device Security</i> > User Management dialog for password policy requirements.                           |
| User account password policy<br>check deactivated                | The device monitors the settings of the <i>Policy check</i> checkbox.<br>When <i>Policy check</i> is inactive, the device sends an SNMP trap.               |
| Telnet server active                                             | The device monitors when you enable the <i>Telnet</i> function.                                                                                             |
| HTTP server active                                               | The device monitors when you enable the HTTP function.                                                                                                      |
| SNMP unencrypted                                                 | The device monitors when you enable the <i>SNMPv1</i> or <i>SNMPv2</i> function.                                                                            |
| Access to system monitor with serial interface possible          | The device monitors the System Monitor status.                                                                                                              |
| Saving the configuration profile on the external memory possible | The device monitors the possibility to save configurations to the external non-volatile memory.                                                             |
| Link interrupted on enabled device ports                         | The device monitors the link status of active ports.                                                                                                        |
| Access with Ethernet Switch<br>Configurator possible             | The device monitors when you enable the Ethernet Switch Configurator read/write access function.                                                            |
| Load unencrypted config from external memory                     | The device monitors the security settings for loading the configuration from the external NVM.                                                              |

| Name                                     | Meaning                                                                     |
|------------------------------------------|-----------------------------------------------------------------------------|
| IEC61850-MMS active                      | The device monitors the IEC 61850-MMS protocol activation setting.          |
| Modbus TCP active                        | The device monitors the Modbus TCP/IP protocol activation setting.          |
| Self-signed HTTPS certificate<br>present | The device monitors the HTTPS server for self-created digital certificates. |

Table 46: Security Status events (cont

# 14.3.2 Configuring the Security Status

Perform the following steps:

- □ Open the *Diagnostics* > *Status* Configuration > *Security Status* dialog, *Global* tab.
- □ For the parameters to be monitored, mark the checkbox in the *Monitor* column.
- □ To send an SNMP trap to the management station, activate the *Send trap* function in the *Traps* frame.
- $\Box$  Save the changes temporarily. To do this, click the  $\checkmark$  button.
- □ In the *Diagnostics* > *Status Configuration* > *Alarms (Traps)* dialog, create at least one trap destination that receives SNMP traps.

| enable                                          | Change to the Privileged EXEC mode.                                                                                                                                                                                                                                                                                                             |
|-------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| configure                                       | Change to the Configuration mode.                                                                                                                                                                                                                                                                                                               |
| security-status monitor pwd-change              | Monitors the password for the locally set up user<br>accounts user and admin. When the password for<br>the user or admin user accounts is the default<br>setting, the value in the <i>Security status</i> frame<br>changes to <i>error</i> .                                                                                                    |
| security-status monitor pwd-min-length          | Monitors the value specified in the <i>Min. password</i><br><i>length</i> policy. When the value for the <i>Min. password</i><br><i>length</i> policy is less than 8, the value in the <i>Security</i><br><i>status</i> frame changes to <i>error</i> .                                                                                         |
| security-status monitor pwd-policy-<br>config   | <ul> <li>Monitors the password policy settings.</li> <li>When the value for at least one of the following policies is specified as 0, the value in the Security status frame changes to error.</li> <li>Upper-case characters (min.)</li> <li>Lower-case characters (min.)</li> <li>Digits (min.)</li> <li>Special characters (min.)</li> </ul> |
| security-status monitor pwd-policy-<br>inactive | Monitors the password policy settings. When the value for at least one of the following policies is specified as 0, the value in the <i>Security status</i> frame changes to <i>error</i> .                                                                                                                                                     |
| security-status monitor telnet-enabled          | Monitors the Telnet server. When you enable the Telnet server, the value in the <i>Security status</i> frame changes to <i>error</i> .                                                                                                                                                                                                          |

| security-status monitor http-enabled             | Monitors the HTTP server. When you enable the HTTP server, the value in the <i>Security status</i> frame changes to <i>error</i> .                                                                                                                                                                                                                                                                                        |
|--------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| security-status monitor snmp-unsecure            | <ul> <li>Monitors the SNMP server.</li> <li>When at least one of the following conditions applies, the value in the Security status frame changes to error:</li> <li>The SNMPv1 function is enabled.</li> <li>The SNMPv2 function is enabled.</li> <li>The encryption for SNMPv3 is disabled. You enable the encryption in the Device Security &gt; User Management dialog, in the SNMP encryption type field.</li> </ul> |
| security-status monitor sysmon-enabled           | To monitor the activation of the System Monitor function in the device.                                                                                                                                                                                                                                                                                                                                                   |
| security-status monitor extnvm-upd-<br>enabled   | To monitor the activation of the external non volatile memory update.                                                                                                                                                                                                                                                                                                                                                     |
| security-status monitor iec61850-mms-<br>enabled | Monitors the <i>IEC61850-MMS</i> function. When you enable the <i>IEC61850-MMS</i> function, the value in the <i>Security status</i> frame changes to <i>error</i> .                                                                                                                                                                                                                                                      |
| security-status trap                             | When the device status changes, it sends an SNMP trap.                                                                                                                                                                                                                                                                                                                                                                    |

In order to enable the device to monitor an active link without a connection, first enable the global function, then enable the individual ports.

Perform the following steps:

security-status monitor no-link

|                                                                                 | Open the Diagnostics > Status Configuration                                                                 | ation > Security Status dialog, Global tab.                                                                                                            |
|---------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                 | <ul> <li>For the Link interrupted on enabled device column.</li> </ul>                                      | e ports parameter, mark the checkbox in the Monitor                                                                                                    |
|                                                                                 | $\square$ Save the changes temporarily. To do this, click the $\checkmark$ button.                          |                                                                                                                                                        |
|                                                                                 | □ Open the <i>Diagnostics</i> > <i>Status Configuration</i> > <i>Device Status</i> dialog, <i>Port</i> tab. |                                                                                                                                                        |
|                                                                                 | □ For the <i>Link interrupted on enabled devic</i> of the ports to be monitored.                            | e ports parameter, mark the checkbox in the column                                                                                                     |
| $\Box$ Save the changes temporarily. To do this, click the $\checkmark$ button. |                                                                                                             |                                                                                                                                                        |
|                                                                                 | enable                                                                                                      | Change to the Privileged EXEC mode.                                                                                                                    |
|                                                                                 | configure                                                                                                   | Change to the Configuration mode.                                                                                                                      |
|                                                                                 | security-status monitor no-link-enabled                                                                     | Monitors the link on active ports. When the link interrupts on an active port, the value in the <i>Security status</i> frame changes to <i>error</i> . |
|                                                                                 | interface 1/1                                                                                               | Change to the interface configuration mode of interface $1/1$ .                                                                                        |

Monitors the link on interface/port 1.

# 14.3.3 Displaying the Security Status

Perform the following steps:

□ Open the *Basic Settings* > *System* dialog.

show security-status all

In the EXEC Privilege mode, display the security status and the setting for the security status determination.

# 14.4 Out-of-Band signaling

The device uses the signal contact to control external devices and monitor device functions. Function monitoring enables you to perform remote diagnostics.

The device reports the operating status using a break in the potential-free signal contact (relay contact, closed circuit) for the selected mode. The device monitors the following functions:

- Incorrect supply voltage
  - at least one of the 2 supply voltages is not operating
  - the internal supply voltage is not operating
- When the device is operating outside of the user-defined temperature threshold
- Events for ring redundancy Loss of the redundancy (in ring manager mode) In the default setting, ring redundancy monitoring is inactive. The device is a normal ring participant and detects an error in the local configuration.
- The interruption of link connection(s) Configure at least one port for this feature. In the *Propagate connection error* frame, you specify which ports the device signals for a link interruption. In the default setting, link monitoring is inactive.
- The removal of the external memory. The configuration in the external memory does not match the configuration in the device.

Select the corresponding entries to decide which events the device status includes.

**Note:** With a non-redundant voltage supply, the device reports the absence of a supply voltage. To disable this message, feed the supply voltage over both inputs or ignore the monitoring.

# 14.4.1 Controlling the Signal contact

With the *Manual setting* mode you control this signal contact remotely.

Application options:

configure

- Simulation of an error detected during SPS error monitoring
- Remote control of a device using SNMP, such as switching on a camera

Perform the following steps:

| □ Open the Diagnostics > Status Configuration > Signal Contact dialog, Global tab.                                             |
|--------------------------------------------------------------------------------------------------------------------------------|
| To control the signal contact manually, in the Configuration frame, select the Manual setting item in the Mode drop-down list. |
| □ To open the signal contact, you select the <i>open</i> radio button in the <i>Configuration</i> frame.                       |
| □ To close the signal contact, you select the <i>close</i> radio button in the <i>Configuration</i> frame.                     |
| $\Box$ Save the changes temporarily. To do this, click the $\checkmark$ button.                                                |
|                                                                                                                                |
| enable Change to the Privileged EXEC mode.                                                                                     |

Change to the Configuration mode.

| signal-contact 1 mode manual  | Select the manual setting mode for signal contact 1. |
|-------------------------------|------------------------------------------------------|
| signal-contact 1 state open   | Open signal contact 1.                               |
| signal-contact 1 state closed | Close signal contact 1.                              |

#### 14.4.2 Monitoring the Device and Security Statuses

In the Configuration field, you specify which events the signal contact indicates.

- Device status Using this setting the signal contact indicates the status of the parameters monitored in the Diagnostics > Status Configuration > Device Status dialog.
- Security status Using this setting the signal contact indicates the status of the parameters monitored in the Diagnostics > Status Configuration > Security Status dialog.
- Device/Security status Using this setting the signal contact indicates the status of the parameters monitored in the Diagnostics > Status Configuration > Device Status and the Diagnostics > Status Configuration > Security Status dialog.

### **Configuring the operation monitoring**

- □ Open the Diagnostics > Status Configuration > Signal Contact dialog, Global tab.
- □ To monitor the device functions using the signal contact, in the *Configuration* frame, specify the value *Monitoring correct operation* in the *Mode* field.
- □ For the parameters to be monitored, mark the checkbox in the *Monitor* column.
- □ To send an SNMP trap to the management station, activate the *Send trap* function in the *Traps* frame.
- □ Save the changes temporarily. To do this, click the ✓ button.
- □ In the *Diagnostics* > *Status Configuration* > *Alarms (Traps)* dialog, create at least one trap destination that receives SNMP traps.
- $\Box$  Save the changes temporarily. To do this, click the  $\checkmark$  button.
- □ You specify the temperature thresholds for the temperature monitoring in the *Basic Settings* > *System* dialog.

| enable                               | Change to the Privileged EXEC mode.                                                                                                |
|--------------------------------------|------------------------------------------------------------------------------------------------------------------------------------|
| configure                            | Change to the Configuration mode.                                                                                                  |
| signal-contact 1 monitor temperature | Monitors the temperature in the device. When the temperature exceeds / falls below the threshold values, the signal contact opens. |

| signal-contact 1 monitor ring-<br>redundancy  | <ul> <li>Monitors the ring redundancy.</li> <li>The signal contact opens in the following situations:</li> <li>The redundancy function becomes active (loss of redundancy reserve).</li> <li>The device is a normal ring participant and detects an error in its settings.</li> </ul>                                                                              |
|-----------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| signal-contact 1 monitor link-failure         | Monitors the ports/interfaces link. When the link interrupts on a monitored port/interface, the signal contact opens.                                                                                                                                                                                                                                              |
| signal-contact 1 monitor envm-removal         | Monitors the active external memory. When you remove the active external memory from the device, the signal contact opens.                                                                                                                                                                                                                                         |
| signal-contact 1 monitor envm-not-in-<br>sync | <ul> <li>Monitors the configuration profiles in the device<br/>and in the external memory.</li> <li>The signal contact opens in the following<br/>situations:</li> <li>The configuration profile only exists in the<br/>device.</li> <li>The configuration profile in the device differs<br/>from the configuration profile in the external<br/>memory.</li> </ul> |
| signal-contact 1 monitor power-supply 1       | Monitors the power supply unit 1. When the device has a detected power supply fault, the signal contact opens.                                                                                                                                                                                                                                                     |
| signal-contact 1 monitor module-removal<br>1  | Monitors module 1. When you remove module 1 from the device, the signal contact opens.                                                                                                                                                                                                                                                                             |
| signal-contact 1 trap                         | Enables the device to send an SNMP trap when the status of the operation monitoring changes.                                                                                                                                                                                                                                                                       |
| no signal-contact 1 trap                      | Disabling the SNMP trap                                                                                                                                                                                                                                                                                                                                            |

In order to enable the device to monitor an active link without a connection, first enable the global function, then enable the individual ports.

Perform the following steps:

In the Monitor column, activate the Link interrupted on enabled device ports function.
 Open the Diagnostics > Status Configuration > Device Status dialog, Port tab.

| enable                                | Change to the Privileged EXEC mode.                                                                                   |
|---------------------------------------|-----------------------------------------------------------------------------------------------------------------------|
| configure                             | Change to the Configuration mode.                                                                                     |
| signal-contact 1 monitor link-failure | Monitors the ports/interfaces link. When the link interrupts on a monitored port/interface, the signal contact opens. |
| interface 1/1                         | Change to the interface configuration mode of interface $1/1$ .                                                       |
| signal-contact 1 link-alarm           | Monitors the port/interface link. When the link interrupts on the port/interface, the signal contact opens.           |

#### **Events which can be monitored**

| Table 47: | Device Status events |
|-----------|----------------------|
|-----------|----------------------|

| Name                                 | Meaning                                                                                                                                   |
|--------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------|
| Temperature                          | When the temperature exceeds or falls below the value specified.                                                                          |
| Ring redundancy                      | When ring redundancy is present, enable this function to monitor.                                                                         |
| Connection errors                    | Enable this function to monitor every port link event in which the <i>Propagate connection error</i> checkbox is active.                  |
| External memory not in sync with NVM | The device monitors synchronization between the device configuration and the configuration stored in the external memory ( <i>ENVM</i> ). |
| External memory removed              | Enable this function to monitor the presence of an external storage device.                                                               |
| Power supply                         | Enable this function to monitor the power supply.                                                                                         |

### **Displaying the signal contact's status**

The device gives you additional options for displaying the status of the signal contact:

- Display in the Graphical User Interface
- Query in the Command Line Interface

Perform the following steps:

□ Open the *Basic Settings* > *System* dialog.

The *Signal contact status* frame displays the signal contact status and informs you about alarms that have occurred. When an alarm currently exists, the frame is highlighted.

show signal-contact 1 all

Displays signal contact settings for the specified signal contact.

# 14.5 Port status indication

To view the status of the ports, perform the following steps:



□ Open the *Basic Settings* > *System* dialog.

The dialog displays the device with the current configuration. Furthermore, the dialog indicates the status of the individual ports with a symbol.

The following symbols represent the status of the individual ports. In some situations, these symbols interfere with one another. When you position the mouse pointer over the port icon, a bubble help displays a detailed description of the port state.

Table 48: Symbols identifying the status of the ports

| Criterion             | Symbol                                                                                                                                                                                                                                                                                                                                                                                                                           |
|-----------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Bandwidth of the port | <ul> <li>10 Mbit/s         Port activated, connection okay, full-duplex mode         100 Mbit/s         Port activated, connection okay, full-duplex mode         1000 Mbit/s         Port activated, connection okay, full-duplex mode     </li> </ul>                                                                                                                                                                          |
| Operating state       | <ul> <li>Half-duplex mode enabled</li> <li>See the Basic Settings &gt; Port dialog, Configuration tab, Automatic configuration checkbox, Manual configuration field and Manual cable crossing (Auto. conf. off) field.</li> <li>Autonegotiation enabled</li> <li>See the Basic Settings &gt; Port dialog, Configuration tab, Automatic configuration checkbox.</li> <li>The port is blocked by a redundancy function.</li> </ul> |
| AdminLink             | <ul> <li>The port is deactivated, connection okay</li> <li>The port is deactivated, no connection set up</li> <li>See the Basic Settings &gt; Port dialog, Configuration tab, Port on checkbox and Link/Current settings field.</li> </ul>                                                                                                                                                                                       |

# **14.6 Port event counter**

The port statistics table lets experienced network administrators identify possible detected problems in the network.

This table displays the contents of various event counters. The packet counters add up the events sent and the events received. In the *Basic Settings > Restart* dialog, you can reset the event counters.

| Counter            | Indication of known possible weakness                                                                                                                                                |
|--------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Received fragments | <ul> <li>Non-functioning controller of the connected device</li> <li>Electromagnetic interference in the transmission medium</li> </ul>                                              |
| CRC Error          | <ul> <li>Non-functioning controller of the connected device</li> <li>Electromagnetic interference in the transmission medium</li> <li>Inoperable component in the network</li> </ul> |
| Collisions         | <ul> <li>Non-functioning controller of the connected device</li> <li>Network over extended/lines too long</li> <li>Collision or a detected fault with a data packet</li> </ul>       |

Table 49: Examples indicating known weaknesses

Perform the following steps:

- □ To display the event counter, open the *Basic Settings > Port* dialog, *Statistics* tab.
- □ To reset the counters, in the *Basic Settings* > *Restart* dialog, click the *Clear port statistics* button.

### 14.6.1 Detecting non-matching duplex modes

Problems occur when 2 ports directly connected to each other have mismatching duplex modes. These problems are difficult to track down. The automatic detection and reporting of this situation has the benefit of recognizing mismatching duplex modes before problems occur.

This situation arises from an incorrect configuration, for example, deactivation of the automatic configuration on the remote port.

A typical effect of this non-matching is that at a low data rate, the connection seems to be functioning, but at a higher bi-directional traffic level the local device records a lot of CRC errors, and the connection falls significantly below its nominal capacity.

The device lets you detect this situation and report it to the network management station. In the process, the device evaluates the error counters of the port in the context of the port settings.

#### Possible causes of port error events

The following table lists the duplex operating modes for TX ports, with the possible fault events. The meanings of terms used in the table are as follows:

- Collisions
  - In half-duplex mode, collisions mean normal operation.
- Duplex problem Mismatching duplex modes.

► EMI

Electromagnetic interference.

Network extension

The network extension is too great, or too many cascading hubs.

Collisions, Late Collisions

In full-duplex mode, no incrementation of the port counters for collisions or Late Collisions. CRC Error

The device evaluates these errors as non-matching duplex modes in the manual full duplex mode.

| Table 50: | Evaluation of non-matching of the duplex mo | bde |
|-----------|---------------------------------------------|-----|
|-----------|---------------------------------------------|-----|

| No. | Automatic configuration | Current duplex mode | Detected error<br>events (≥ 10 after<br>link up) | Duplex modes            | Possible causes                              |
|-----|-------------------------|---------------------|--------------------------------------------------|-------------------------|----------------------------------------------|
| 1   | marked                  | Half duplex         | None                                             | OK                      |                                              |
| 2   | marked                  | Half duplex         | Collisions                                       | OK                      |                                              |
| 3   | marked                  | Half duplex         | Late Collisions                                  | Duplex problem detected | Duplex problem,<br>EMI, network<br>extension |
| 4   | marked                  | Half duplex         | CRC Error                                        | ОК                      | EMI                                          |
| 5   | marked                  | Full duplex         | None                                             | OK                      |                                              |
| 6   | marked                  | Full duplex         | Collisions                                       | OK                      | EMI                                          |
| 7   | marked                  | Full duplex         | Late Collisions                                  | ОК                      | EMI                                          |
| 8   | marked                  | Full duplex         | CRC Error                                        | OK                      | EMI                                          |
| 9   | unmarked                | Half duplex         | None                                             | OK                      |                                              |
| 10  | unmarked                | Half duplex         | Collisions                                       | OK                      |                                              |
| 11  | unmarked                | Half duplex         | Late Collisions                                  | Duplex problem detected | Duplex problem,<br>EMI, network<br>extension |
| 12  | unmarked                | Half duplex         | CRC Error                                        | OK                      | EMI                                          |
| 13  | unmarked                | Full duplex         | None                                             | OK                      |                                              |
| 14  | unmarked                | Full duplex         | Collisions                                       | OK                      | EMI                                          |
| 15  | unmarked                | Full duplex         | Late Collisions                                  | OK                      | EMI                                          |
| 16  | unmarked                | Full duplex         | CRC Error                                        | Duplex problem detected | Duplex problem,<br>EMI                       |

# 14.7 Auto-Disable

The device can disable a port due to several configurable reasons. Each reason causes the port to "shut down". In order to recover the port from the shut down state, you can manually clear the condition which caused the port to shut down or specify a timer to automatically re-enable the port.

If the configuration displays a port as enabled, but the device detects an error or change in the condition, then the software shuts down that port. In other words, the device software disables the port because of a detected error or change in the condition.

If a port is auto-disabled, then the device effectively shuts down the port and the port blocks traffic. The port LED blinks green 3 times per period and identifies the reason for the shutdown. In addition, the device creates a log file entry which lists the causes of the deactivation. When you re-enable the port after a timeout using the *Auto-Disable* function, the device generates a log entry.

The *Auto-Disable* function provides a recovery function which automatically enables an autodisabled port after a user-defined time. When this function enables a port, the device sends an SNMP trap with the port number, but without a value for the *Reason* parameter.

The Auto-Disable function serves the following purposes:

- It assists the network administrator in port analysis.
- It reduces the possibility that this port causes the network to be instable.

The Auto-Disable function is available for the following functions:

- Link flap (Port Monitor function)
- CRC/Fragments (Port Monitor function)
- Duplex Mismatch detection (*Port Monitor* function)
- DHCP Snooping
- Dynamic ARP Inspection
- Spanning Tree
- Port Security
- Overload detection (Port Monitor function)
- Link speed/Duplex mode detection (Port Monitor function)

In the following example, you configure the device to disable a port due to detected violations to the thresholds specified the *Diagnostics > Ports > Port Monitor* dialog, *CRC/Fragments* tab, and then automatically re-enable the disabled port.

- □ Open the *Diagnostics* > *Ports* > *Port Monitor* dialog, *CRC/Fragments* tab.
- $\Box$  Verify that the thresholds specified in the table concur to your preferences for port 1/1.
- □ Open the *Diagnostics* > *Ports* > *Port Monitor* dialog, *Global* tab.
- □ To enable the function, select the *On* radio button in the *Operation* frame.
- □ To allow the device to disable the port due to detected errors, mark the checkbox in the *CRC/Fragments on* column for port 1/1.

- □ In the *Action* column you can choose how the device reacts to detected errors. In this example, the device disables port 1/1 for threshold violations and then automatically reenables the port.
  - ▶ To allow the device to disable and automatically re-enable the port, select the value *auto-disable* and configure the *Auto-Disable* function. The value *auto-disable* only works in conjunction with the *Auto-Disable* function.

The device can also disable a port without auto re-enabling.

- To allow the device to disable the port only, select the value disable port. To manually re-enable a disabled port, highlight the port.
  - Click the  $\equiv$  button and then the *Reset* item.
- ▶ When you configure the *Auto-Disable* function, the value *disable* port also automatically re-enables the port.
- □ Open the *Diagnostics* > *Ports* > *Port Monitor* dialog, *Auto-disable* tab.
- □ To allow the device to auto re-enable the port after it was disabled due to detected threshold violations, mark the checkbox in the *CRC error* column.
- □ Open the *Diagnostics* > *Ports* > *Port Monitor* dialog, *Port* tab.
- □ Specify the delay time as 120 s in the *Reset timer* [s] column for the ports you want to enable.

**Note:** The *Reset* item lets you enable the port before the time specified in the *Reset timer* [s] column counts down.

| enable                                              | Change to the Privileged EXEC mode.                                                                            |
|-----------------------------------------------------|----------------------------------------------------------------------------------------------------------------|
| configure                                           | Change to the Configuration mode.                                                                              |
| interface 1/1                                       | Change to the interface configuration mode of interface 1/1.                                                   |
| port-monitor condition crc-fragments count 2000     | Specifying the CRC-Fragment counter to 2000 parts per million.                                                 |
| port-monitor condition crc-fragments<br>interval 15 | Sets the measure interval to 15 seconds for CRC-<br>Fragment detection.                                        |
| auto-disable timer 120                              | Specifies the waiting period of 120 seconds, after which the <i>Auto-disable</i> function re-enables the port. |
| exit                                                | Change to the Configuration mode.                                                                              |
| auto-disable reason crc-error                       | Activate the auto-disable CRC function.                                                                        |
| port-monitor condition crc-fragments<br>mode        | Activate the CRC-Fragments condition to trigger an action.                                                     |
| port-monitor operation                              | Activate the Port Monitor function.                                                                            |

When the device disables a port due to threshold violations, the device lets you use the following commands to manually reset the disabled port.

| enable             | Change to the Privileged EXEC mode.                          |
|--------------------|--------------------------------------------------------------|
| configure          | Change to the Configuration mode.                            |
| interface 1/1      | Change to the interface configuration mode of interface 1/1. |
| auto-disable reset | Lets you enable the port before the Timer counts down.       |

# 14.8 Displaying the SFP status

The SFP status display lets you look at the current SFP module connections and their properties. The properties include:

- module type
- serial number of media module
- ▶ temperature in ° C
- transmission power in mW
- receive power in mW

Perform the following step:

□ Open the *Diagnostics* > *Ports* > *SFP* dialog.

# 14.9 Topology discovery

IEEE 802.1AB defines the Link Layer Discovery Protocol (LLDP). LLDP lets you automatically detect the LAN network topology.

Devices with LLDP active:

- broadcast their connection and management information to neighboring devices on the shared LAN. When the receiving device has its *LLDP* function active, evaluation of the devices occur.
- receive connection and management information from neighbor devices on the shared LAN, provided these adjacent devices also have LLDP active.
- build a management information database and object definitions for storing information about adjacent devices with LLDP active.

As the main element, the connection information contains an exact, unique identifier for the connection end point: MAC (Service Access Point). This is made up of a device identifier which is unique on the entire network and a unique port identifier for this device.

- Chassis identifier (its MAC address)
- Port identifier (its port-MAC address)
- Description of port
- System name
- System description
- Supported system capabilities
- System capabilities currently active
- Interface ID of the management address
- VLAN-ID of the port
- Auto-negotiation status on the port
- Medium, half/full duplex setting and port speed setting
- Information about the VLANs installed in the device (VLAN-ID and VLAN name, irrespective of whether the port is a VLAN participant).

A network management station can call up this information from devices with activated LLDP. This information enables the network management station to map the topology of the network.

Non-LLDP devices normally block the special Multicast LLDP IEEE MAC address used for information exchange. Non-LLDP devices therefore discard LLDP packets. If you position a non-LLDP capable device between 2 LLDP capable devices, then the non-LLDP capable device prohibits information exchanges between the 2 LLDP capable devices.

The Management Information Base (MIB) for a device with LLDP capability holds the LLDP information in the IIdp MIB and in the private SA2-LLDP-EXT-HM-MIB and SA2-LLDP-MIB.

### 14.9.1 Displaying the Topology discovery results

Display the topology of the network. To do this, perform the following step:



□ Open the *Diagnostics* > *LLDP* > *Topology Discovery* dialog, *LLDP* tab.

When you use a port to connect several devices, for example via a hub, the table contains a line for each connected device.

Activating Display FDB Entries at the bottom of the table lets you display devices without active LLDP support in the table. In this case, the device also includes information from its FDB (forwarding database).

If you connect the port to devices with the topology discovery function active, then the devices exchange LLDP Data Units (LLDPDU) and the topology table displays these neighboring devices.

When a port connects only devices without an active topology discovery, the table contains a line for this port to represent the connected devices. This line contains the number of connected devices.

The FDB address table contains MAC addresses of devices that the topology table hides for the sake of clarity.

### 14.9.2 LLDP-Med

LLDP for Media Endpoint Devices (LLDP-MED) is an extension to LLDP that operates between endpoint devices. Endpoints include devices such as IP phones, or other Voice over IP (VoIP) devices or servers and network devices such as switches. It specifically provides support for VoIP applications. LLDP-MED provides this support using an additional set of common type-length-value (TLV) advertisement messages, for capabilities discovery, network policy, Power over Ethernet, inventory management and location information.

The device supports the following TLV messages:

capabilities TLV

Lets the LLDP-MED endpoints determine the capabilities that the connected device supports and what capabilities the device has enabled.

Network policy TLV

Lets both network connectivity devices and endpoints advertise VLAN configurations and associated attributes for the specific application on that port. For example, the device notifies a phone of the VLAN number. The phone connects to a switch, obtain its VLAN number, and then starts communicating with the call control.

LLDP-MED provides the following functions:

- Network policy discovery, including VLAN ID, 802.1p priority and Diffserv code point (DSCP)
- Device location and topology discovery based on LAN-level MAC/port information
- Endpoint move detection notification, from network connectivity device to the associated VoIP management application
- Extended device identification for inventory management
- Identification of endpoint network connectivity capabilities, for example, multi-port IP Phone with embedded switch or bridge capability
- Application level interactions with the LLDP protocol elements to provide timely startup of LLDP to support rapid availability of an Emergency Call Service
- Applicability of LLDP-MED to Wireless LAN environments, support for Voice over Wireless LAN

# **14.10 Detecting loops**

Loops in the network cause connection interruptions or data loss. This also applies to temporary loops. The automatic detection and reporting of this situation lets you detect it faster and diagnose it more easily.

# A WARNING

#### UNINTENDED EQUIPMENT OPERATION

To help avoid loops during the configuration phase, configure each device of the ring individually. Before you connect the redundant lines, complete the configuration of the other devices of the ring configuration.

Failure to follow these instructions can result in death, serious injury, or equipment damage.

An incorrect configuration causes loops, for example, deactivating Spanning Tree.

The device lets you detect the effects typically caused by loops and report this situation automatically to the network management station. You have the option here to specify the magnitude of the loop effects that trigger the device to send a report.

BPDU frames sent from the designated port and received on either a different port of the same device or the same port within a short time, is a typical effect of a loop.

To check if the device has detected a loop, perform the following steps:

- □ Open the Switching > L2-Redundancy > Spanning Tree > Port dialog, CIST tab.
- Check the value in the Port state and Port role fields. If the Port state field displays the value discarding and the Port role field displays the value backup, then the port is in a loop status.
  or
- □ Open the Switching > L2-Redundancy > Spanning Tree > Port dialog, Guards tab.
- □ Check the value in the *Loop state* column. If the field displays the value true, then the port is in a loop status.

# **14.11** Help protect against layer 2 network loops

The device helps protect against layer 2 network loops.

A network loop can lead to a standstill of the network due to overload. A possible reason is the continuous duplication of data packets due to a misconfiguration. The cause could be, for example, an incorrectly plugged cable or faulty settings in the device.

For example, a layer 2 network loop can occur in the following cases, if no redundancy protocols are active:

- Two ports of the same device are directly connected to each other.
- More than one active connection is established between two devices.



### UNINTENDED EQUIPMENT OPERATION

To help avoid loops during the configuration phase, configure each device of the layer 2 network individually. Before you connect the redundant lines, complete the configuration of the other devices of the layer 2 network.

Failure to follow these instructions can result in death, serious injury, or equipment damage.

### 14.11.1 Application example

The figure displays examples for possible layer 2 loops in a network. The *Loop Protection* function is enabled in every device.

► A: Active mode

Ports that are intended to connect end devices operate in the *active* mode. The device evaluates and sends *loop detection* packets on these ports.

#### P: Passive mode

Ports which belong to the redundant rings operate in the *passive* mode. The device only evaluates *loop detection* packets on these ports.

#### Loop 1..Loop 4

Unintentionally configured layer 2 network loops.

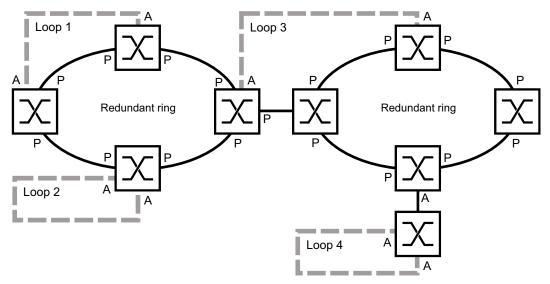



Figure 64: Examples for unintended layer 2 network loops

#### Assign the Loop Protection settings to the ports

For each active and each passive port, assign the settings of the Loop Protection function.

- □ Open the *Diagnostics* > *Loop Protection* dialog.
- □ In the *Global* frame, *Transmit interval* field, adjust the value, if necessary.
- □ In the *Global* frame, *Receive threshold* field, adjust the value, if necessary.
- □ In the *Mode* column, specify the behavior of the *Loop Protection* function on the port:
  - active for ports that are intended to connect end devices
  - *passive* for ports which belong to the redundant rings
- In the Action column, specify the value all.
   When the device detects a layer 2 loop on this port, then it sends a trap and disables the port using the Auto-Disable function. If necessary, adjust the value.
- □ In the Active column, mark the checkbox.
- $\Box$  Save the changes temporarily. To do this, click the  $\checkmark$  button.

| enable                         | Change to the Privileged EXEC mode.                 |
|--------------------------------|-----------------------------------------------------|
| configure                      | Change to the Configuration mode.                   |
| loop-protection tx-interval 5  | Specify the transmit interval, if necessary.        |
| loop-protection rx-threshold 1 | Specify the receive threshold, if necessary.        |
| interface 1/1                  | Change to the Interface mode.<br>Example: port 1/1. |

| loop-protection mode active  | Specify the mode active for ports that are intended to connect end devices.                      |
|------------------------------|--------------------------------------------------------------------------------------------------|
| loop-protection mode passive | Specify the mode passive for ports which belong to the redundant rings.                          |
| loop-protection action all   | Specify the action that the device performs when it detects a layer 2 network loop on this port. |
| loop-protection operation    | Activate the Loop Protection function on the port.                                               |
| exit                         | Change to the Configuration mode.                                                                |

#### **Activate the Auto-Disable function**

After you assigned the Loop Protection settings to the ports, activate the Auto-Disable function.

Perform the following steps:



□ In the *Configuration* frame, mark the *Auto-disable* checkbox.

 $\Box$  Save the changes temporarily. To do this, click the  $\checkmark$  button.

loop-protection auto-disable

Activate the *Auto-Disable* function.

### **Enable the Loop Protection function in the device**

When finished, enable the Loop Protection function in the device.

Perform the following steps:

□ In the *Operation* frame, select the *On* radio button.

 $\Box$  Save the changes temporarily. To do this, click the  $\checkmark$  button.

loop-protection operation

Enable the Loop Protection function in the device.

### 14.11.2 Recommendations for redundant ports

Depending on the *Loop Protection* settings, the device disables ports using the *Auto-Disable* function when the device detects a layer 2 network loop.

If any redundancy function is active on a port, then do not activate the *active* mode on this port. Otherwise, port shutdowns on redundant network paths can be the result. In the example above these are the ports which belong to the redundant rings.

Verify that a redundant network path is available as backup media. The device changes to the redundant path in case of the outage of the primary path.

The following settings help avoid port shutdowns on redundant network paths:

- Disable the *Loop Protection* function on redundant ports.
- or
- □ Enable the *passive* mode on redundant ports.

The *Loop Protection* function and the *Spanning Tree* function have an effect on each other. The following steps help avoid unexpected behavior of the device:

- □ Disable the Spanning Tree function on the port on which you want to enable the Loop Protection function. See the Switching > L2-Redundancy > Spanning Tree > Port dialog, STP active column.
- □ Disable the *Spanning Tree* function on the connected port of each connected device. See the *Switching* > *L2-Redundancy* > *Spanning Tree* dialog.

# 14.12 Using the Email Notification function

The device lets you inform users by email about events that have occurred. Prerequisite is that a mail server is available through the network on which the device transfers the emails.

To set up the device to send emails, perform the steps in the following chapters:

- □ Specify the sender address
- □ Specify the triggering events
- □ Specify the recipients
- □ Specify the mail server
- □ Enable/disable the Email Notification function
- □ Send a test email

#### 14.12.1 Specify the sender address

The sender address is the email address that indicates the device which sent the email. In the device, the default setting is switch@se.com.

Change the preset value. To do this, perform the following steps:

- Open the *Diagnostics > Email Notification > Global* dialog.
   In the *Sender* frame, change the value in the *Address* field. Add a valid email address.
   Save the changes temporarily. To do this, click the value butt
  - $\Box$  Save the changes temporarily. To do this, click the  $\checkmark$  button.
- enable configure logging email from-addr <user@doma.in>

Change to the Privileged EXEC mode. Change to the Configuration mode. Changes the sender address.

#### 14.12.2 Specify the triggering events

The device differentiates between the following severities:

| Severity      | Meaning                              |  |
|---------------|--------------------------------------|--|
| emergency     | Device not ready for operation       |  |
| alert         | Immediate user intervention required |  |
| critical      | Critical status                      |  |
| error         | Error status                         |  |
| warning       | Warning                              |  |
| notice        | Significant, normal status           |  |
| informational | Informal message                     |  |
| debug         | Debug message                        |  |

Table 51: Meaning of the severities for events

You have the option of specifying the events of which the device informs you. For this, assign the desired minimum severity to the notification levels of the device.

The device informs the recipients as follows:

- Notification immediate
  - When an event of the severity assigned or more severe occurs, the device sends an email immediately.
- Notification periodic
  - When an event of the severity assigned or more severe occurs, the device logs the event in a buffer.
  - The device sends an email with the log file periodically or if the buffer is full.
  - When an event of a lower severity occurs, the device does not log this event.

Perform the following steps:

□ Open the *Diagnostics* > *Email Notification* > *Global* dialog.

In the *Notification immediate* frame, you specify the settings for emails which the device sends immediately.

□ In the *Severity* field, you specify the minimum severity.

 $\Box$  In the Subject field, you specify the subject of the email.

In the *Notification periodic* frame, you specify the settings for emails which the device sends periodically.

□ In the *Severity* field, you specify the minimum severity.

- □ In the *Subject* field, you specify the subject of the email.
- $\Box$  Save the changes temporarily. To do this, click the  $\checkmark$  button.

| enable                                                                     | Change to the Privileged EXEC mode.                                                         |
|----------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|
| configure                                                                  | Change to the Configuration mode.                                                           |
| logging email severity immediate<br><level></level>                        | Specifies the minimum severity for events for which the device sends an email immediately.  |
| logging email severity periodic<br><level></level>                         | Specifies the minimum severity for events for which the device sends an email periodically. |
| logging email subject add <immediate<br>  periodic&gt; TEXT</immediate<br> | Creates a subject line with the content $\ensuremath{\mathtt{TEXT}}$ .                      |

### 14.12.3 Change the send interval

The device lets you specify in which interval it sends emails with the log file. The default setting is 30 minutes.

Perform the following steps:

Open the *Diagnostics > Email Notification > Global* dialog.
 In the *Notification periodic* frame, you specify the settings for emails which the device sends periodically.
 Change the value in the *Sending interval [min]* field to change the interval.

□ Save the changes temporarily. To do this, click the ✓ button.

| enable                 |          | Change to the Privileged EXEC mode.                                    |
|------------------------|----------|------------------------------------------------------------------------|
| configure              |          | Change to the Configuration mode.                                      |
| logging email duration | <301440> | Specifies the interval at which the device sends emails with log file. |

#### 14.12.4 Specify the recipients

The device lets you specify up to 10 recipients.

Perform the following steps:

- □ Open the Diagnostics > Email Notification > Recipients dialog.
- □ To add a table entry, click the 📰 button.
- □ In the *Notification type* column, specify if the device sends the emails to this recipient immediately or periodically.
- □ In the Address column, specify the email address of the recipient.
- □ In the Active column, mark the checkbox.
- $\Box$  Save the changes temporarily. To do this, click the  $\checkmark$  button.

| enable                                                                                                                             |
|------------------------------------------------------------------------------------------------------------------------------------|
| configure                                                                                                                          |
| logging email to-addr add <110><br>addr <user@doma.in> msgtype<br/><immediately periodically=""  =""></immediately></user@doma.in> |

Change to the Privileged EXEC mode. Change to the Configuration mode. Specifies the recipient with the email address user@doma.in. The device manages the settings in memory 1..10.

#### 14.12.5 Specify the mail server

The device supports encrypted and unencrypted connections to the mail server.

Perform the following steps:

- □ Open the *Diagnostics* > *Email Notification* > *Mail Server* dialog.
- □ To add a table entry, click the 📰 button.
- □ In the *IP* address column, specify the IP address or the DNS name of the server.
- □ In the *Encryption* column, specify the protocol which encrypts the connection between the device and the mail server.
- □ When the mail server uses a port other than the well-known port, specify the TCP port in the *Destination TCP port* column.

When the mail server requests an authentication:

□ In the User name and Password columns, specify the account credentials which the device uses to authenticate on the mail server.

In the Description column, enter a meaningful name for the mail server.
 In the Active column, mark the checkbox.
 Save the changes temporarily. To do this, click the ✓ button.
 enable
 configure
 logging email mail-server add <1..5> addr <IP ADDRESS> [security <a href="https://www.icanceltisvip">coneltisvip</a> [username <USER NAME>]
 password <PASSWORD>]

### 14.12.6 Enable/disable the Email Notification function

Perform the following steps:

[port <1..65535>]

- Open the Diagnostics > Email Notification > Global dialog.
- $\hfill\square$  To enable the function, select the  ${\it On}$  radio button in the Operation frame.
- □ Save the changes temporarily. To do this, click the ✓ button.

| enable                     | Change to the Privileged EXEC mode. |
|----------------------------|-------------------------------------|
| configure                  | Change to the Configuration mode.   |
| logging email operation    | Enables the sending of emails.      |
| no logging email operation | Disables the sending of emails.     |

#### 14.12.7 Send a test email

The device lets you check the settings by sending a test email.

Prerequisite:

- ▶ The email settings are completely specified.
- The *Email Notification* function is enabled.

- □ Open the *Diagnostics* > *Email Notification* > *Mail Server* dialog.
- □ Click the ≡ button and then the *Connection test* item. The dialog displays the *Connection test* window.
- □ In the *Recipient* drop-down list, select to which recipients the device sends the test email.
- □ In the *Message text* field, specify the text of the test email.
- $\Box$  Click the Ok button to send the test email.

| enable                                                                      | Change to the Privileged EXEC mode.                     |
|-----------------------------------------------------------------------------|---------------------------------------------------------|
| configure                                                                   | Change to the Configuration mode.                       |
| logging email test msgtype <urgent non-<br>urgent&gt; TEXT</urgent non-<br> | Sends an email with the content TEXT to the recipients. |

When you do not see any error messages and the recipients obtain the email, the device settings are correct.

# 14.13 **Reports**

The following lists reports and buttons available for diagnostics:

- System Log file
  - The log file is an HTML file in which the device writes device-internal events.
- Audit Trail
- Logs successful commands and user comments. The file also includes SNMP logging.
- Persistent Logging

When the external memory is present, the device saves log entries in a file in the external memory. These files are available after power down. The maximum size, maximum number of retainable files and the severity of logged events are configurable. After obtaining the user-defined maximum size or maximum number of retainable files, the device archives the entries and starts a new file. The device deletes the oldest file and renames the other files to maintain the configured number of files. To review these files use the Command Line Interface or copy them to an external server for future reference.

Download support information

This button lets you download system information as a ZIP archive.

In service situations, these reports provide the technician with the necessary information.

#### 14.13.1 Global settings

Using this dialog you enable or disable where the device sends reports, for example, to a Console, a Syslog Server, or a connection to the Command Line Interface. You also set at which severity level the device writes events into the reports.

Perform the following steps:

- □ Open the *Diagnostics* > *Report* > *Global* dialog.
- □ To send a report to the console, specify the desired level in the *Console logging* frame, *Severity* field.
- $\Box$  To enable the function, select the *On* radio button in the *Console logging* frame.
- $\Box$  Save the changes temporarily. To do this, click the  $\checkmark$  button.

The device buffers logged events in 2 separate storage areas so that the device keeps log entries for urgent events. Specify the minimum severity for events that the device logs to the buffered storage area with a higher priority.

Perform the following steps:

- □ To send events to the buffer, specify the desired level in the *Buffered logging* frame, *Severity* field.
- □ Save the changes temporarily. To do this, click the ✓ button.

When you activate the logging of SNMP requests, the device logs the requests as events in the Syslog. The *Log SNMP get request* function logs user requests for device configuration information. The *Log SNMP set request* function logs device configuration events. Specify the minimum level for events that the device logs in the Syslog.

Perform the following steps:

- □ Enable the *Log SNMP get request* function for the device in order to send SNMP Read requests as events to the Syslog server.
  - To enable the function, select the On radio button in the SNMP logging frame.
- □ Enable the *Log SNMP set request* function for the device in order to send SNMP Write requests as events to the Syslog server.
- To enable the function, select the On radio button in the SNMP logging frame.
- □ Choose the desired severity level for the get and set requests.
- $\Box$  Save the changes temporarily. To do this, click the  $\checkmark$  button.

When active, the device logs configuration changes made using the Command Line Interface, to the audit trail. This feature is based on the IEEE 1686 standard for Substation Intelligent Electronic Devices.

Perform the following steps:

- □ Open the *Diagnostics* > *Report* > *Global* dialog.
- □ To enable the function, select the *On* radio button in the *CLI logging* frame.
- $\Box$  Save the changes temporarily. To do this, click the  $\checkmark$  button.

The device lets you save the following system information data in one ZIP file on your PC:

- audittrail.html
- defaultconfig.xml
- script
- runningconfig.xml
- supportinfo.html
- systeminfo.html
- systemlog.html

The device creates the file name of the ZIP archive automatically in the format <IP\_address>\_<system\_name>.zip.

Perform the following steps:

- □ Click the ≡ button and then the *Download support information* item.
- □ Select the directory in which you want to save the support information.
- $\Box$  Save the changes temporarily. To do this, click the  $\checkmark$  button.

### 14.13.2 Syslog

The device enables you to send messages about device internal events to one or more Syslog servers (up to 8). Additionally, you also include SNMP requests to the device as events in the Syslog.

**Note:** To display the logged events, open the *Diagnostics* > *Report* > *Audit Trail* dialog or the *Diagnostics* > *Report* > *System Log* dialog.

Perform the following steps:

- □ Open the *Diagnostics* > *Syslog* dialog.
- To add a table entry, click the button.
- □ In the *IP address* column, enter the IP address or *Hostname* of the Syslog server. You can specify a valid IPv4 or IPv6 address for the Syslog server.
- □ In the *Destination UDP port* column, specify the TCP or UDP port on which the Syslog server expects the log entries.
- □ In the *Min. severity* column, specify the minimum severity level that an event requires for the device to send a log entry to this Syslog server.
- □ Mark the checkbox in the *Active* column.
- □ To enable the function, select the *On* radio button in the *Operation* frame.
- $\Box$  Save the changes temporarily. To do this, click the  $\checkmark$  button.

In the SNMP logging frame, configure the following settings for read and write SNMP requests:

- □ Open the *Diagnostics* > *Report* > *Global* dialog.
- Enable the Log SNMP get request function for the device in order to send SNMP Read requests as events to the Syslog server.
   To enable the function, select the On radio button in the SNMP logging frame.
- □ Enable the *Log SNMP set request* function for the device in order to send SNMP Write requests as events to the Syslog server.
  - To enable the function, select the On radio button in the SNMP logging frame.
- □ Choose the desired severity level for the get and set requests.
- □ Save the changes temporarily. To do this, click the ✓ button.

| enable                               |                  | Change to the Privileged EXEC mode.                                                                                                                   |
|--------------------------------------|------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------|
| configure                            |                  | Change to the Configuration mode.                                                                                                                     |
| logging host add 1 add<br>severity 3 | dr 10.0.1.159    | Adds a new recipient in the Syslog servers list. The value 3 specifies the severity level of the event that the device logs. The value 3 means error. |
| logging host add 2 addr<br>4         | 2001::1 severity | Add a new IPv6 recipient in the Syslog servers list.<br>The value 4 means warning.                                                                    |
| logging syslog operati               | ion              | Enable the Syslog function.                                                                                                                           |
| exit                                 |                  | Change to the Privileged EXEC mode.                                                                                                                   |
| show logging host                    |                  | Display the Syslog host settings.                                                                                                                     |
| No. Server IP                        | Port Max. Sever  | ity Type Status                                                                                                                                       |
| 1 10.0.1.159<br>2 2001::1            | 514 error        | 1 5                                                                                                                                                   |
| configure                            |                  | Change to the Configuration mode.                                                                                                                     |
| logging snmp-requests                | get operation    | Logs SNMP GET requests.                                                                                                                               |
| logging snmp-requests                | get severity 5   | The value 5 specifies the severity level of the event that the device logs in case of SNMP GET requests. The value 5 means notice.                    |

| logging snmp-requests set operation  | Logs SNMP SET requests.                                                                                                            |
|--------------------------------------|------------------------------------------------------------------------------------------------------------------------------------|
| logging snmp-requests set severity 5 | The value 5 specifies the severity level of the event that the device logs in case of SNMP SET requests. The value 5 means notice. |
| exit                                 | Change to the Privileged EXEC mode.                                                                                                |
| show logging snmp                    | Display the SNMP logging settings.                                                                                                 |
| Log SNMP GET requests : e            | nabled                                                                                                                             |
| Log SNMP GET severity : n            | otice                                                                                                                              |
| Log SNMP SET requests : e            | nabled                                                                                                                             |
| Log SNMP SET severity : n            | otice                                                                                                                              |

### 14.13.3 System Log

The device lets you call up a log file of the system events. The table in the *Diagnostics* > *Report* > System Log dialog lists the logged events.

Perform the following steps:

 $\Box$  To update the content of the log, click the  $\bigotimes$  button.

 $\Box$  To save the content of the log as an html file, click the  $\equiv$  button and then the *Reset* item.

 $\Box$  To delete the content of the log, click the  $\equiv$  button and then the *Reset* item.

□ To search the content of the log for a key word, use the search function of your web browser.

Note: You have the option to also send the logged events to one or more Syslog servers.

#### 14.13.4 Syslog over TLS

The Transport Layer Security (TLS) is a cryptographic protocol designed to provide communications security over a computer network. The primary goal of the TLS protocol is to provide privacy and data integrity between two communicating computer applications.

After initiating a connection with a Syslog server, using a TLS handshake, the device validates the certificate received from the server. For this purpose, you transfer the PEM certificate from a remote server or from the external memory onto the device. Verify that the configured IP address or DNS name of the server matches the information provided in the certificate. You find the information in the Common Name or in the Subject Alternative Name fields of the certificate.

The device sends the TLS encrypted Syslog messages over the TCP port specified in the *Destination UDP port* column.

**Note:** Specify the IP address or DNS name on the server to match the IP Address or DNS name provided in the server certificate. You find the values entered in the certificate as the Common Name or the Subject Alternative Name.

#### Example

The given example describes the configuration of the *Syslog* function. By following these steps, the device lets you send the TLS encrypted Syslog messages over the TCP port specified in the *Destination UDP port* column.

The Syslog messages that are sent from a device to a syslog server can pass through unsecured networks. To configure a Syslog server over TLS, transfer the Certificate Authority (CA) certificate onto the device.

**Note:** In order for the changes to take effect after loading a new certificate, restart the *Syslog* function.

Perform the following steps:

- □ Open the *Diagnostics* > *Syslog* dialog.
- □ To initiate a connection with the Syslog servers, select the *On* radio button in the *Operation* frame.
- □ Save the changes temporarily. To do this, click the ✓ button.

The device validates the certificate received. The device also authenticates the server and starts sending Syslog messages.

Transfer the PEM certificate from the remote server or from the external memory onto the device.

| enable                                            | Change to the Privileged EXEC mode.                                       |
|---------------------------------------------------|---------------------------------------------------------------------------|
| configure                                         | Change to the Configuration mode.                                         |
| logging host add 1 addr 192.168.3.215             | Add index 1 to the Syslog server with IPv4 address 192.168.3.215.         |
| logging host add 2 addr 2001::1                   | Add index 2 to the Syslog server with IPv6 address 2001::1.               |
| logging host modify 1 port 6512 type<br>systemlog | Specifying the port number 6512 and logging the events in the system log. |
| logging host modify 1 transport tls               | Specify the type of transmission as $tls$ .                               |
| logging host modify 1 severity informational      | Specifying the type of event to log into the system log as informational. |
| exit                                              | Change to the Privileged EXEC mode.                                       |
| copy syslogcacert evmm                            | Copy CA certificates from external memory to the device.                  |
| show logging host                                 | Display the Syslog host settings.                                         |

### 14.13.5 Audit Trail

The *Diagnostics > Report > Audit Trail* dialog contains system information and changes to the device configuration performed through the Command Line Interface and SNMP. In the case of device configuration changes, the dialog displays Who changed What and When.

The *Diagnostics* > *Syslog* dialog lets you specify up to 8 Syslog servers to which the device sends Audit Trails.

The following list contains log events:

- changes to configuration parameters
- Commands (except show commands) using the Command Line Interface
- Command logging audit-trail <string> using the Command Line Interface which logs the comment
- Automatic changes to the System Time
- watchdog events
- locking a user after several unsuccessful login attempts
- ▶ User login, either locally or remote, using the Command Line Interface
- Manual, user-initiated, logout
- ▶ Timed logout after a user-defined period of inactivity in the Command Line Interface
- ▶ file transfer operation including a Firmware Update
- Configuration changes using Ethernet Switch Configurator
- Automatic configuration or firmware updates using the external memory
- Blocked access to the device management due to invalid login
- rebooting
- opening and closing SNMP over HTTPS tunnels
- Detected power failures

# **14.14** Network analysis with TCPdump

Tcpdump is a packet-sniffing UNIX utility used by network administrators to sniff and analyze traffic on a network. A couple of reasons for sniffing traffic on a network is to verify connectivity between hosts, or to analyze the traffic traversing the network.

TCPDump in the device provides the possibility to decode or capture packets received and transmitted by the Management CPU. This function is available using the debug command. Refer to the "Command Line Interface" reference manual for further information about the TCPDump function.

# 14.15 Monitoring the data traffic

The device lets you forward data packets that pass through the device to a destination port. There you can monitor and evaluate the data packets.

The device provides you with the following options: Port Mirroring

### 14.15.1 Port Mirroring

The *Port Mirroring* function lets you copy data packets from physical source ports to a physical destination port.

You monitor the data traffic on the source ports in the sending and receiving directions with a management tool connected on the destination port, for example an RMON probe. The function has no affect on the data traffic running on the source ports.

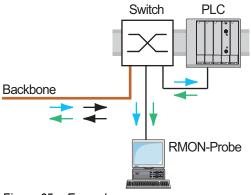



Figure 65: Example

On the destination port, the device only forwards the data packets copied from the source ports.

Before you switch on the *Port Mirroring* function, mark the checkbox *Allow management* to access the device management via the destination port. The device lets users access the device management via the destination port without interrupting the active *Port Mirroring* session.

Note: The device duplicates multicasts, broadcasts and unknown unicasts on the destination port.

The VLAN settings on the destination port remain unchanged. Prerequisite for access to the device management on the destination port is that the destination port is a member of the device management VLAN.

### **Enabling the Port Mirroring function**

Perform the following steps:

- $\Box$  Open the *Diagnostics* > *Ports* > *Port Mirroring* dialog.
- Specify the source ports.
   Mark the checkbox in the *Enabled* column for the relevant ports.
  - Specify the destination port.
     In the *Destination port* frame, select the desired port in the *Primary port* drop-down list.
     The drop-down list only displays available ports. Ports that are already specified as source ports are unavailable.
- When needed, specify a second destination port.
   In the *Destination port* frame, select the desired port in the *Secondary port* drop-down list.
   The prerequisite is that you have already specified the primary destination port.
- □ In order to access the device management via the destination port: In the *Destination port* frame, mark the *Allow management* checkbox.
- $\Box$  Save the changes temporarily. To do this, click the  $\checkmark$  button.

To deactivate the *Port Mirroring* function and restore the default settings, click the  $\equiv$  button and then the *Reset config* item.

# 14.16 Self-test

The device checks its assets during the boot process and occasionally thereafter. The device checks system task availability or termination and the available amount of memory. Furthermore, the device checks for application functionality and any hardware degradation in the chip set.

If the device detects a loss in integrity, then the device responds to the degradation with a userdefined action. The following categories are available for configuration.

🕨 task

Action to be taken in case a task is unsuccessful.

resource

Action to be taken due to the lack of resources.

software

Action taken for loss of software integrity; for example, code segment checksum or access violations.

hardware Action taken due to hardware degradation

Configure each category to produce an action in case the device detects a loss in integrity. The following actions are available for configuration.

```
log only
```

This action writes a message to the logging file.

send trap

Sends an SNMP trap to the trap destination.

reboot

If activated, then an error in the category will cause the device to reboot

Perform the following steps:

- □ Open the *Diagnostics* > *System* > *Selftest* dialog.
- □ In the *Action* column, specify the action to perform for a cause.

 $\Box$  Save the changes temporarily. To do this, click the  $\checkmark$  button.

| enable                             | Change to the Privileged EXEC mode.                             |
|------------------------------------|-----------------------------------------------------------------|
| configure                          | Change to the Configuration mode.                               |
| selftest action task log-only      | To send a message to the event log when a task is unsuccessful. |
| selftest action resource send-trap | When there are insufficient resources, send an SNMP trap.       |
| selftest action software send-trap | When the software integrity has been lost, send an SNMP trap.   |
| selftest action hardware reboot    | To reboot the device when hardware degradation occurs.          |

Disabling these functions lets you decrease the time required to restart the device after a cold start. You find these options in the *Diagnostics* > *System* > *Selftest* dialog, *Configuration* frame.

```
RAM test
```

Activates/deactivates the RAM test function during a cold start.

SysMon1 is available

Activates/deactivates the System Monitor function during a cold start.

Load default config on error Activates/deactivates the loading of the default device configuration in case no readable configuration is available during a restart.

The following settings <u>block your access to the device permanently</u> in case the device does not detect any readable configuration profile at restart.

- ▶ The SysMon1 is available checkbox is unmarked.
- ▶ The Load default config on error checkbox is unmarked.

This is the case, for example, when the password of the configuration profile that you are loading differs from the password set in the device. To have the device unlocked again, contact your sales partner.

| selftest ramtest           | Enable RAM selftest on cold start.                                                 |
|----------------------------|------------------------------------------------------------------------------------|
| no selftest ramtest        | Disable the "ramtest" function.                                                    |
| selftest system-monitor    | Enable the "SysMon1" function.                                                     |
| no selftest system-monitor | Disable the "SysMon1" function.                                                    |
| show selftest action       | Show status of the actions to be taken in the event of device degradation.         |
| show selftest settings     | Display the settings for "ramtest" and "SysMon" settings in event of a cold start. |

# 14.17 Copper cable test

Use this feature to test copper cables attached to an interface for a short or open circuit. The test interrupts traffic flow, when in progress, on this port.

The table displays the state and lengths of each individual pair. The device returns a result with the following meaning:

- normal indicates that the cable is operating properly
- open indicates an interruption in the cable
- short circuit indicates a short circuit in the cable
- untested indicates an untested cable
- Unknown cable unplugged

# **15 Advanced functions of the device**

### **15.1** Using the device as a DHCP server

A DHCP server ("Dynamic Host Configuration Protocol") assigns IP addresses, Gateways, and other networking definitions such as DNS and NTP parameters to clients.

The DHCP operations fall into 4 basic phases: IP discovery, IP lease offer, IP request, and IP lease acknowledgment. Use the acronym DORA which stands for Discovery, Offer, Request, and Acknowledgement to help remember the phases. The server receives client data on UDP port 67 and forwards data to the client on UDP port 68.

The DHCP server provides an IP address pool or "pool", from which it allocates IP addresses to clients. The pool consists of a list of entries. An entry defines either a specific IP address or an IP address range.

The device lets you activate the DHCP server globally and per interface.

### 15.1.1 IP Addresses assigned per port or per VLAN

The DHCP server assigns a static IP address or dynamic range of IP addresses to a client connected to a port or a VLAN. The device lets you create entries for either a port or a VLAN. When creating an entry to assign an IP address to a VLAN, the port entry grays out. When creating an entry to assign an IP address to a port, the VLAN entry grays out.

Static allocation means that the DHCP server assigns the same IP address to a specific client. The DHCP server identifies the client using a unique hardware ID. A static address entry contains one IP address, and applies it to a port or VLAN on which the server receives a request from a specific client. For static allocation, create a pool entry for the ports or one specific port, enter the IP address, and leave the *Last IP address* column empty. Specify a hardware ID with which the DHCP server uniquely identifies the client. This ID is either a MAC address, a client ID, a remote ID, or a circuit ID. When a client contacts the server with the configured hardware ID, the DHCP server allocates the static IP address.

The device also lets you assign a dynamic IP address range to ports or VLANs from which the DHCP server allocates a free IP address from a pool. To add a dynamic pool entry for the ports or VLANs, specify the first and last IP addresses for the IP address range, leaving the *MAC address*, *Client ID*, *Remote ID*, and *Circuit ID* columns empty. Creating multiple pool entries lets you have IP address ranges that contain gaps.

#### 15.1.2 DHCP server static IP address example

In this example, configure the device to allocate a static IP address to a port. The device recognizes clients with unique hardware identification. The Hardware ID in this case is the client MAC address 00:24:E8:D6:50:51. To do this, perform the following steps:

- □ Open the Advanced > DHCP Server > Pool dialog.
- To add a table entry, click the Button.
- □ In the *IP* address column, specify the value 192.168.23.42.
- $\Box$  In the *Port* column, specify the value 1/1.
- □ In the MAC address column, specify the value 00:24:E8:D6:50:51.
- □ To assign the IP address to the client infinitely, in the *Lease time* [s] column, specify the value 4294967295.
- □ Mark the checkbox in the *Active* column.
- □ Open the *Advanced* > *DHCP* Server > *Global* dialog.
- □ For port 1/1, mark the checkbox in the *DHCP* server active column.
- □ To enable the function, select the *On* radio button in the *Operation* frame.
- □ Save the changes temporarily. To do this, click the ✓ button.

#### enable

#### configure

dhcp-server pool add 1 static 192.168.23.42 dhcp-server pool modify 1 mode interface 1/1

dhcp-server pool modify 1 mode mac
00:24:E8:D6:50:51

dhcp-server pool mode 1

dhcp-server pool modify 1 leasetime infinite

dhcp-server operation

interface 1/1

dhcp-server operation

Creating an entry with index 1 and adding the IP address 192.168.23.42 to the static pool.

Change to the Privileged EXEC mode.

Change to the Configuration mode.

Assign the static address in index 1 to interface 1/1.

Assign the IP address in index 1 to the device with the MAC address 00:24:E8:D6:50:51.

Enable the index 1 pool entry.

To allocate the IP address to the client infinitely, modify the entry with index 1.

Enable the DHCP server globally.

Change to the interface configuration mode of interface 1/1.

Activate the DHCP Server server function on this port.

#### 15.1.3 DHCP server dynamic IP address range example

The device lets you create dynamic IP address ranges. Leave the *MAC address*, *Client ID*, *Remote ID* and *Circuit ID* fields empty. To create dynamic IP address ranges with gaps between the ranges add several entries to the table. To do this, perform the following steps:

- □ Open the Advanced > DHCP Server > Pool dialog.
- To add a table entry, click the button.
- □ In the *IP* address column, specify the value 192.168.23.92. This is the first IP address of the range.
- □ In the Last IP address column, specify the value 192.168.23.142. This is the last IP address of the range.
- In the Lease time [s] column, the default setting is 60 days.
- $\Box$  In the *Port* column, specify the value 1/2.
- □ Mark the checkbox in the Active column.
- □ Open the Advanced > DHCP Server > Global dialog.
- □ For port 1/2, mark the checkbox in the *DHCP server active* column.
- □ To enable the function, select the *On* radio button in the *Operation* frame.
- □ Save the changes temporarily. To do this, click the ✓ button.

#### enable

#### configure

dhcp-server pool add 2 dynamic 192.198.23.92 192.168.23.142

dhcp-server pool modify 2 leasetime
{seconds | infinite}

dhcp-server pool add 3 dynamic 192.198.23.172 192.168.23.180

dhcp-server pool modify 3 leasetime
{seconds | infinite}

dhcp-server pool mode 2

dhcp-server pool mode 3

dhcp-server operation

interface 2/1

dhcp-server operation

Change to the Privileged EXEC mode. Change to the Configuration mode. Add a dynamic pool with an IP range from 192.168.23.92 to 192.168.23.142.

Entering the Lease Time in seconds or infinite.

Add a dynamic pool with an IP range from 192.168.23.172 to 192.168.23.180. Entering the Lease Time in seconds or infinite.

Enable the index 2 pool entry.

Enable the index 3 pool entry.

Enable the DHCP server globally.

Change to the interface configuration mode of interface 2/1.

Activate the *DHCP* Server server function on this port.

# 15.2 DHCP L2 Relay

On the front panel of the device you find the following hazard message:

# A WARNING

# UNINTENDED OPERATION

Do not change cable positions if DHCP Option 82 is enabled. Check the user manual before servicing.

Failure to follow these instructions can result in death, serious injury, or equipment damage.

A network administrator uses the DHCP Layer 2 *Relay Agent* to add DHCP client information. This information is required by Layer 3 *Relay Agents* and DHCP servers to assign an address and configuration to a client.

When a DHCP client and server are in the same IP subnet, they exchange IP address requests and replies directly. However, having a DHCP server on each subnet is expensive and often impractical. An alternative to having a DHCP server in every subnet is to use the network devices to relay packets between a DHCP client and a DHCP server located in a different subnet.

A Layer 3 *Relay Agent* is generally a router that has IP interfaces in both the client and server subnets and routes traffic between them. However, in Layer 2 switched networks, there are one or more network devices, switches for example, between the client and the Layer 3 *Relay Agent* or DHCP server. In this case, this device provides a Layer 2 *Relay Agent* to add the information that the Layer 3 *Relay Agent* and DHCP server require to perform their roles in address and configuration assignment.

The following list contains the default settings for this function:

- Global setting:
  - Active setting: disable
- Interface settings:
  - Active setting: disable
  - Trusted Port: disable
- VLAN settings:
  - Active setting: disable
  - Circuit ID: enable
  - Remote ID Type: mac
  - Remote ID: blank

For the DHCPv6 protocol, a *Relay Agent* is used to add *Relay Agent* options to DHCPv6 packets exchanged between a client and a DHCPv6 server. The Lightweight DHCPv6 Relay Agent (LDRA) is described in RFC 6221.

The LDRA processes 2 types of messages:

- The first type of message is the *Relay-Forward* message which contains unique information about the client.
- The second type of message is the *Relay-Reply* message which the DHCPv6 server sends to the *Relay Agent*. The *Relay Agent* then validates the message to include the information encapsulated in the initial *Relay-Forward* message and if valid, sends the packet to the client.

The *Relay-Forward* message contains *Interface-ID* information, also known as *Option 18*. This option provides information that identifies the interface on which the client request was sent. The device discards DHCPv6 packets that do not contain *Option 18* information.

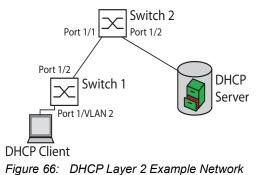
#### 15.2.1 Circuit and Remote IDs

In an IPv4 environment, before forwarding the request of a client to the DHCP server, the device adds the *Circuit ID* and the *Remote ID* to the *Option 82* field of the DHCP request packet.

- ▶ The Circuit ID stores on which port the device received the request of the client.
- The Remote ID contains the MAC address, the IP address, the system name, or a user-defined character string. Using it, the participating devices identify the Relay Agent that received the request of the client.

The device and other *Relay Agents* use this information to re-direct the answer from the DHCP *Relay Agent* to the original client. The DHCP server is able to analyze this data for example to assign the client an IP address from a specific address pool.

Also, the replay packet of the DHCP server contains the *Circuit ID* and the *Remote ID*. Before forwarding the answer to the client, the device removes the information from the *Option 82* field.


### 15.2.2 DHCP L2 Relay configuration

The Advanced > DHCP L2 Relay > Configuration dialog lets you activate the function on the active ports and on the VLANs. In the Operation frame, select the On radio button. Then click the  $\checkmark$  button.

The device forwards DHCPv4 packets with *Option 82* information and DHCPv6 packets with *Option 18* information on those ports for which the checkbox in the *DHCP L2 Relay* column and in the *Trusted port* column is marked. Typically, these are ports in the network of the DHCP server.

The ports to which the DHCP clients are connected, you activate the *DHCP L2 Relay* function, but leave the *Trusted port* checkbox unmarked. On these ports, the device discards DHCPv4 packets with *Option 82* information and DHCPv6 packets with *Option 18* information.

An example configuration for the DHCPv4 L2 Relay function is shown below. The configuration steps for DHCPv6 L2 Relay function are similar, except for the *Circuit ID* and *Remote ID* entries that can only be specified for *Option 82*.



rigure oo. Ditor Layer 2 Example Network

Perform the following steps on Switch 1:

|    | □ Open the Advanced > DHCP L2 Relay > Configuration dialog, Interface tab.                                                                                                                                                                                                                                           |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|    | <ul> <li>For port 1/1, specify the settings as follows:</li> <li>Mark the checkbox in the <i>Active</i> column.</li> </ul>                                                                                                                                                                                           |
|    | <ul> <li>For port 1/2, specify the settings as follows:</li> <li>Mark the checkbox in the Active column.</li> <li>Mark the checkbox in the Trusted port column.</li> </ul>                                                                                                                                           |
|    | □ Open the Advanced > DHCP L2 Relay > Configuration dialog, VLAN ID tab.                                                                                                                                                                                                                                             |
|    | <ul> <li>Specify the settings for VLAN 2 as follows:</li> <li>Mark the checkbox in the <i>Active</i> column.</li> <li>Mark the checkbox in the <i>Circuit ID</i> column.</li> <li>To use the IP address of the device as the <i>Remote ID</i>, in the <i>Remote ID type</i> column, specify the value ip.</li> </ul> |
|    | □ To enable the function, select the <i>On</i> radio button in the <i>Operation</i> frame.                                                                                                                                                                                                                           |
|    | $\Box$ Save the changes temporarily. To do this, click the $\checkmark$ button.                                                                                                                                                                                                                                      |
| Pe | rform the following steps on Switch 2:                                                                                                                                                                                                                                                                               |
|    | □ Open the Advanced > DHCP L2 Relay > Configuration dialog, Interface tab.                                                                                                                                                                                                                                           |

- $\Box$  For port 1/1 and 1/2, specify the settings as follows:
  - Mark the checkbox in the Active column.
  - Mark the checkbox in the *Trusted port* column.
- □ To enable the function, select the *On* radio button in the *Operation* frame.
- □ Save the changes temporarily. To do this, click the ✓ button.

Verify that VLAN 2 is present. Then perform the following steps on Switch 1:  $\Box$  Configure VLAN 2, and specify port 1/1 as a member of VLAN 2.

| enable                      | Change to the Privileged EXEC mode.                                      |
|-----------------------------|--------------------------------------------------------------------------|
| vlan database               | Change to the VLAN configuration mode.                                   |
| dhcp-l2relay circuit-id 2   | Activate the Circuit ID and the DHCP Option 82 on VLAN $\scriptstyle 2.$ |
| dhcp-l2relay remote-id ip 2 | Specify the IP address of the device as the Remote ID on VLAN 2.         |

| dhcp-l2relay mode 2 | Activate the DHCP L2 Relay function on VLAN 2.                  |
|---------------------|-----------------------------------------------------------------|
| exit                | Change to the Privileged EXEC mode.                             |
| configure           | Change to the Configuration mode.                               |
| interface 1/1       | Change to the interface configuration mode of interface $1/1$ . |
| dhcp-l2relay mode   | Activate the DHCP L2 Relay function on the port.                |
| exit                | Change to the Configuration mode.                               |
| interface 1/2       | Change to the interface configuration mode of interface $1/2$ . |
| dhcp-l2relay trust  | Specify the port as Trusted port.                               |
| dhcp-l2relay mode   | Activate the DHCP L2 Relay function on the port.                |
| exit                | Change to the Configuration mode.                               |
| dhcp-l2relay mode   | Enable the DHCP L2 Relay function in the device.                |
|                     |                                                                 |

# Perform the following steps on Switch 2:

| enable             | Change to the Privileged EXEC mode.                             |
|--------------------|-----------------------------------------------------------------|
| configure          | Change to the Configuration mode.                               |
| interface 1/1      | Change to the interface configuration mode of interface $1/1$ . |
| dhcp-l2relay trust | Specify the port as Trusted port.                               |
| dhcp-l2relay mode  | Activate the DHCP L2 Relay function on the port.                |
| exit               | Change to the Configuration mode.                               |
| interface 1/2      | Change to the interface configuration mode of interface $1/2$ . |
| dhcp-l2relay trust | Specify the port as Trusted port.                               |
| dhcp-l2relay mode  | Activate the DHCP L2 Relay function on the port.                |
| exit               | Change to the Configuration mode.                               |
| dhcp-l2relay mode  | Enable the DHCP L2 Relay function in the device.                |

# **15.3 Using the device as a DNS client**

The Domain Name System (DNS) client queries DNS servers to resolve host names and IP addresses of network devices. Much like a telephone book, the DNS client converts names of devices into IP addresses. When the DNS client receives a request to resolve a new name, the DNS client first queries its internal static database, then the assigned DNS servers for the information. The DNS client saves the queried information in a cache for future requests.

The device lets you configure the DNS client from the DHCP server using the device management VLAN. The device also lets you assign host names to IP addresses statically.

The DNS client provides the following user functions:

- DNS server list, with space for 4 domain name server IP addresses
- > static hostname to IP address mapping, with space for 64 configurable static hosts
- host cache, with space for 128 entries

#### 15.3.1 Configuring a DNS server example

Name the DNS client and configure it to query a DNS server to resolve host names. To do this, perform the following steps:

- □ Open the *Advanced* > *DNS* > *Client* > *Static* dialog.
- □ In the Configuration frame, Configuration source field, specify the value user.
- □ In the Configuration frame, Domain name field, specify the value device1.
- □ To add a table entry, click the 📰 button.
- □ In the *Address* column, specify the value 192.168.3.5 as the IPv4 address of the DNS server. You can also specify a valid IPv6 address as the IP address of the DNS server.
- □ Mark the checkbox in the *Active* column.
- □ Open the *Advanced* > *DNS* > *Client* > *Global* dialog.
- □ To enable the function, select the *On* radio button in the *Operation* frame.
- $\Box$  Save the changes temporarily. To do this, click the  $\checkmark$  button.

| enable                                  | Change to the Privileged EXEC mode.                                      |
|-----------------------------------------|--------------------------------------------------------------------------|
| configure                               | Change to the Configuration mode.                                        |
| dns client source user                  | Specifying that the user manually configures the DNS client settings.    |
| dns client domain-name devicel          | Specifying the string device1 as a unique domain name for the device.    |
| dns client servers add 1 ip 192.168.3.5 | To add a DNS name server with an IPv4 address of 192.168.3.5 as index 1. |
| dns client servers add 2 ip 2001::1     | Add a DNS server with an IPv6 address of 2001::1 as index 2.             |
| dns client adminstate                   | Enable the DNS Client function globally.                                 |

Configure the DNS client to map static hosts with IP addresses. To do this, perform the following steps:

- □ Open the Advanced > DNS > Client > Static Hosts dialog.
- □ To add a table entry, click the 📰 button.
- □ In the *Name* column, enter the value example.com. This is a name of a device in the network.
- □ In the *IP* address column, specify the value 192.168.3.9.
- □ Mark the checkbox in the *Active* column.
- $\Box$  Save the changes temporarily. To do this, click the  $\checkmark$  button.

| enable                                                | Change to the Privileged EXEC mode.                                 |
|-------------------------------------------------------|---------------------------------------------------------------------|
| configure                                             | Change to the Configuration mode.                                   |
| dns client host add 1 name example.com ip 192.168.3.9 | Add example.com as a static host with an IP address of 192.168.3.9. |
| dns client adminstate                                 | Enable the DNS Client function globally.                            |

# 15.4 **GARP**

The Generic Attribute Registration Protocol (*GARP*) is defined by the IEEE to provide a generic framework so switches can register and deregister attribute values, such as VLAN identifiers and Multicast group membership.

If an attribute for a participant is registered or deregistered according to the *GARP* function, then the participant is modified according to specific rules. The participants are a set of reachable end stations and network devices. The defined set of participants at any given time, along with their attributes, is the reachability tree for the subset of the network topology. The device forwards the data frames only to the registered end stations. The station registration helps prevent attempts to send data to the end stations that are unreachable.

### 15.4.1 Configuring GMRP

The GARP Multicast Registration Protocol (*GMRP*) is a Generic Attribute Registration Protocol (*GARP*) that provides a mechanism allowing network devices and end stations to dynamically register group membership. The devices register group membership information with the devices attached to the same LAN segment. The *GARP* function also lets the devices disseminate the information across the network devices that support extended filtering services.

**Note:** Before you enable the *GMRP* function, verify that the *MMRP* function is disabled.

The following example describes the configuration of the *GMRP* function. The device provides a constrained multicast flooding facility on a selected port. To do this, perform the following steps:

- $\Box$  Open the Switching > GARP > GMRP dialog.
- □ To provide constrained Multicast Flooding on a port, mark the checkbox in the *GMRP active* column.
- $\Box$  Save the changes temporarily. To do this, click the  $\checkmark$  button.

| enable              | Change to the Privileged EXEC mode.                          |
|---------------------|--------------------------------------------------------------|
| configure           | Change to the Configuration mode.                            |
| interface 1/1       | Change to the interface configuration mode of interface 1/1. |
| garp gmrp operation | Enabling the GMRP function on the port.                      |
| exit                | Change to the Configuration mode.                            |
| garp gmrp operation | Enabling the GMRP function globally.                         |

### 15.4.2 Configuring GVRP

You use the *GVRP* function to allow the device to exchange VLAN configuration information with other *GVRP* devices. Thus reducing unnecessary Broadcast and unknown Unicast traffic. Besides the *GVRP* function dynamically creates and manages VLANs on devices connected through 802.1Q trunk ports.

The following example describes the configuration of the *GVRP* function. The device lets you exchange VLAN configuration information with other *GVRP* devices. To do this, perform the following steps:

- $\Box$  Open the Switching > GARP > GVRP dialog.
- □ To exchange VLAN configuration information with other *GVRP* devices, mark checkbox in the *GVRP* active column for the port.
- $\Box$  Save the changes temporarily. To do this, click the  $\checkmark$  button.

| enable              | Change to the Privileged EXEC mode.                          |
|---------------------|--------------------------------------------------------------|
| configure           | Change to the Configuration mode.                            |
| interface 3/1       | Change to the interface configuration mode of interface 3/1. |
| garp gvrp operation | Enabling the GVRP function on the port.                      |
| exit                | Change to the Configuration mode.                            |
| garp gvrp operation | Enabling the GVRP function globally.                         |

# 15.5 MRP-IEEE

The IEEE 802.1ak amendment to the IEEE 802.1Q standard introduced the Multiple Registration Protocol (MRP) to replace the Generic Attribute Registration Protocol (*GARP*). The IEEE also modified and replaced the *GARP* applications, *GARP* Multicast Registration Protocol (*GMRP*) and *GARP* VLAN Registration Protocol (*GVRP*), with the Multiple MAC Registration Protocol (*MMRP*) and the Multiple VLAN Registration Protocol (*MVRP*).

To confine traffic to the required areas of a network, the MRP applications distribute attribute values to MRP enabled devices across a LAN. The MRP applications register and de-register Multicast group memberships and VLAN identifiers.

**Note:** The Multiple Registration Protocol (MRP) requires a loop free network. To help prevent loops in your network, use a network protocol such as the Media Redundancy Protocol, Spanning Tree Protocol, or Rapid Spanning Tree Protocol with MRP.

### 15.5.1 MRP operation

Each participant contains an applicant component and an MRP Attribute Declaration (MAD) component. The applicant component is responsible for forming the attribute values and their registration and de-registration. The MAD component generates MRP messages for transmission and processes messages received from other participants. The MAD component encodes and transmits the attributes to other participants in MRP Data Units (MRPDU). In the switch, an MRP Attribute Propagation (MAP) component distributes the attributes to participating ports.

A participant exists for each MRP application and each LAN port. For example, a participant application exists on an end device and another application exists on a switch port. The Applicant state machine records the attribute and port for each MRP participant declaration on an end device or switch. Applicant state machine variable changes trigger the transmission of MRPDUs to communicate the declaration or withdrawal.

To establish an *MMRP* instance, an end device first sends a Join empty (JoinMt) message with the appropriate attributes. The switch then floods the JoinMt to the participating ports and to the neighboring switches. The neighboring switches flood the message to their participating port, and so on, establishing a path for the group traffic.

### 15.5.2 MRP timers

The default timer settings help prevent unnecessary attribute declarations and withdraws. The timer settings allow the participants to receive and process MRP messages before the Leave or LeaveAll timers expire.

When you reconfigure the timers, maintain the following relationships:

- To allow for re-registration after a Leave or LeaveAll event, although there is a lost message, set the value of the LeaveTime as follows: ≥ (2x JoinTime) + 60 in 1/100 s
- ► To minimize the volume of rejoining traffic generated following a LeaveAll, specify the value for the LeaveAll timer larger than the LeaveTime.

The following list contains various MRP events that the device transmits:

- ▶ Join Controls the interval for the next Join message transmission
- Leave Controls the length of time that a switch waits in the Leave state before changing to the withdraw state
- LeaveAll Controls the frequency with which the switch generates LeaveAll messages

When expired, the Periodic timer initiates a Join request MRP message that the switch sends to participants on the LAN. The switches use this message to help prevent unnecessary withdraws.

#### 15.5.3 MMRP

When a device receives Broadcast, Multicast or unknown traffic on a port, the device floods the traffic to the other ports. This process causes unnecessary use of bandwidth on the LAN.

The Multiple MAC Registration Protocol (*MMRP*) lets you control the traffic flooding by distributing an attribute declaration to participants on a LAN. The attribute values that the MAD component encodes and transmits on the LAN in MRP messages are Group service requirement information and 48-bit MAC addresses.

The switch stores the attributes in a filtering database as MAC address registration entries. The forwarding process uses the filtering database entries only to transmit data through those ports necessary to reach Group member LANs.

Switches facilitate the group distribution mechanisms based on the Open Host Group concept, receiving packets on the active ports and forwarding only to ports with group members. This way, any *MMRP* participants requiring packets transmitted to a particular group or groups, requests membership in the group. MAC service users send packets to a particular group from anywhere on the LAN. A group receives these packets on the LANs attached to registered *MMRP* participants. *MMRP* and the MAC Address Registration Entries thus restrict the packets to required segments of a loop-free LAN.

In order to maintain the registration and deregistration state and to receive traffic, a port declares interest periodically. Every device on a LAN with the *MMRP* function enabled maintains a filtering database and forwards traffic having the group MAC addresses to listed participants.

#### **MMRP** example

In this example, Host A intends to listen to traffic destined to group G1. Switch A processes the *MMRP* Join request received from host A and sends the request to both of the neighboring switches. The devices on the LAN now recognize that there is a host interested in receiving traffic destined for group G1. When Host B starts transmitting data destined for group G1, the data flows on the path of registrations and Host A receives it.

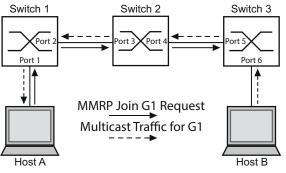



Figure 67: MMRP Network for MAC address Registration

Enable the *MMRP* function on the switches. To do this, perform the following steps:

□ Open the Switching > MRP-IEEE > MMRP dialog, Configuration tab.

- □ To activate port 1 and port 2 as *MMRP* participants, mark the checkbox in the *MMRP* column for port 1 and port 2 on switch 1.
- □ To activate port 3 and port 4 as *MMRP* participants, mark the checkbox in the *MMRP* column for port 3 and port 4 on switch 2.
- □ To activate port 5 and port 6 as *MMRP* participants, mark the checkbox in the *MMRP* column for port 5 and port 6 on switch 3.
- □ To send periodic events allowing the device to maintain the registration of the MAC address group, enable the *Periodic state machine*. Select the *on* radio button in the *Configuration* frame.
- □ Save the changes temporarily. To do this, click the ✓ button.

To enable the *MMRP* ports on switch 1, use the following commands. Substituting the appropriate interfaces in the commands, enable the *MMRP* functions and ports on switches 2 and 3.

| enable                              | Change to the Privileged EXEC mode.                          |
|-------------------------------------|--------------------------------------------------------------|
| configure                           | Change to the Configuration mode.                            |
| interface 1/1                       | Change to the interface configuration mode of interface 1/1. |
| mrp-ieee mmrp operation             | Enabling the MMRP function on the port.                      |
| interface 1/2                       | Change to the interface configuration mode of interface 1/2. |
| mrp-ieee mmrp operation             | Enabling the MMRP function on the port.                      |
| exit                                | Change to the Configuration mode.                            |
| mrp-ieee mrp periodic-state-machine | Enabling the Periodic state machine function globally.       |
| mrp-ieee mmrp operation             | Enabling the <i>MMRP</i> function globally.                  |

#### 15.5.4 MVRP

The Multiple VLAN Registration Protocol (*MVRP*) is an MRP application that provides dynamic VLAN registration and withdraw services on a LAN.

The *MVRP* function provides a maintenance mechanism for the Dynamic VLAN Registration Entries, and for transmitting the information to other devices. This information lets *MVRP*-aware devices establish and update their VLAN membership information. When members are present on a VLAN, the information indicates through which ports the switch forwards traffic to reach those members.

The main purpose of the *MVRP* function is to allow switches to discover some of the VLAN information that you otherwise manually set up. Discovering this information lets switches overcome the limitations of bandwidth consumption and convergence time in large VLAN networks.

#### **MVRP** example

Set up a network comprised of MVRP aware switches (1 - 4) connected in a ring topology with end device groups, A1, A2, B1, and B2 in 2 different VLANs, A and B. With STP enabled on the switches, the ports connecting switch 1 to switch 4 are in the discarding state, helping prevent a loop condition.

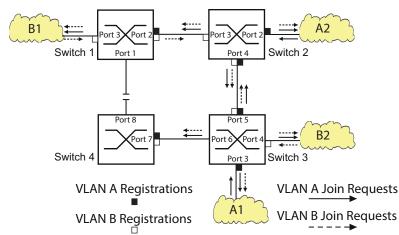



Figure 68: MVRP Example Network for VLAN Registration

In the MVRP example network, the LANs first send a Join request to the switches. The switch enters the VLAN registration in the forwarding database for the port receiving the frames.

The switch then propagates the request to the other ports, and sends the request to the neighboring LANs and switches. This process continues until the switches have registered the VLANs in the forwarding database of the receive port.

Enable MVRP on the switches. To do this, perform the following steps:

- □ Open the Switching > MRP-IEEE > MVRP dialog, Configuration tab.
- $\Box$  To activate the ports 1 through 3 as *MVRP* participants, mark the checkbox in the *MVRP* column for the ports 1 through 3 on switch 1.
- □ To activate the ports 2 through 4 as MVRP participants, mark the checkbox in the MVRP column for the ports 2 through 4 on switch 2.
- $\Box$  To activate the ports 3 through 6 as *MVRP* participants, mark the checkbox in the *MVRP* column for the ports 3 through 6 on switch 3.
- □ To activate port 7 and port 8 as *MVRP* participants, mark the checkbox in the *MVRP* column for port 7 and port 8 on switch 4.
- □ To maintain the registration of the VLANs, enable the *Periodic state machine*. Select the *On* radio button in the *Configuration* frame.
- □ To enable the function, select the *On* radio button in the *Operation* frame.
- $\Box$  Save the changes temporarily. To do this, click the  $\checkmark$  button.

To enable the *MVRP* ports on switch 1, use the following commands. Substituting the appropriate interfaces in the commands, enable the *MVRP* functions and ports on switches 2, 3 and 4.

| enable        | Change to the Privileged EXEC mode.                             |
|---------------|-----------------------------------------------------------------|
| configure     | Change to the Configuration mode.                               |
| interface 1/1 | Change to the interface configuration mode of interface $1/1$ . |

| mrp-ieee mvrp operation              | Enabling the <i>MVRP</i> function on the port.                  |
|--------------------------------------|-----------------------------------------------------------------|
| interface 1/2                        | Change to the interface configuration mode of interface $1/2$ . |
| mrp-ieee mvrp operation              | Enabling the <i>MVRP</i> function on the port.                  |
| exit                                 | Change to the Configuration mode.                               |
| mrp-ieee mvrp periodic-state-machine | Enabling the Periodic state machine function globally.          |
| mrp-ieee mvrp operation              | Enabling the <i>MVRP</i> function globally.                     |
|                                      |                                                                 |

# **16 Industry Protocols**

# 16.1 IEC 61850/MMS

IEC 61850/MMS is an industrial communication protocol standardized by the International Electrotechnical Commission (IEC). The protocol is to be found in substation automation, for example in the control technology of energy suppliers.

This protocol, which works in a packet-oriented way, is based on the TCP/IP transport protocol and uses the Manufacturing Messaging Specification (MMS) for the client-server communication. The protocol is object-oriented and defines a standardized configuration language that comprises, among other things, functions for SCADA, Intelligent Electronic Devices (IED) and for the network control technology.

Part 6 of the IEC 61850 standard defines the configuration language SCL (Substation Configuration Language). SCL describes the properties of the device and the system structure in an automatically processable form. The properties of the device described with SCL are stored in the ICD file in the device.

### 16.1.1 Switch model for IEC 61850

The Technical Report, IEC 61850 90-4, specifies a bridge model. The bridge model represents the functions of a switch as objects of an Intelligent Electronic Device (IED). An MMS client (for example the control room software) uses these objects to monitor and configure the device.

| Physical Device                |                            |                 |         |         |  |
|--------------------------------|----------------------------|-----------------|---------|---------|--|
| Logical Device LN LPHD LN LPN0 |                            |                 |         |         |  |
| LN LBRI                        |                            |                 |         |         |  |
| LN LCCH                        | LN LCC                     | LN LCCH LN LCCH |         |         |  |
| LN LCCF                        | LN LCC                     | CF              | LN LCCF |         |  |
| LN LBSP                        | LN LBS                     | \$P             | LN LBSP | LN LBSP |  |
| LN LPLD                        | LN LPL                     | .D              | LN LPLD | LN LPLD |  |
| LN LPCP                        |                            | P               | LN LPCP | LN LPCP |  |
|                                | A paired redundant ports B |                 |         |         |  |
| Port Number 1                  |                            | 1<br>2          | 3       | 4       |  |

Figure 69: Bridge model based on Technical Report IEC 61850 90-4

| Class   | Description                                                                                                                              |
|---------|------------------------------------------------------------------------------------------------------------------------------------------|
| LN LLNO | Zero logical node of the Bridge IED:<br>Defines the logical properties of the device.                                                    |
| LN LPHD | Physical Device logical node of the Bridge IED:<br>Defines the physical properties of the device.                                        |
| LN LBRI | Bridge logical node:<br>Represents general settings of the bridge functions of the device.                                               |
| LN LCCH | Communication Channel logical node:<br>Defines the logical Communication Channel that consists of one or more<br>physical device ports.  |
| LN LCCF | Channel Communication Filtering logical node:<br>Defines the VLAN and Multicast settings for the higher-level Communication<br>Channel.  |
| LN LBSP | Port Spanning Tree Protocol logical node:<br>Defines the Spanning Tree statuses and settings for the respective physical<br>device port. |
| LN LPLD | Port Layer Discovery logical node:<br>Defines the LLDP statuses and settings for the respective physical device port.                    |
| LN LPCP | Physical Communication Port logical node:<br>Represents the respective physical device port.                                             |

Table 52: Classes of the bridge model based on TR IEC61850 90-4

### 16.1.2 Integration into a Control System

#### **Preparation of the device**

Perform the following steps:

- $\Box$  Check that the device has an IP address assigned.
- □ Open the Advanced > Industrial Protocols > IEC61850-MMS dialog.
- □ To start the MMS server, select in the *Operation* frame the *On* radio button, and click ✓ button. Afterwards, an MMS client is able to connect to the device and to read and monitor the objects defined in the bridge model.

IEC61850/MMS does not provide any authentication mechanisms. If the write access for IEC61850/MMS is activated, then every client that can access the device using TCP/IP is capable of changing the settings of the device. This in turn can result in an incorrect configuration of the device and to failures in the network.

# NOTICE

# **RISK OF UNAUTHORIZED ACCESS TO THE DEVICE**

Only activate the write access if you have taken additional measures (for example Firewall, VPN, etc.) to reduce possible unauthorized access.

Failure to follow these instructions can result in equipment damage.

□ To allow the MMS client to change the settings, mark the *Write access* checkbox, and click the ✓ button.

### **Offline configuration**

The device lets you download the ICD file using the Graphical User Interface. This file contains the properties of the device described with SCL and enables you to configure the substation without directly connecting to the device.

- □ Open the *Advanced* > *Industrial Protocols* > *IEC61850-MMS* dialog.
- $\Box$  To load the ICD file to your PC, click the  $\equiv$  button and then the *Download* item.

### Monitoring the device

The IEC61850/MMS server integrated into the device lets you monitor multiple statuses of the device by means of the Report Control Block (RCB). Up to 5 MMS clients can register for a Report Control Block at the same time.

The device lets you monitor the following statuses:

| RCB object | Description                                                                                                            |  |
|------------|------------------------------------------------------------------------------------------------------------------------|--|
| TmpAlm     | When the temperature measured in the device exceeds or falls below the set temperature thresholds, the status changes. |  |
| PhyHealth  | When the status of the LPHD. TmpAlm RCB object changes, the status changes.                                            |  |
| TmpAlm     | When the temperature measured in the device exceeds or fa below the set temperature thresholds, the status changes.    |  |
| PwrSupAlm  | When one of the redundant power supplies fails or starts operating again, the status changes.                          |  |
| PhyHealth  | When the status of the LPHD.PwrSupAlm or LPHD.TmpAlm RCB object changes, the status changes.                           |  |
|            | TmpAlm<br>PhyHealth<br>TmpAlm<br>PwrSupAlm                                                                             |  |

Table 53: Statuses of the device that can be monitored with IEC 61850/MMS

| Class   | RCB object  | Description                                                                                 |  |
|---------|-------------|---------------------------------------------------------------------------------------------|--|
| LN LBRI | RstpRoot    | When the device takes over or relinquishes the role of the root bridge, the status changes. |  |
|         | RstpTopoCnt | When the topology changes due to a change of the root bridge, the status changes.           |  |
| LN LCCH | ChLiv       | When the link status of the physical port changes, the status changes.                      |  |
| LN LPCP | PhyHealth   | When the link status of the physical port changes, the status changes.                      |  |

| Table 53: | Statuses of the device that can be monitored with IEC 61850/MMS (cor | าt |
|-----------|----------------------------------------------------------------------|----|

# 16.2 Modbus TCP

*Modbus TCP* is an application layer messaging protocol providing client/server communication between the client and devices connected in Ethernet TCP/IP networks.

The *Modbus TCP* function lets you install the device in networks already using *Modbus TCP* and retrieve information saved in the registers in the device.

### 16.2.1 Client/Server Modbus TCP/IP Mode

The device supports the client/server model of Modbus TCP/IP. This device operates as a server in this constellation and responds to requests from a client for information saved in the registers.

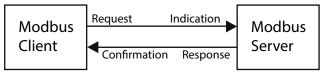



Figure 70: Client/Server Modbus TCP/IP Mode

The client / server model uses four types of messages to exchange data between the client and server:

- Modbus TCP/IP Request, the client creates a request for information and sends it to the server.
- Modbus TCP/IP Indication, the server receives a request as an indication that a client requires information.
- Modbus TCP/IP Response, when the required information is available, the server sends a reply containing the requested information. When the requested information is unavailable, the server sends an Exception Response to notify the client of the error detected during the processing. The Exception Response contains an exception code indicating the reason for the detected error.
- Modbus TCP/IP Confirmation, the client receives a response from the server, containing the requested information.

### 16.2.2 Supported Functions and Memory Mapping

The device supports functions with the public codes 0x03 (Read Holding Registers) and 0x05 (Write Single Coil). The codes let you read the information saved in the registers such as the system information, including the system name, system location, software version, IP address, MAC address. The codes also let you read the port information and port statistics. The 0x05 code lets you reset the port counters individually or globally.

The following list contains definitions for the values entered in the Format column:

- Bitmap: a group of 32-bits, encoded into the Big-endian byte order and saved in 2 registers. Bigendian systems save the most significant byte of a word in the smallest address and save the least significant byte in the largest address.
- F1: 16-bit unsigned integer
- F2: Enumeration power supply alarm
  - 0 = power supply good
  - 1 = power supply failure detected
- F3: Enumeration OFF/ON
  - 0 = Off
  - 1 = On

#### ► F4: Enumeration - port type

- 0 = Giga Gigabit Interface Converter (GBIC)
- 1 = Copper Twisted Pair (TP)
- 2 = Fiber 10 Mb/s
- 3 = Fiber 100 Mb/s
- 4 = Giga 10/100/1000 Mb/s (triple speed)
- 5 = Giga Copper 1000 Mb/s TP
- 6 = Giga Small Form-factor Pluggable (SFP)
- ► F9: 32-bit unsigned long
- String: octets, saved in sequence, 2 octets per register.

#### Modbus TCP/IP Codes

The table below lists addresses that allow the client to reset port counters and retrieve specific information from the device registers.

#### **Port Information**

Table 54: Port Information

| Address                 | Qty                | Description           | MIn | Max | Step | Unit | Format |
|-------------------------|--------------------|-----------------------|-----|-----|------|------|--------|
| 0400                    | 1                  | Port 1 Type           | 0   | 6   | 1    | -    | F4     |
| 0401                    | 0401 1 Port 2 Type |                       | 0   | 6   | 1    | -    | F4     |
|                         |                    |                       |     |     |      |      |        |
| 043F                    | 1                  | Port 64 Type          | 0   | 6   | 1    | -    | F4     |
| 0440                    | 1                  | Port 1 Link Status    | 0   | 1   | 1    | -    | F1     |
| 0441                    | 1                  | Port 2 Link Status    | 0   | 1   | 1    | -    | F1     |
|                         |                    |                       |     |     |      |      |        |
| 047F                    | 1                  | Port 64 Link Status   | 0   | 1   | 1    | -    | F1     |
| 0480                    | 1                  | Port 1 STP State      | 0   | 1   | 1    | -    | F1     |
| 0481 1 Port 2 STP State |                    | Port 2 STP State      | 0   | 1   | 1    | -    | F1     |
|                         |                    |                       |     |     |      |      |        |
| 04BF                    | 1                  | Port 64 STP State     | 0   | 1   | 1    | -    | F1     |
| 04C0                    | 1                  | Port 1 Activity       | 0   | 1   | 1    | -    | F1     |
| 04C1 1 Port 2 Activity  |                    | Port 2 Activity       | 0   | 1   | 1    | -    | F1     |
|                         |                    |                       |     |     |      |      |        |
| 04FF                    | 1                  | Port 64 Activity      | 0   | 1   | 1    | -    | F1     |
| 0500                    | 1                  | Port 1 Counter Reset  | 0   | 1   | 1    | -    | F1     |
| 0501                    | 1                  | Port 2 Counter Reset  | 0   | 1   | 1    | -    | F1     |
|                         |                    |                       |     |     |      |      |        |
| 053F                    | 1                  | Port 64 Counter Reset | 0   | 1   | 1    | -    | F1     |

# **Port Statistics**

| Table | 55: | Port | Statistics |
|-------|-----|------|------------|
|-------|-----|------|------------|

| Address | Qty | Description                                          | MIn | Max        | Step | Unit | Format |
|---------|-----|------------------------------------------------------|-----|------------|------|------|--------|
| 0800    | 1   | Portl - Number of bytes received                     | 0   | 4294967295 | 1    | -    | F9     |
| 0802    | 1   | Portl - Number of bytes sent                         | 0   | 4294967295 | 1    | -    | F9     |
| 0804    | 1   | Port1 - Number of frames received                    | 0   | 4294967295 | 1    | -    | F9     |
| 0806    | 1   | Port1 - Number of frames sent                        | 0   | 4294967295 | 1    | -    | F9     |
| 0808    | 1   | Port1 - Total bytes received                         | 0   | 4294967295 | 1    | -    | F9     |
| A080    | 1   | Port1 - Total frames received                        | 0   | 4294967295 | 1    | -    | F9     |
| 080C    | 1   | Port1 - Number of broadcast frames received          | 0   | 4294967295 | 1    | -    | F9     |
| 080E    | 1   | Port1 - Number of multicast frames received          | 0   | 4294967295 | 1    | -    | F9     |
| 0810    | 1   | Port1 - Number of frames with CRC error              | 0   | 4294967295 | 1    | -    | F9     |
| 0812    | 1   | Port1 - Number of oversized frames received          | 0   | 4294967295 | 1    | -    | F9     |
| 0814    | 1   | Port1 - Number of bad fragments<br>rcvd(<64 bytes)   | 0   | 4294967295 | 1    | -    | F9     |
| 0816    | 1   | Port1 - Number of jabber frames received             | 0   | 4294967295 | 1    | -    | F9     |
| 0818    | 1   | Port1 - Number of collisions occurred                | 0   | 4294967295 | 1    | -    | F9     |
| )81A    | 1   | Port1 - Number of late collisions occurred           | 0   | 4294967295 | 1    | -    | F9     |
| 081C    | 1   | Port1 - Number of 64-byte frames rcvd/sent           | 0   | 4294967295 | 1    | -    | F9     |
| 081E    | 1   | Port1 - Number of 65-127 byte frames rcvd/sent       | 0   | 4294967295 | 1    | -    | F9     |
| 0820    | 1   | Port1 - Number of 128-255 byte frames rcvd/sent      | 0   | 4294967295 | 1    | -    | F9     |
| 0822    | 1   | Port1 - Number of 256-511 byte frames rcvd/sent      | 0   | 4294967295 | 1    | -    | F9     |
| 0824    | 1   | Port1 - Number of 512-1023 byte<br>frames rcvd/sent  | 0   | 4294967295 | 1    | -    | F9     |
| )826    | 1   | Port1 - Number of 1023-MAX byte<br>frames rcvd/sent  | 0   | 4294967295 | 1    | -    | F9     |
| 828     | 1   | Port1 - Number of Mac Error Packets                  | 0   | 4294967295 | 1    | -    | F9     |
| )82A    | 1   | Port1 - Number of dropped received packets           | 0   | 4294967295 | 1    | -    | F9     |
| )82C    | 1   | Port1 - Number of multicast frames<br>sent           | 0   | 4294967295 | 1    | -    | F9     |
| )82E    | 1   | Port1 - Number of broadcast frames sent              | 0   | 4294967295 | 1    | -    | F9     |
| 0830    | 1   | Port1 - Number of <64 byte fragments w/ good CRC     | 0   | 4294967295 | 1    | -    | F9     |
|         |     |                                                      |     |            |      |      |        |
| L47E    | 1   | Port64 - Number of <64 byte fragments<br>w/ good CRC | 0   | 4294967295 | 1    | -    | F9     |

### 16.2.3 Example Configuration

In this example, you configure the device to respond to client requests. The prerequisite for this configuration is that the client device is configured with an IP address within the given range. The *Write access* function remains inactive for this example. When you activate the *Write access* function, the device lets you reset the port counters only. In the default configuration the *Modbus TCP* and *Write access* functions are inactive.

The *Modbus TCP* protocol does not provide any authentication mechanisms. If the write access for *Modbus TCP* is activated, then every client that can access the device using TCP/IP is capable of changing the settings of the device. This in turn can result in an incorrect configuration of the device and to failures in the network.

# NOTICE

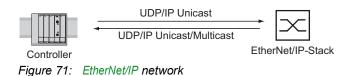
### **RISK OF UNAUTHORIZED ACCESS TO THE DEVICE**

Only activate the write access if you have taken additional measures (for example Firewall, VPN, etc.) to reduce possible unauthorized access.

Failure to follow these instructions can result in equipment damage.

Perform the following steps:

- □ Open the Device Security > Management Access > IP Access Restriction dialog.
- □ Add a table entry. To do this, click the 📰 button.
- □ Specify the IP address range in the row where the *Index* column has the value 2. To do this, enter the following values:
  - In the Address column: 10.17.1.0
  - In the *Netmask* column: 255.255.255.248
- □ Verify that the checkbox in the *Modbus TCP* column is marked.
- □ Activate the IP address range. To do this, mark the checkbox in the Active column.
- □ Save the changes temporarily. To do this, click the ✓ button.
- □ Open the *Diagnostics* > *Status* Configuration > *Security Status* dialog, *Global* tab.
- □ Verify that the checkbox related to the parameter *Modbus TCP active* is marked.
- □ Open the Advanced > Industrial Protocols > Modbus TCP dialog.
- □ The standard *Modbus TCP* listening port, port 502, is the default value. However, when you wish to listen on another TCP port, enter the value for the listening port in the *TCP port* field.
- □ To enable the function, select the *On* radio button in the *Operation* frame.
- □ Save the changes temporarily. To do this, click the ✓ button.


When you enable the *Modbus TCP* function, the *Security Status* function detects the activation and displays an alarm in the *Basic Settings > System* dialog, *Security status* frame.

| enable                                          | Change to the Privileged EXEC mode.                                                                            |
|-------------------------------------------------|----------------------------------------------------------------------------------------------------------------|
| network management access add 2                 | Creates the entry for the address range in the network. Number of the next available index in this example: 2. |
| network management access modify 2 ip 10.17.1.0 | Specifies the IP address.                                                                                      |

```
network management access modify 2 mask
                             Specifies the netmask.
29
network management access modify 2
                             Specifies that the device lets Modbus TCP have
modbus-tcp enable
                             access to the device management.
                             Enables the IP access restriction.
network management access operation
configure
                             Change to the Configuration mode.
                             Specifies that the device monitors the activation of
security-status monitor modbus-tcp-
enabled
                             the Modbus TCP server.
                             Activates the Modbus TCP server.
modbus-tcp operation
                             Specify the TCP port for Modbus TCP
modbus-tcp port <1..65535>
                             communication (optionally). The default value is
                             port 502.
show modbus-tcp
                             Display the Modbus TCP Server settings.
Modbus TCP/IP server settings
------
Modbus TCP/IP server operation.....enabled
Write-access.....disabled
Max number of sessions......5
Active sessions.....0
show security-status monitor
                            Display the security-status settings.
Device Security Settings
Monitor
_____
Password default settings unchanged.....monitored
. . .
Write access using Ethernet Switch Configurator is possible....monitored
Loading unencrypted configuration from ENVM...monitored
IEC 61850 MMS is enabled.....monitored
Modbus TCP/IP server active.....monitored
show security-status event
                             Display occurred security status events.
Time stamp
                Event
                                    Info
                _____
-----
                                   _ _ _ _ .
2014-01-01 01:00:39 password-change(10)
.....
2014-01-01 01:00:39 ext-nvm-load-unsecure(21)
2014-01-01 23:47:40 modbus-tcp-enabled(23)
show network management access rules 1 Display the restricted management access rules
                            for index 1.
Restricted management access settings
-----
Index.....1
HTTP.....yes
SNMP.....yes
Telnet.....yes
SSH.....yes
HTTPS.....yes
IEC61850-MMS.....yes
Modbus TCP/IP.....yes
```

# 16.3 EtherNet/IP

*EtherNet/IP* is accepted worldwide as a standardized industrial communication protocol and is maintained by the Open DeviceNet Vendor Association (ODVA). The protocol is based on the widely used standard Ethernet transport protocols TCP/IP and UDP/IP. *EtherNet/IP* is supported by leading manufacturers, thus providing a wide base for effective data communication in the industry sector.



*EtherNet/IP* adds the industry protocol CIP (Common Industrial Protocol) to the standard Ethernet protocols. *EtherNet/IP* implements CIP at the Session layer and above and adapts CIP to the specific *EtherNet/IP* technology at the Transport layer and below. In the case of automation applications, *EtherNet/IP* implements CIP on the application level. Therefore, *EtherNet/IP* is ideally suited to the industrial control technology sector.

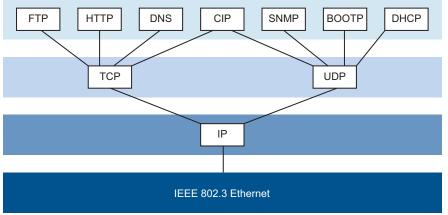



Figure 72: IEEE802.3 EtherNet/IP

For detailed information on *EtherNet/IP*, see the ODVA website at www.odva.org.

### 16.3.1 Integration into a Control System

Perform the following steps:

- Open the Switching > IGMP Snooping > Global dialog. Verify that the IGMP Snooping function is enabled.
- □ Open the *Advanced* > *Industrial Protocols* > *EtherNet/IP* dialog. Verify that the *EtherNet/IP* function is enabled.
- □ Open the Advanced > Industrial Protocols > EtherNet/IP dialog.
- To save the EDS as a ZIP archive on your PC, click *Download*. The ZIP archive contains the *EtherNet/IP* configuration file and the icon used to configure the controller to connect to the device.

# 16.3.2 EtherNet/IP Entity Parameters

The following paragraphs identify the objects and operations supported by the device.

### **Supported operations**

| Table 56: | Overview of the supported EtherNet/IF | Prequests for the objects instances |
|-----------|---------------------------------------|-------------------------------------|
|           |                                       |                                     |

| Service Code                                     | Identity<br>Object      | TCP/IP<br>Interface<br>Object                                           | Ethernet Link<br>Object                                                     | Switch Agent<br>Object            | Base Switch<br>Object |
|--------------------------------------------------|-------------------------|-------------------------------------------------------------------------|-----------------------------------------------------------------------------|-----------------------------------|-----------------------|
| 0x01<br>Get Attribute All                        | All attributes          | All attributes                                                          | All attributes                                                              | All attributes                    | All attributes        |
| 0x02<br>Set Attribute All                        | _                       | Settable<br>attributes<br>(0x3, 0x5,<br>0x6, 0x8,<br>0x9, 0xA)          | Settable<br>attributes<br>(0x6, 0x9)                                        | _                                 | _                     |
| 0x0e<br>Get Attribute<br>Single                  | All attributes          | All attributes                                                          | All attributes                                                              | All attributes                    | All attributes        |
| 0x10<br>Set Attribute<br>Single                  | -                       | Settable<br>attributes<br>(0x3, 0x5,<br>0x6, 0x8,<br>0x9, 0xA,<br>0x64) | Settable<br>attributes<br>(0x6, 0x9,<br>0x65, 0x67,<br>0x68, 0x69,<br>0x6C) | Settable attributes<br>(0x5, 0x7) | -                     |
| 0x05<br>Reset                                    | Parameter<br>(0x0, 0x1) | _                                                                       | _                                                                           | -                                 | _                     |
| 0x35<br>Save<br>Configuration<br>Vendor specific | -                       | -                                                                       | -                                                                           | Save switch configuration         | -                     |
| 0x36<br>Mac Filter                               | _                       | _                                                                       | _                                                                           | Add MAC filter<br>STRUCT of:      | _                     |
| Vendor specific                                  |                         |                                                                         |                                                                             | USINT VlanId                      | _                     |
|                                                  |                         |                                                                         |                                                                             | ARRAY of:                         | _                     |
|                                                  |                         |                                                                         |                                                                             | 6 USINT Mac                       | _                     |
|                                                  |                         |                                                                         |                                                                             | DWORD<br>PortMask                 |                       |

### **Identity object**

The device supports the identity object (Class Code 0x01) of *EtherNet/IP*. The Schneider Electric manufacturer ID is 634. Schneider Electric uses the ID 44 (0x2C) to indicate the product type "Managed Ethernet Switch".

| ld  | Attribute        | Access<br>Rule | Data type        | Description                                                                                                                                                                                 |  |
|-----|------------------|----------------|------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| 0x1 | Vendor ID        | Get            | UINT             | Schneider Electric634                                                                                                                                                                       |  |
| 0x2 | Device<br>Type   | Get            | UINT             | Managed Ethernet Switch 44 (0x2C) (0x2C)                                                                                                                                                    |  |
| 0x3 | Product<br>Code  | Get            | UINT             | Product Code: mapping is defined for every device type                                                                                                                                      |  |
| 0x4 | Revision         | Get            | STRUCT of:       | Revision of the EtherNet/IP implementation, 2.1.                                                                                                                                            |  |
|     |                  |                | USINT Major      |                                                                                                                                                                                             |  |
|     |                  |                | USINT Minor      | —                                                                                                                                                                                           |  |
| 0x5 | Status           | Get            | WORD             | Support for the following Bit status only:                                                                                                                                                  |  |
|     |                  |                |                  | 0: Owned (always 1)                                                                                                                                                                         |  |
|     |                  |                |                  | 2: Configured (always 1)                                                                                                                                                                    |  |
|     |                  |                |                  | <ul> <li>4: Extend Device Status</li> <li>5: 0x3: No I/O connection established</li> <li>0x7: At least one I/O connection established,</li> <li>6: all in idle mode.</li> <li>7:</li> </ul> |  |
| 0x6 | Serial<br>number | Get            | UDINT            | Serial number of the device (contains last 3 Byte of MAC address).                                                                                                                          |  |
| 0x7 | Product<br>name  | Get            | SHORT-<br>STRING | Displayed as "Schneider Electric" + product<br>family + product ID + software variant.                                                                                                      |  |

Table 57: Instance attributes (only instance 1 is available)

### **TCP/IP Interface Object**

The device supports only Instance 1 of the TCP/IP Interface Object (Class Code 0xF5) of *EtherNet/ IP*.

Depending on the write access status, the device stores the complete configuration in its flash memory. Saving the configuration file can take up to 10 seconds. If the saving process is interrupted for example, due to a power supply failure, then the operation of the device might be impossible.

Note: The device replies to the configuration change Get Request with a Response although the configuration has not yet been saved completely.

| ld  | Attribute          | Access<br>Rule | Data type | Description                                        |
|-----|--------------------|----------------|-----------|----------------------------------------------------|
| 0x1 | Revision           | Get            | UINT      | Revision of this object: 3                         |
| 0x2 | Max Instance       | Get            | UINT      | Maximum instance number: 1                         |
| 0x3 | Number of instance | Get            | UINT      | Number of object instances<br>currently created: 1 |

Table 58: Class attributes

| ld  | Attribute                | Access<br>Rule | Data type         | Description                                                                                                    |
|-----|--------------------------|----------------|-------------------|----------------------------------------------------------------------------------------------------------------|
| 0x1 | Status                   | Get            | DWORD             | 0: Interface Status<br>(0=Interface not configured,<br>1=Interface contains valid<br>config)                   |
|     |                          |                |                   | 6: ACD status (default 0)                                                                                      |
|     |                          |                |                   | 7: ACD fault (default 0)                                                                                       |
| 0x2 | Interface Capability     | Get            | DWORD             | 0: BOOTP Client                                                                                                |
|     | flags                    |                |                   | 1: DNS Client                                                                                                  |
|     |                          |                |                   | 2: DHCP Client                                                                                                 |
|     |                          |                |                   | 3: DHCP-DNS Update                                                                                             |
|     |                          |                |                   | 4: Configuration setable (within CIP)<br>Other bits reserved (0)                                               |
|     |                          |                |                   | 7: ACD capable (0=not capable, 1=capable)                                                                      |
| 0x3 | Config Control           | Set/Get        | DWORD             | 0: 0x0=using stored config<br>1: 0x1=using BOOTP<br>0x2=using DHCP<br>3:                                       |
|     |                          |                |                   | 4: One device uses DNS for<br>name lookup (always 0<br>because it is not supported)<br>Other bits reserved (0) |
| 0x4 | Physical Link Object     | Get            | STRUCT of:        | Path to the Physical Link Object,                                                                              |
|     |                          |                | UINT PathSize     | always {0x20, 0xF6, 0x24, 0x01}<br>- describing instance 1 of the                                              |
|     |                          |                | EPATH Path        | Ethernet Link Object.                                                                                          |
| 0x5 | Interface                | Set/Get        | STRUCT of:        | IP Stack Configuration (IP-                                                                                    |
|     | Configuration            |                | UDINT IpAddress   | Address, Netmask, Gateway, 2                                                                                   |
|     |                          |                | UDINT Netmask     | -Name servers (DNS, if supported)<br>_and the domain name).                                                    |
|     |                          |                | UDINT             |                                                                                                                |
|     |                          |                | GatewayAddress    | _                                                                                                              |
|     |                          |                | UDINT NameServer1 | _                                                                                                              |
|     |                          |                | UDINT NameServer2 |                                                                                                                |
|     |                          |                | STRING DomainName |                                                                                                                |
| 0x6 | Host Name                | Set/Get        | STRING            | Host Name (for DHCP DNS<br>Update)                                                                             |
| 0x7 | Safety Network<br>Number |                |                   | Not supported                                                                                                  |
| 0x8 | TTL Value                | Get/Set        | USINT             | Time to live value for IP multicast<br>packets Range 1255 (default =<br>1)                                     |

| Table 59. Allibules of Instance T | Table 59: | Attributes of Instance 1 |
|-----------------------------------|-----------|--------------------------|
|-----------------------------------|-----------|--------------------------|

| ld  | Attribute     | Access<br>Rule | Data type            | Description                             |
|-----|---------------|----------------|----------------------|-----------------------------------------|
| 0x9 | Mcast Config  | Get/Set        | STRUCT of:           | Alloc Control = 0                       |
|     |               |                | USINT AllocControl   | Number of IP multicast addresses        |
|     |               |                | USINT reserved       | -– 52<br>Multicast start address =      |
|     |               |                | UINT NumMcast        | 239.192.1.0                             |
|     |               |                | UDINT McastStartAddr | -                                       |
| 0xA | Selected Acd  | Get/Set        | BOOL                 | 0=ACD disable<br>1=ACD enable (default) |
| 0xB | Last Conflict | Get            | STRUCT of:           | ACD Diagnostic Parameters               |
|     | Detected      |                | USINT AcdActivity    | -                                       |
|     |               |                | ARRAY of:            | -                                       |
|     |               |                | 6 USINT RemoteMac    | -                                       |
|     |               |                | ARRAY of:            | -                                       |
|     |               |                | 28 USINT ArpPdu      | -                                       |

#### Table 59: Attributes of Instance 1 (cont

Table 60: Schneider Electric extensions to the TCP/IP Interface Object

| ld   | Attribute       | Access<br>Rule | Data type       | Description                                                                              |
|------|-----------------|----------------|-----------------|------------------------------------------------------------------------------------------|
| 0x64 | Cable Test      | Set/Get        | STRUCT of:      | Interface                                                                                |
|      |                 |                | USINT Interface | Status (1=Active, 2=Success,                                                             |
|      |                 |                | USINT Status    | — 3=Failure, 4=Uninitialized)                                                            |
| 0x65 | Cable Pair Size | Get            | USINT           | Size of the Cable Test Result<br>STRUCT of:<br>2 Pair for 100BASE<br>4 Pair for 1000BASE |

| ld   | Attribute         | Access<br>Rule | Data type                     | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|------|-------------------|----------------|-------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 0x66 | Cable Test Result | Get            | STRUCT of:                    | 100BASE:{                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|      |                   |                | USINT Interface               | {Interface, CablePair1, -CableStatus, CableMinLength,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|      |                   |                | USINT CablePair               | CableMaxLength,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|      |                   |                | USINT CableStatus             | CableFailureLocation}                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|      |                   |                | USINT<br>CableMinLength       | {Interface, CablePair2,<br>CableStatus, CableMinLength,<br>- CableMaxLength,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|      |                   |                | USINT<br>CableMaxLength       | CableFailureLocation}                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|      |                   |                | USINTCableFailureL<br>ocation | 1000BASE:{<br>{Interface, CablePair1,<br>CableStatus, CableMinLength,<br>CableMaxLength,<br>CableFailureLocation}<br>{Interface, CablePair2,<br>CableStatus, CableMinLength,<br>CableMaxLength,<br>CableFailureLocation}<br>{Interface, CablePair3,<br>CableStatus, CableMinLength,<br>CableFailureLocation}<br>{Interface, CablePair4,<br>CableFailureLocation}<br>{Interface, CablePair4,<br>CableStatus, CableMinLength,<br>CableStatus, CableMinLength,<br>CableStatus, CableMinLength,<br>CableStatus, CableMinLength,<br>CableStatus, CableMinLength,<br>CableFailureLocation}<br>} |

Table 60: Schneider Electric extensions to the TCP/IP Interface Object (cont

#### **Ethernet Link object**

The information in the following two tables are part of the Ethernet Link Object. To access the information, use the following values:

- Class(####)
- Instance(###)
- Attribute(#)

For example, the *class*, *instance*, and *attribute* values to access information for the utilization alarm using an explicit message are:

- Class = 0xF6
- Instance = 1
- Attribute = 6

| ld    | Attribute          | Access<br>Rule | Data type                                                                          | Description                                                                                                                                                                                                                           |
|-------|--------------------|----------------|------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Insta | ince attributes    |                |                                                                                    |                                                                                                                                                                                                                                       |
| 0x1   | Interface Speed    | Get            | UDINT                                                                              | Used interface speed in MBit/s (10,<br>100, 1000,).<br>0 is used when the speed has not been<br>determined or is invalid because of<br>detected errors.                                                                               |
| 0x2   | Interface Flags    | Get            | DWORD                                                                              | Interface Status Flags:                                                                                                                                                                                                               |
|       |                    |                |                                                                                    | 0: Link State (0=No link, 1=Link)                                                                                                                                                                                                     |
|       |                    |                |                                                                                    | 1: Duplex mode (0=Half, 1=Full)                                                                                                                                                                                                       |
|       |                    |                |                                                                                    | 2:Auto-Negotiation Status3:0x0=Auto-Negotiation in progress4:0x1=Auto-Negotiation failed0x2=Failed but speed detected0x3=Auto-Negotiation success0x4=No Auto-Negotiation                                                              |
|       |                    |                |                                                                                    | 5: Manual configuration require reset<br>(always 0 because it is not<br>needed)                                                                                                                                                       |
|       |                    |                |                                                                                    | 6: Hardware error                                                                                                                                                                                                                     |
| 0x3   | Physical Address   | Get            | ARRAY of:<br>6 USINT                                                               | MAC address of physical interface                                                                                                                                                                                                     |
| 0x4   | Interface Counters | Get            | STRUCT of:<br>UDINT<br>MibIICounter1<br>UDINT<br>MibIICounter2                     | InOctets, InUcastPackets,<br>InNUcastPackets, InDiscards,<br>InErrors, InUnknownProtos,<br>OutOctets, OutUcastPackets,<br>OutNUcastPackets, OutDiscards,<br>OutErrors                                                                 |
| 0x5   | Media Counters     | Get            | STRUCT of:<br>UDINT<br>EthernetMib<br>Counter1<br>UDINT<br>EthernetMib<br>Counter2 | Alignment Errors, FCS Errors, Single<br>Collision, Multiple Collision, SQE Test<br>Errors, Deferred Transmissions, Late<br>Collisions, Excessive Collisions, MAC<br>TX Errors, Carrier Sense Errors, Frame<br>Too Long, MAC RX Errors |

Table 61: Instance attributes and Schneider Electric extensions to the Ethernet Link Object

| ld   | Attribute                                         | Access<br>Rule | Data type                        | Description                                                                                                                                                                                             |
|------|---------------------------------------------------|----------------|----------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 0x6  | Interface Control                                 | Get/Set        | STRUCT of:                       | Control Bits:                                                                                                                                                                                           |
|      |                                                   |                | WORD ControlBits                 | 0: Auto-negotiation enable/disable<br>(0=disable, 1=enable)                                                                                                                                             |
|      |                                                   |                |                                  | 1: Duplex mode (0=Half, 1=Full),<br>if Auto-negotiation disabled                                                                                                                                        |
|      |                                                   |                | UINT<br>ForcedInterface<br>Speed | Interface speed in MBits/s: 10,100,,<br>if Auto-negotiation disabled                                                                                                                                    |
| 0x7  | Interface type                                    | Get            | USINT                            | Type of interface:<br>0: Unknown interface type<br>1: The interface is internal<br>2: Twisted-pair<br>3: Optical fiber                                                                                  |
| 0x8  | Interface state                                   | Get            | USINT                            | <ul> <li>Current state of the interface:</li> <li>0: Unknown interface state</li> <li>1: The interface is enabled</li> <li>2: The interface is disabled</li> <li>3: The interface is testing</li> </ul> |
| 0x9  | Admin State                                       | Set/Get        | USINT                            | <ul><li>Administrative state:</li><li>1: Enable the interface</li><li>2: Disable the interface</li></ul>                                                                                                |
| 0xA  | Interface label                                   | Get            | SHORT-STRING                     | Human readable ID                                                                                                                                                                                       |
| Schn | eider Electric exten                              | sions to       | the Ethernet Link O              | bject                                                                                                                                                                                                   |
| 0x64 | Ethernet Interface<br>Index                       | Get            | USINT                            | Interface/Port Index (ifIndex out of MIBII)                                                                                                                                                             |
| 0x65 | Port Control                                      | Get/Set        | DWORD                            | 0: Link state<br>(0=link down, 1=link up)                                                                                                                                                               |
|      |                                                   |                |                                  | 1: Link admin state<br>(0=disabled, 1=enabled)                                                                                                                                                          |
|      |                                                   |                |                                  | 8: Access violation alarm (read-only)                                                                                                                                                                   |
|      |                                                   |                |                                  | 9: Utilization alarm (read-only)                                                                                                                                                                        |
| 0x66 | Interface Utilization                             | Get            | USINT                            | The existing Counter out of the private<br>MIB hm2IDiagfaceUtilization is used.<br>Utilization in percentage (Unit 1%=100,<br>%/100). RX Interface Utilization.                                         |
| 0x67 | Interface Utilization<br>Alarm Upper<br>Threshold | Get/Set        | USINT                            | Within this parameter the variable<br>hm2DiagIfaceUtilizationAlarmUpperTh<br>reshold can be accessed. Utilization in<br>percentage (Unit 1%=100).<br>RX Interface Utilization Upper Limit.              |
| 0x68 | Interface Utilization<br>Alarm Lower<br>Threshold | Get/Set        | USINT                            | Within this parameter the variable<br>hm2DiagIfaceUtilizationAlarmLowerTh<br>reshold can be accessed. Utilization in<br>percentage (Unit 1%=100). RX<br>Interface Utilization Lower Limit.              |
| 0x69 | Broadcast limit                                   | Get/Set        | USINT                            | Broadcast limiter Service<br>(Egress BC-Frames limitation,<br>0=disabled), Frames/second                                                                                                                |

| Table 61: | : Instance attributes and Schneider Electric extensions to the Ethernet Link Object (cont |  |
|-----------|-------------------------------------------------------------------------------------------|--|

| ld   | Attribute                         | Access<br>Rule | Data type                    | Des                                   | cription                                                                                                                                                                                                                                                                                         |
|------|-----------------------------------|----------------|------------------------------|---------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 0x6A | Ethernet Interface<br>Description | Get/Set        | STRING                       | (fror<br>"Un<br>or                    | rface/Port Description<br>m MIB II ifDescr), for example<br>it: 1 Slot: 2 Port: 1 - 10/100 Mbit TX<br>available", max. 64 Bytes.                                                                                                                                                                 |
| 0x6B | Port Monitor                      | Get/Set        | DWORD                        | 0:                                    | Link Flap (0=Off, 1=On)                                                                                                                                                                                                                                                                          |
|      |                                   |                | -                            | 1:                                    | CRC/Fragment (0=Off, 1=On)                                                                                                                                                                                                                                                                       |
|      |                                   |                |                              | 2:                                    | Duplex Mismatch (0=Off, 1=On)                                                                                                                                                                                                                                                                    |
|      |                                   |                |                              | 3:                                    | Overload-Detection (0=Off, 1=Or                                                                                                                                                                                                                                                                  |
|      |                                   |                |                              | 4:                                    | Link-Speed/ Duplex Mode<br>(0=Off, 1=On)                                                                                                                                                                                                                                                         |
|      |                                   |                |                              | 5:                                    | Deactivate port action (0=Off, 1=On)                                                                                                                                                                                                                                                             |
|      |                                   |                |                              | 6:                                    | Send trap action (0=Off, 1=On)                                                                                                                                                                                                                                                                   |
|      |                                   |                |                              | -                                     | Active Condition (displays which<br>condition caused an action to<br>-occur)<br>_00001 <sub>B</sub> : Link Flap<br>_00010 <sub>B</sub> : CRC/Fragments<br>_00100 <sub>B</sub> : Duplex Mismatch<br>_01000 <sub>B</sub> : Overload-Detection<br>_10000 <sub>B</sub> : Link-Speed/ Duplex<br>_mode |
|      |                                   |                |                              | 12:                                   | Reserved (always 0)                                                                                                                                                                                                                                                                              |
|      |                                   |                |                              |                                       | Reserved (always 0)                                                                                                                                                                                                                                                                              |
|      |                                   |                |                              | 14:                                   | Reserved (always 0)                                                                                                                                                                                                                                                                              |
|      |                                   |                |                              | 15:                                   | Reserved (always 0)                                                                                                                                                                                                                                                                              |
| 0x6C | Quick Connect                     | Get/Set        | USINT                        | Quie<br>(0=0<br>If yo<br>devi<br>disa | ck Connect on the interface<br>Off, 1=On)<br>ou enable Quick Connect, then the<br>ice sets the port speed to 100FD,<br>ibles Auto-Negotiation, and<br>inning Tree on the interface.                                                                                                              |
| 0x6D | SFP Diagnostics                   | Get            | STRUCT of:                   |                                       |                                                                                                                                                                                                                                                                                                  |
|      |                                   |                | STRING<br>ModuleType         |                                       |                                                                                                                                                                                                                                                                                                  |
|      |                                   |                | SHORT-STRING<br>SerialNumber |                                       |                                                                                                                                                                                                                                                                                                  |
|      |                                   |                | USINT Connector              |                                       |                                                                                                                                                                                                                                                                                                  |
|      |                                   |                | USINT Supported              |                                       |                                                                                                                                                                                                                                                                                                  |
|      |                                   |                | DINT Temperature             |                                       |                                                                                                                                                                                                                                                                                                  |
|      |                                   |                | DINT TxPower                 | in m                                  | nW                                                                                                                                                                                                                                                                                               |
|      |                                   |                | DINT RxPower                 | in m                                  |                                                                                                                                                                                                                                                                                                  |
|      |                                   |                | DINT RxPower                 | in d                                  | Bm                                                                                                                                                                                                                                                                                               |
|      |                                   |                | DINT TxPower                 | in d                                  | Bm                                                                                                                                                                                                                                                                                               |

Table 61: Instance attributes and Schneider Electric extensions to the Ethernet Link Object (cont

| Ethernet Port | Ethernet Link Object Instance |
|---------------|-------------------------------|
| CPU           | 1                             |
| 1             | 2                             |
| 2             | 3                             |
| 3             | 4                             |
| 4             | 5                             |
|               |                               |

Table 62: Assignment of ports to Ethernet Link Object Instances

**Note:** The number of ports depends on the type of hardware used. The Ethernet Link Object only exists, if the port is connected.

# **Switch Agent object**

The device supports the Schneider Electric specific Ethernet Switch Agent Object (Class Code 0x95) for the device configuration and information parameters with Instance 1.

| d   | Attribute     | Access<br>Rule | Data type | Desc | cription                                                                                        |
|-----|---------------|----------------|-----------|------|-------------------------------------------------------------------------------------------------|
| )x1 | Switch Status | Get            | DWORD     | 0:   | Like the signal contact, the<br>value indicates the Device<br>Overall state<br>(0=ok, 1=failed) |
|     |               |                |           | 1:   | Device Security Status<br>(0=ok, 1=failed)                                                      |
|     |               |                |           | 2:   | Power Supply 1<br>(0=ok, 1=failed)                                                              |
|     |               |                |           | 3:   | Power Supply 2<br>(0=ok, 1=failed or not existing                                               |
|     |               |                |           | 4:   | Reserved                                                                                        |
|     |               |                |           | 5:   | Reserved                                                                                        |
|     |               |                |           | 6:   | Signal Contact 1<br>(0=closed, 1=open)                                                          |
|     |               |                |           | 7:   | Signal Contact 2<br>(0=closed, 1=open or not<br>existing)                                       |
|     |               |                |           | 8:   | Reserved                                                                                        |
|     |               |                |           | 9:   | Temperature<br>(0=ok, 1=failure)                                                                |
|     |               |                |           | 10:  | Module removed (1=remove                                                                        |
|     |               |                |           | 11:  | EAM removed (1=removed)                                                                         |
|     |               |                |           | 12:  | EAM-SD removed (1=removed)                                                                      |
|     |               |                |           | 13:  | Reserved                                                                                        |
|     |               |                |           | 14:  | Reserved                                                                                        |
|     |               |                |           | 15:  | Reserved                                                                                        |
|     |               |                |           | 16:  | Reserved                                                                                        |
|     |               |                |           | 17:  | Reserved                                                                                        |
|     |               |                |           | 18:  | Reserved                                                                                        |
|     |               |                |           | 19:  | Reserved                                                                                        |
|     |               |                |           | 20:  | Reserved                                                                                        |
|     |               |                |           | 21:  | Reserved                                                                                        |
|     |               |                |           | 22:  | Reserved                                                                                        |
|     |               |                |           | 23:  | MRP (0=disabled, 1=enabled                                                                      |
|     |               |                |           | 24:  | Reserved                                                                                        |
|     |               |                |           | 25:  | Reserved                                                                                        |
|     |               |                |           | 26:  | RSTP (0=disabled, 1=enable                                                                      |
|     |               |                |           | 27:  | LAG (0=disabled, 1=enabled                                                                      |
|     |               |                |           | 28:  | Reserved                                                                                        |
|     |               |                |           | 29:  | Reserved                                                                                        |
|     |               |                |           | 30:  | Reserved                                                                                        |
|     |               |                |           | 31:  | Connection Error (1=failure)                                                                    |

#### Table 63: Class attributes

| ld  | Attribute                   | Access<br>Rule | Data type          | Description                                                                                                                                                                                                                                             |
|-----|-----------------------------|----------------|--------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 0x2 | Switch                      | Get            | STRUCT of:         |                                                                                                                                                                                                                                                         |
|     | Temperature                 |                | INT TemperatureF   | in °F                                                                                                                                                                                                                                                   |
|     |                             |                | INT TemperatureC   | in °C                                                                                                                                                                                                                                                   |
| 0x3 | Reserved                    | Get            | UDINT              | Reserved for future use (always 0)                                                                                                                                                                                                                      |
| 0x4 | Switch Max Ports            | Get            | UINT               | Maximum number of Ethernet Switcl<br>Ports                                                                                                                                                                                                              |
| 0x5 | Multicast<br>Settings (IGMP | Get/Set        | WORD               | 0: IGMP Snooping<br>(0=disabled, 1=enabled)                                                                                                                                                                                                             |
|     | Snooping)                   |                |                    | 1: IGMP Querier<br>(0=disabled, 1=enabled)                                                                                                                                                                                                              |
|     |                             |                |                    | 2: IGMP Querier Mode (read-<br>only)<br>(0=Non-Querier, 1=Querier)                                                                                                                                                                                      |
|     |                             |                |                    | 3:                                                                                                                                                                                                                                                      |
|     |                             |                |                    | 4: IGMP Querier Packet Version<br>5: Off=0 IGMP Querier disabled<br>V1=1<br>6: V2=2<br>7: V3=3                                                                                                                                                          |
|     |                             |                |                    | 8: Treatment of Unknown<br>9: Multicasts:<br>0=Send To All Ports<br>10: 2=Discard                                                                                                                                                                       |
| 0x6 | Switch Existing<br>Ports    | Get            | ARRAY of:<br>DWORD | Bitmask of existing switch ports<br>Per bit starting with Bit 0 (=Port 1)<br>(0=Port not available, 1=Port<br>existing)<br>Array (bit mask) size is adjusted to<br>the size of maximum number of<br>switch ports (for max. 28 Ports 1<br>DWORD is used) |
| 0x7 | Switch Port                 | Get/Set        | ARRAY of:          | Bitmask Link Admin Status switch                                                                                                                                                                                                                        |
|     | Control                     |                | DWORD              | ports<br>Per bit starting with Bit 0 (=Port 1)<br>(0=Port enabled, 1=Port disabled)<br>Array (bit mask) size is adjusted to<br>the size of maximum number of<br>Switch ports (for max. 28 Ports 1<br>DWORD is used)                                     |
| 0x8 | Switch Ports                | Get            | ARRAY of:          | Instance number of the Ethernet-                                                                                                                                                                                                                        |
|     | Mapping                     |                | USINT              | Link-Object<br>Starting with Index 0 (=Port 1)<br>All Ethernet Link Object Instances fo<br>the existing Ethernet Switch Ports<br>(1N, maximum number of ports).<br>When the entry is 0, the Ethernet Lind<br>Object for this port does not exist        |

Table 63: Class attributes (cont

| ld  | Attribute               | Access<br>Rule | Data type | Des | cription                                                                              |
|-----|-------------------------|----------------|-----------|-----|---------------------------------------------------------------------------------------|
| 0x9 | Switch Action<br>Status | Get            | DWORD     | exa | tus of the last executed action (for mple config save, software ate, etc.)            |
|     |                         |                |           | 0:  | Flash Save Configuration In<br>Progress/Flash Write In<br>Progress                    |
|     |                         |                |           | 1:  | Flash Save Configuration<br>Failed/Flash Write Failed                                 |
|     |                         |                |           | 4:  | Configuration changed<br>(configuration not in sync.<br>between running configuration |

| Table 63: | Class attributes | (cont |
|-----------|------------------|-------|
|-----------|------------------|-------|

The Schneider Electric specific Ethernet Switch Agent Object provides you with the additional vendor specific service, with the Service Code 0x35 for saving the Switch configuration. When you send a request from your PC to save a device configuration, the device sends a reply after saving the configuration in the flash memory.

#### **Base Switch object**

The Base Switch object provides the CIP application-level interface to basic status information for a managed Ethernet switch (revision 1).

Only Instance 1 of the Base Switch (Class Code 0x51) is available.

Table 64: Instance attributes

| ld  | Attribute                     | Access<br>Rule | Data type    | Description                                              |
|-----|-------------------------------|----------------|--------------|----------------------------------------------------------|
| 0x1 | Device Up Time                | Get            | UDINT        | Time since the device powered up                         |
| 0x2 | Total port count              | Get            | UDINT        | Number of physical ports                                 |
| 0x3 | System Firmware<br>Version    | Get            | SHORT-STRING | Human readable representation of System Firmware Version |
| 0x4 | Power source                  | Get            | WORD         | Status of switch power source                            |
| 0x5 | Port Mask Size                | Get            | UINT         | Number of DWORD in port array attributes                 |
| 0x6 | Existing ports                | Get            | ARRAY of:    | Port Mask                                                |
|     |                               |                | DWORD        | -                                                        |
| 0x7 | Global Port                   | Get            | ARRAY of:    | Port Admin Status                                        |
|     | Admin State                   |                | DWORD        | -                                                        |
| 0x8 | Global Port link              | Get            | ARRAY of:    | Port Link Status                                         |
|     | Status                        |                | DWORD        | -                                                        |
| 0x9 | System Boot<br>Loader Version | Get            | SHORT-STRING | Readable System Firmware<br>Version                      |
| 0xA | Contact Status                | Get            | UDINT        | Switch Contact Closure                                   |

| ld  | Attribute     | Access<br>Rule | Data type | Description                                                       |
|-----|---------------|----------------|-----------|-------------------------------------------------------------------|
| 0xB | Aging Time    | Get            | UDINT     | Range 101000000 · 1/10 seconds<br>(default=300)<br>0=Learning off |
| 0xC | Temperature C | Get            | UINT      | Switch temperature in degrees<br>Celsius                          |
| 0xD | Temperature F | Get            | UINT      | Switch temperature in degrees<br>Fahrenheit                       |

Table 64: Instance attributes (cont

### Services, Connections and I/O Data

The device supports the following connection types and parameters.

| Table 65: | Settinas | for integrating a | new module |
|-----------|----------|-------------------|------------|
|           |          |                   |            |

| Setting                            | I/O connection              | Input only                  | Listen only                        |
|------------------------------------|-----------------------------|-----------------------------|------------------------------------|
| Comm Format:                       | Data - DINT                 | Data - DINT                 | Input Data - DINT -<br>Run/Program |
| IP Address                         | IP address of the<br>device | IP address of the<br>device | IP address of the device           |
| Input Assembly<br>Instance         | 100                         | 100                         | 100                                |
| Input Size                         | 32                          | 32                          | 32                                 |
| Output Assembly<br>Instance        | 150                         | 152                         | 153                                |
| Output Size                        | 32                          | 0                           | 0                                  |
| Configuration Assembly<br>Instance | 151                         | 151                         | 151                                |
| Data Size                          | 10                          | 10                          | 10                                 |

| Table 66: Der | vice I/O data | structure |
|---------------|---------------|-----------|
|---------------|---------------|-----------|

| I/O Data                            | Value (data types and sizes to be defined)                                                                                                                          | Direction | Size <sup>1</sup> |
|-------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|-------------------|
| Device Status                       | Bitmask (see Switch Agent Attribute 0x1)                                                                                                                            | Input     | DWORD             |
| Link Status                         | Bitmask, 1 Bit per port<br>(0=No link, 1=Link up)                                                                                                                   | Input     | DWORD             |
| Output Links Admin<br>State applied | Bitmask (1 Bit per port) to acknowledge output.<br>Link state change can be denied, for example<br>for controller access port.<br>(0=Port enabled, 1=Port disabled) | Input     | DWORD             |
| Utilization Alarm <sup>2</sup>      | Bitmask, 1 Bit per port<br>(0=No alarm, 1=Alarm on port)                                                                                                            | Input     | DWORD             |
| Access Violation Alarm <sup>3</sup> | Bitmask, 1 Bit per port<br>(0=No alarm, 1=Alarm on port)                                                                                                            | Input     | DWORD             |
| Multicast Connections               | Integer, number of connections                                                                                                                                      | Input     | DINT              |

| Table 66: | Device I/O data structu | ıre (cont |
|-----------|-------------------------|-----------|
|-----------|-------------------------|-----------|

| I/O Data           | Value (data types and sizes to be defined)                                        | Direction | Size <sup>1</sup> |
|--------------------|-----------------------------------------------------------------------------------|-----------|-------------------|
| TCP/IP Connections | Integer, number of connections                                                    | Input     | DINT              |
| Quick Connect Mask | Bitmask (1 Bit per port)<br>(0=Quick Connect disabled, 1=Quick Connec<br>enabled) | Input     | DINT              |
| Link Admin State   | Bitmask, 1 Bit per port<br>(0=Port enabled, 1=Port disabled)                      | Output    | DWORD             |

1. The default size of the port bit masks is 32 bits (DWORD). For devices with more than 28 ports the port bit masks have been extended to n \* DWORD.

2. You specify the utilization alarm settings in the *Basic Settings > Port* dialog, *Utilization* tab. The upper threshold is the limit, where the alarm condition becomes active. The lower threshold is the limit, where an active alarm condition becomes inactive.

3. You specify the Access Violation alarm settings in the *Network Security > Port Security* dialog. The upper threshold is the limit, where the alarm condition becomes active. The lower threshold is the limit, where an active alarm condition becomes inactive.

| Object type  | Bit size      |
|--------------|---------------|
| BOOL         | 1 bit         |
| DINT         | 32 bit        |
| DWORD        | 32 bit        |
| SHORT-STRING | max. 32 bytes |
| STRING       | max. 64 bytes |
| UDINT        | 32 bit        |
| UINT         | 16 bit        |
| USINT        | 8 bit         |
| WORD         | 16 bit        |

Table 67: Mapping of the data types to bit sizes

## A Setting up the configuration environment

## A.1 Setting up a DHCP/BOOTP server

The following example describes the configuration of a DHCP server using the haneWIN DHCP Server software. This shareware software is a product of IT-Consulting Dr. Herbert Hanewinkel. You can download the software from www.hanewin.net. You can test the software for 30 calendar days from the date of the first installation, and then decide if you want to purchase a license.

Perform the following steps:

- □ Install the DHCP server on your PC.
  - To carry out the installation, follow the installation assistant.
- Start the *haneWIN DHCP Server* program.

| ile _0ptions _₩indo<br>Dbserved MAC addre |                         |            |                 |
|-------------------------------------------|-------------------------|------------|-----------------|
| Jbserved MAL addre<br>AAC Address/Id      | sses/id: 2/4<br>Profile | IP Address | Last request on |
|                                           | include the             |            |                 |
|                                           |                         |            |                 |
|                                           |                         |            |                 |
|                                           |                         |            |                 |
|                                           |                         |            |                 |
|                                           |                         |            |                 |

Figure 73: Start window of the haneWIN DHCP Server program

**Note:** When Windows is activated, the installation procedure includes a service that is automatically started in the basic configuration. This service is also active although the program itself has not been started. When started, the service responds to DHCP queries.

- □ In the menu bar, click the items *Options* > *Preferences* to open the program settings window.
- Select the *DHCP* tab.
- □ Specify the settings displayed in the figure.



Figure 74: DHCP setting

Click the *OK* button.

□ To enter the configuration profiles, click in the menu bar the items *Options > Configuration Profiles*.

□ Specify the name for the new configuration profile.




Figure 75: Adding configuration profiles

Click the *Add* button.

Specify the netmask.

| for:               | static Entries                        | •             |
|--------------------|---------------------------------------|---------------|
| г Dy               | mamic IP Addresses                    |               |
|                    | From:                                 |               |
|                    | Until:                                |               |
|                    | Lease time (s):                       | 36000         |
| $ \left[ \right] $ | Subnet mask:                          | 255.255.255.0 |
|                    | Gateway Address:<br>Backup Gateway 1: |               |
|                    | Backup Gateway 2:                     |               |

Figure 76: Netmask in the configuration profile

- $\Box$  Click the *Apply* button.
- Select the Boot tab.
- □ Enter the IP address of your tftp server.
- □ Enter the path and the file name for the configuration file.

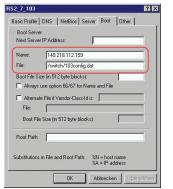



Figure 77: Configuration file on the tftp server

□ Click the *Apply* button and then the *OK* button.

 $\Box$  Add a profile for each device type.

When devices of the same type have different configurations, you add a profile for each configuration.

| Profile                                                                  | Туре |  |
|--------------------------------------------------------------------------|------|--|
| Default Client Pro<br>PowerMICE105<br>MICE102<br>RS2_16M101<br>RS2_7_103 | file |  |
|                                                                          |      |  |

Figure 78: Managing configuration profiles

 $\hfill\square$  To complete the addition of the configuration profiles, click the  $\it OK$  button.

 $\hfill\square$  To enter the static addresses, in the main window, click the Static button.

| ile _0ptions _₩indi<br>Ibserved MAC addre |         |            |              |         |
|-------------------------------------------|---------|------------|--------------|---------|
| MAC Address/Id                            | Profile | IP Address | Last request | on      |
|                                           |         |            |              |         |
|                                           |         |            |              |         |
|                                           |         |            |              |         |
|                                           |         |            |              |         |
| 1                                         |         |            |              |         |
| <                                         | New     | static     | dynamic _    | ignored |

Figure 79: Static address input

Click the Add button.

| ow Help       |                         |                                    |                                                 |
|---------------|-------------------------|------------------------------------|-------------------------------------------------|
| isses/ld: 2/4 |                         |                                    |                                                 |
| Profile       | IP Address              | Last request                       | on                                              |
|               |                         |                                    |                                                 |
|               |                         |                                    |                                                 |
|               |                         |                                    |                                                 |
|               |                         |                                    |                                                 |
|               |                         |                                    |                                                 |
|               |                         |                                    |                                                 |
|               | sses/Id: 2/4<br>Profile | sses/ld: 2/4<br>Profile IP Address | sses/Id: 2/4<br>Profile IP Address Last request |

Figure 80: Adding static addresses

- Enter the MAC address of the device.
- □ Enter the IP address of the device.

| Add static entries                                                                                                                                                           |  |  |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| With static entries you can assign clients with known hardware address<br>or identifier a fixed IP address and configuration profile.                                        |  |  |
| The assigned IP addresses must not overlap with the dynamic address<br>ranges.                                                                                               |  |  |
| Identifiers or hardware addresses must be specified byte by byte in<br>hexadecimal notation. For MAC (hardware) addresses the bytes must be<br>separated by a dash or colon. |  |  |
| Client Identifier Circuit Identifier Remote Identifier or                                                                                                                    |  |  |
| Hardware address: 00:00:00:51:74:00                                                                                                                                          |  |  |
| IP Address: 149.218.112.105                                                                                                                                                  |  |  |
| Optional                                                                                                                                                                     |  |  |
| Configuration Profile: Switch1                                                                                                                                               |  |  |
| Remark:                                                                                                                                                                      |  |  |
| Redundant entry (allow entry with an existing IP address)                                                                                                                    |  |  |
| OK <u>Apply</u> Cancel                                                                                                                                                       |  |  |

Figure 81: Entries for static addresses

□ Select the configuration profile of the device.

□ Click the *Apply* button and then the *OK* button.

□ Add an entry for each device that will get its parameters from the DHCP server.



Figure 82: DHCP server with entries

## A.2 Setting up a DHCP server with Option 82

The following example describes the configuration of a DHCP server using the haneWIN DHCP Server software. This shareware software is a product of IT-Consulting Dr. Herbert Hanewinkel. You can download the software from www.hanewin.net. You can test the software for 30 calendar days from the date of the first installation, and then decide if you want to purchase a license.

Perform the following steps:

- □ Install the DHCP server on your PC.
  - To carry out the installation, follow the installation assistant.
- Start the *haneWIN DHCP Server* program.

| Dbserved MAC addre | sses/ld: 2/4 |            |                 |
|--------------------|--------------|------------|-----------------|
| MAC Address/Id     | Profile      | IP Address | Last request on |
|                    |              |            |                 |
|                    |              |            |                 |
|                    |              |            |                 |
|                    |              |            |                 |
|                    |              |            |                 |
|                    |              |            |                 |

Figure 83: Start window of the haneWIN DHCP Server program

**Note:** When Windows is activated, the installation procedure includes a service that is automatically started in the basic configuration. This service is also active although the program itself has not been started. When started, the service responds to DHCP queries.

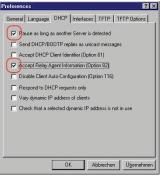



Figure 84: DHCP setting

□ To enter the static addresses, click the *Add* button.



Figure 85: Adding static addresses

Mark the *Circuit Identifier* checkbox.
 Mark the *Remote Identifier* checkbox.

| with known hardware address<br>ration profile.             |
|------------------------------------------------------------|
| ap with the dynamic address                                |
| specified byte by byte in<br>) addresses the bytes must be |
| Remote Identifier                                          |
|                                                            |
|                                                            |
| •                                                          |
| m existing IP address)                                     |
|                                                            |

Figure 86: Default setting for the fixed address assignment

□ In the *Hardware address* field, specify the value *Circuit Identifier* and the value *Remote Identifier* for the switch and port.

The DHCP server assigns the IP address specified in the *IP address* field to the device that you connect to the port specified in the *Hardware address* field.

The hardware address is in the following form:

ciclvvvvssmmpprirlxxxxxxxxx

Ci

Sub-identifier for the type of the Circuit ID

- ▶ cl
- Length of the Circuit ID.

Schneider Electric identifier:

01 when a Schneider Electric device is connected to the port, otherwise 00.

VVVV

VLAN ID of the DHCP request.

Default setting: 0001 = VLAN 1

▶ ss

Socket of device at which the module with that port is located to which the device is

connected. Specify the value 00.

🕨 mm

►

Module with the port to which the device is connected.

pp Port to which the device is connected.

🕨 ri

Sub-identifier for the type of the Remote ID

🕨 rl

Length of the Remote ID.

Remote ID of the device (for example MAC address) to which a device is connected.



Figure 87: Specifying the addresses

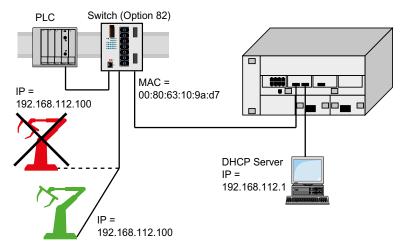



Figure 88: Application example of using Option 82

## A.3 Preparing access via SSH

You can connect to the device using SSH. To do this, perform the following steps:

- Generate a key in the device.
  - or
- Transfer your own key onto the device.
- Prepare access to the device in the SSH client program.

Note: In the default setting, the key is already existing and access using SSH is enabled.

#### A.3.1 Generating a key in the device

The device lets you generate the key directly in the device. To do this, perform the following steps:

- □ Open the Device Security > Management Access > Server dialog, SSH tab.
- □ To disable the SSH server, select the *Off* radio button in the *Operation* frame.
- $\Box$  Save the changes temporarily. To do this, click the  $\checkmark$  button.
- □ To create a RSA key, in the Signature frame, click the Create button.
- □ To enable the SSH server, select the *On* radio button in the *Operation* frame.
- $\Box$  Save the changes temporarily. To do this, click the  $\checkmark$  button.

| enable               | Change to the Privileged EXEC mode. |
|----------------------|-------------------------------------|
| configure            | Change to the Configuration mode.   |
| ssh key rsa generate | Generate a new RSA key.             |

#### A.3.2 Loading your own key onto the device

OpenSSH gives experienced network administrators the option of generating an own key. To generate the key, enter the following commands on your PC:

```
ssh-keygen(.exe) -q -t rsa -f rsa.key -C '' -N ''
rsaparam -out rsaparam.pem 2048
```

The device lets you transfer your own SSH key onto the device. To do this, perform the following steps:

- □ Open the Device Security > Management Access > Server dialog, SSH tab.
- $\hfill\square$  To disable the SSH server, select the <code>Off</code> radio button in the <code>Operation</code> frame.
- $\Box$  Save the changes temporarily. To do this, click the  $\checkmark$  button.
- □ When the host key is located on your PC or on a network drive, drag and drop the file that contains the key in the 1 area. Alternatively click in the area to select the file.

- Click the Start button in the Key import frame to load the key onto the device.
- $\Box$  To enable the SSH server, select the *On* radio button in the *Operation* frame.
- $\Box$  Save the changes temporarily. To do this, click the  $\checkmark$  button.

Perform the following steps:

- □ Copy the self-generated key from your PC to the external memory.
- □ Copy the key from the external memory into the device.

enable copy sshkey envm <file name> Change to the Privileged EXEC mode. Load your own key onto the device from the external memory.

#### A.3.3 Preparing the SSH client program

The *PuTTY* program lets you access the device using SSH. You can download the software from www.putty.org.

Perform the following steps:

□ Start the program by double-clicking on it.

| Rutty Configuration                                                                                                                                                                                                                                                                                                                            | <u>? ×</u>                                                                                                                                                                                                                                                                                                                                                                                  |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Category:                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                             |
| <ul> <li>Session</li> <li>Logging</li> <li>Terminal</li> <li>Keyboard</li> <li>Bell</li> <li>Features</li> <li>Window</li> <li>Appearance</li> <li>Behaviour</li> <li>Translation</li> <li>Selection</li> <li>Colours</li> <li>Connection</li> <li>Data</li> <li>Proxy</li> <li>Telnet</li> <li>Rlogin</li> <li>SSH</li> <li>Serial</li> </ul> | Basic options for your PuTTY session         Specify the destination you want to connect to         Host Name (or IP address)       Port         192.168.1.5       22         Connection type:       Raw         Raw       Telnet         Raw       Telnet         Save or delete a stored session         Saved Sessions         Default Settings         Load         Save         Delete |
| About Help                                                                                                                                                                                                                                                                                                                                     | Open Cancel                                                                                                                                                                                                                                                                                                                                                                                 |

Figure 89: PuTTY input screen

- In the Host Name (or IP address) field you enter the IP address of your device.
   The IP address (a.b.c.d) consists of 4 decimal numbers with values from 0 to 255. The 4 decimal numbers are separated by points.
- □ To select the connection type, select the SSH radio button in the Connection type option list.
- □ Click the *Open* button to set up the data connection to your device.

Before the connection is established, the *PuTTY* program displays a security alarm message and lets you check the key fingerprint.



Figure 90: Security alert prompt for the fingerprint

Before the connection is established, the *PuTTY* program displays a security alarm message and lets you check the key fingerprint.

- □ Check the fingerprint of the key to help ensure that you have actually connected to the desired device.
- □ When the fingerprint matches your key, click the Yes button.

For experienced network administrators, another way of accessing your device through an SSH is by using the OpenSSH Suite. To set up the data connection, enter the following command:

ssh admin@10.0.112.53

admin is the user name.

10.0.112.53 is the IP address of your device.

## A.4 HTTPS certificate

Your web browser establishes the connection to the device using the HTTPS protocol. The prerequisite is that you enable the *HTTPS server* function in the *Device Security > Management Access >* Server dialog, *HTTPS* tab.

**Note:** Third-party software such as web browsers validate certificates based on criteria such as their expiration date and current cryptographic parameter recommendations. Old certificates can cause errors for example, an expired certificate or cryptographic recommendations change. To solve validation conflicts with third-party software, transfer your own up-to-date certificate onto the device or regenerate the certificate with the latest firmware.

#### A.4.1 HTTPS certificate management

A standard certificate according to X.509/PEM (Public Key Infrastructure) is required for encryption. In the default setting, a self-generated certificate is already present in the device. To do this, perform the following steps:

- □ Open the Device Security > Management Access > Server dialog, HTTPS tab.
- □ To create a X509/PEM certificate, in the *Certificate* frame, click the *Create* button.
- $\Box$  Save the changes temporarily. To do this, click the  $\checkmark$  button.
- Restart the HTTPS server to activate the key. Restart the server using the Command Line Interface.

| enable                     | Change to the Privileged EXEC mode.     |
|----------------------------|-----------------------------------------|
| configure                  | Change to the Configuration mode.       |
| https certificate generate | Generate a https X.509/PEM Certificate. |
| no https server            | Disable the HTTPS function.             |
| https server               | Enable the HTTPS function.              |

- □ The device also enables you to transfer an externally generated X.509/PEM certificate onto the device:
  - □ Open the Device Security > Management Access > Server dialog, HTTPS tab.
  - □ When the certificate is located on your PC or on a network drive, drag and drop the certificate in the the area. Alternatively click in the area to select the certificate.
  - □ Click on the *Start* button to copy the certificate to the device.
  - $\Box$  Save the changes temporarily. To do this, click the  $\checkmark$  button.

enable copy httpscert envm <file name> Change to the Privileged EXEC mode. Copy HTTPS certificate from external non-volatile memory device.

| configure       | Change to the Configuration mode. |
|-----------------|-----------------------------------|
| no https server | Disable the HTTPS function.       |
| https server    | Enable the HTTPS function.        |

**Note:** To activate the certificate after you created or transfered it, reboot the device or restart the HTTPS server. Restart the HTTPS server using the Command Line Interface.

#### A.4.2 Access through HTTPS

The default setting for HTTPS data connection is TCP port 443. If you change the number of the HTTPS port, then reboot the device or the HTTPS server. Thus the change becomes effective. To do this, perform the following steps:

□ Open the Device Security > Management Access > Server dialog, HTTPS tab.

- $\Box$  To enable the function, select the *On* radio button in the *Operation* frame.
- □ To access the device by HTTPS, enter HTTPS instead of HTTP in your browser, followed by the IP address of the device.

| enable         | Change to the Privileged EXEC mode.                                                                |
|----------------|----------------------------------------------------------------------------------------------------|
| configure      | Change to the Configuration mode.                                                                  |
| https port 443 | Specifies the number of the TCP port on which the web server receives HTTPS requests from clients. |
| https server   | Enable the HTTPS function.                                                                         |
| show https     | Displays the status of the <i>HTTPS</i> server and the port number.                                |

When you make changes to the HTTPS port number, disable the HTTPS server and enable it again in order to make the changes effective.

The device uses HTTPS protocol and establishes a new data connection. When you log out at the end of the session, the device terminates the data connection.

## **B** Appendix

## **B.1** Management Information Base (MIB)

The Management Information Base (MIB) is designed in the form of an abstract tree structure.

The branching points are the object classes. The "leaves" of the MIB are called generic object classes.

When this is required for unique identification, the generic object classes are instantiated, that means the abstract structure is mapped onto reality, by specifying the port or the source address.

Values (integers, time ticks, counters or octet strings) are assigned to these instances; these values can be read and, in some cases, modified. The object description or object ID (OID) identifies the object class. The subidentifier (SID) is used to instantiate them.

#### Example:

The generic object class sa2PSState (OID = 1.3.6.1.4.1.3833.1.1.11.11.1.1.2.1) is the description of the abstract information power supply status. However, it is not possible to read any value from this, as the system does not know which power supply is meant.

Specifying the subidentifier 2 maps this abstract information onto reality (instantiates it), thus identifying it as the operating status of power supply 2. A value is assigned to this instance and can be read. The instance get 1.3.6.1.4.1.3833.1.1.11.11.11.1.2.1 returns the response 1, which means that the power supply is ready for operation.

| Definition of the syntax terms used: |                                                                                      |
|--------------------------------------|--------------------------------------------------------------------------------------|
| Integer                              | An integer in the range -2 <sup>31</sup> - 2 <sup>31</sup> -1                        |
| IP address                           | xxx.xxx.xxx<br>(xxx = integer in the range 0255)                                     |
| MAC address                          | 12-digit hexadecimal number in accordance with ISO/IEC 8802-3                        |
| Object<br>Identifier                 | x.x.x.x (for example 1.3.6.1.1.4.1.3833)                                             |
| Octet String                         | ASCII character string                                                               |
| PSID                                 | Power supply identifier (number of the power supply unit)                            |
| TimeTicks                            | Stopwatch, Elapsed time = numerical value / 100 (in seconds)                         |
|                                      | numerical value = integer in the range $0-2^{32}-1$                                  |
| Timeout                              | Time value in hundredths of a second                                                 |
|                                      | time value = integer in the range 0-2 <sup>32</sup> -1                               |
| Type field                           | 4-digit hexadecimal number in accordance with ISO/IEC 8802-3                         |
| Counter                              | Integer (0-2 <sup>32</sup> -1), when certain events occur, the value increases by 1. |

# **B.2** List of RFCs

| RFC 768  | UDP                                                             |
|----------|-----------------------------------------------------------------|
| RFC 783  | TFTP                                                            |
| RFC 791  | IP                                                              |
| RFC 792  | ICMP                                                            |
| RFC 793  | TCP                                                             |
| RFC 826  | ARP                                                             |
| RFC 854  | Telnet                                                          |
| RFC 855  | Telnet Option                                                   |
| RFC 951  | BOOTP                                                           |
| RFC 1112 | IGMPv1                                                          |
| RFC 1157 | SNMPv1                                                          |
| RFC 1155 | SMIv1                                                           |
| RFC 1212 | Concise MIB Definitions                                         |
| RFC 1213 | MIB2                                                            |
| RFC 1493 | Dot1d                                                           |
| RFC 1542 | BOOTP-Extensions                                                |
| RFC 1643 | Ethernet-like -MIB                                              |
| RFC 1757 | RMON                                                            |
| RFC 1867 | Form-Based File Upload in HTML                                  |
| RFC 1901 | Community based SNMP v2                                         |
| RFC 1905 | Protocol Operations for SNMP v2                                 |
| RFC 1906 | Transport Mappings for SNMP v2                                  |
| RFC 1945 | HTTP/1.0                                                        |
| RFC 2068 | HTTP/1.1 protocol as updated by draft-ietf-http-v11-spec-rev-03 |
| RFC 2131 | DHCP                                                            |
| RFC 2132 | DHCP-Options                                                    |
| RFC 2233 | The Interfaces Group MIB using SMI v2                           |
| RFC 2236 | IGMPv2                                                          |
| RFC 2246 | The TLS Protocol, Version 1.0                                   |
| RFC 2346 | AES Ciphersuites for Transport Layer Security                   |
| RFC 2365 | Administratively Scoped IP Multicast                            |
| RFC 2578 | SMIv2                                                           |
| RFC 2579 | Textual Conventions for SMI v2                                  |
| RFC 2580 | Conformance statements for SMI v2                               |
| RFC 2613 | SMON                                                            |
| RFC 2618 | RADIUS Authentication Client MIB                                |
| RFC 2620 | RADIUS Accounting MIB                                           |
| RFC 2674 | Dot1p/Q                                                         |
| RFC 2818 | HTTP over TLS                                                   |
| RFC 2851 | Internet Addresses MIB                                          |
| RFC 2863 | The Interfaces Group MIB                                        |
| RFC 2865 | RADIUS Client                                                   |
| RFC 2866 | RADIUS Accounting                                               |

| RFC 2868    | RADIUS Attributes for Tunnel Protocol Support                                                                            |
|-------------|--------------------------------------------------------------------------------------------------------------------------|
| RFC 2869    | RADIUS Extensions                                                                                                        |
| RFC 2869bis | RADIUS support for EAP                                                                                                   |
| RFC 2933    | IGMP MIB                                                                                                                 |
| RFC 3164    | The BSD Syslog Protocol                                                                                                  |
| RFC 3376    | IGMPv3                                                                                                                   |
| RFC 3410    | Introduction and Applicability Statements for Internet Standard Management                                               |
|             | Framework                                                                                                                |
| RFC 3411    | An Architecture for Describing Simple Network Management Protocol (SNMP)                                                 |
|             | Management Frameworks                                                                                                    |
| RFC 3412    | Message Processing and Dispatching for the Simple Network Management<br>Protocol (SNMP)                                  |
| RFC 3413    | Simple Network Management Protocol (SNMP) Applications                                                                   |
| RFC 3414    | User-based Security Model (USM) for version 3 of the Simple Network<br>Management Protocol (SNMPv3)                      |
| RFC 3415    | View-based Access Control Model (VACM) for the Simple Network Management<br>Protocol (SNMP)                              |
| RFC 3418    | Management Information Base (MIB)<br>for the Simple Network Management Protocol (SNMP)                                   |
| RFC 3580    | 802.1X RADIUS Usage Guidelines                                                                                           |
| RFC 3584    | Coexistence between Version 1, Version 2, and Version 3 of the Internet-<br>standard Network Management Framework        |
| RFC 3621    | Power Ethernet MIB                                                                                                       |
| RFC 4022    | Management Information Base for the Transmission Control Protocol (TCP)                                                  |
| RFC 4113    | Management Information Base for the User Datagram Protocol (UDP)                                                         |
| RFC 4188    | Definitions of Managed Objects for Bridges                                                                               |
| RFC 4251    | SSH protocol architecture                                                                                                |
| RFC 4291    | IPv6 Addressing Architecture                                                                                             |
| RFC 4252    | SSH authentication protocol                                                                                              |
| RFC 4253    | SSH transport layer protocol                                                                                             |
| RFC 4254    | SSH connection protocol                                                                                                  |
| RFC 4293    | Management Information Base for the Internet Protocol (IP)                                                               |
| RFC 4318    | Definitions of Managed Objects for Bridges with Rapid Spanning Tree Protocol                                             |
| RFC 4330    | Simple Network Time Protocol (SNTP) Version 4 for IPv4, IPv6 and OSI                                                     |
| RFC 4363    | Definitions of Managed Objects for Bridges with Traffic Classes, Multicast<br>Filtering, and Virtual LAN Extensions      |
| RFC 4541    | Considerations for Internet Group Management Protocol (IGMP) and Multicast<br>Listener Discovery (MLD) Snooping Switches |
| RFC 4836    | Definitions of Managed Objects for IEEE 802.3 Medium Attachment Units (MAUs)                                             |
| RFC 4861    | Neighbor Discovery for IPv6                                                                                              |
| RFC 5321    | Simple Mail Transfer Protocol                                                                                            |
| RFC 6221    | Leightweight DHCPv6 Relay Agent                                                                                          |
| RFC 8200    | IPv6 Specification                                                                                                       |
| RFC 8415    | DHCPv6                                                                                                                   |
|             |                                                                                                                          |

# **B.3 Underlying IEEE Standards**

| IEEE 802.1AB | Station and Media Access Control Connectivity Discovery |
|--------------|---------------------------------------------------------|
| IEEE 802.1D  | MAC Bridges (switching function)                        |
| IEEE 802.1Q  | Virtual LANs (VLANs, MRP, Spanning Tree)                |
| IEEE 802.1X  | Port Authentication                                     |
| IEEE 802.3   | Ethernet                                                |
| IEEE 802.3ac | VLAN Tagging                                            |
| IEEE 802.3x  | Flow Control                                            |
| IEEE 802.3af | Power over Ethernet                                     |

# B.4 Underlying IEC Norms

IEC 62439 High availability automation networks MRP – Media Redundancy Protocol based on a ring topology

# B.5 Underlying ANSI Norms

ANSI/TIA-1057 Link Layer Discovery Protocol for Media Endpoint Devices, April 2006

## **B.6** Technical Data

### 16.3.3 Switching

| Size of the MAC address table (incl. static filters)                | 16384      |
|---------------------------------------------------------------------|------------|
| Max. number of statically configured MAC address filters            | 100        |
| Max. number of MAC address filters learnable through IGMP Snooping  | 1024       |
| Max. number of MAC address entries (MMRP)                           | 64         |
| Number of priority queues                                           | 8 Queues   |
| Port priorities that can be set                                     | 07         |
| MTU (Max. allowed length of packets a port can receive or transmit) | 9720 Bytes |

### 16.3.4 VLAN

| VLAN ID range   | 14042                                                                  |
|-----------------|------------------------------------------------------------------------|
| Number of VLANs | max. 128 simultaneously per device<br>max. 128 simultaneously per port |

## 16.3.5 Access Control Lists (ACL)

| 50             |
|----------------|
| 256            |
| 256            |
| 2048 (8 × 256) |
| 12             |
| 128            |
| 514            |
|                |

# **B.7** Copyright of integrated Software

The product contains, among other things, Open Source Software files developed by third parties and licensed under an Open Source Software license.

You can find the license terms in the Graphical User Interface in the Help > Licenses dialog.

## **B.8** Abbreviations used

| ACL    | Access Control List                               |
|--------|---------------------------------------------------|
| BOOTP  | Bootstrap Protocol                                |
| CLI    | Command Line Interface                            |
| DHCP   | Dynamic Host Configuration Protocol               |
| DHCPv6 | Dynamic Host Configuration Protocol for IPv6      |
| DUID   | DHCP Unique Identifier                            |
| EUI    | Extended Unique Identifier                        |
| FDB    | Forwarding Database                               |
| GUI    | Graphical User Interface                          |
| HTTP   | Hypertext Transfer Protocol                       |
| HTTPS  | Hypertext Transfer Protocol Secure                |
| ICMP   | Internet Control Message Protocol                 |
| IEEE   | Institute of Electrical and Electronics Engineers |
| IGMP   | Internet Group Management Protocol                |
| IP     | Internet Protocol                                 |
| IPv6   | Internet Protocol version 6                       |
| LDRA   | Lightweight DHCPv6 Relay Agent                    |
| LED    | Light Emitting Diode                              |
| LLDP   | Link Layer Discovery Protocol                     |
| MAC    | Media Access Control                              |
| MIB    | Management Information Base                       |
| MRP    | Media Redundancy Protocol                         |
| NDP    | Neighbor Discovery Protocol                       |
| NMS    | Network Management System                         |
| PC     | Personal Computer                                 |
| PTP    | Precision Time Protocol                           |
| QoS    | Quality of Service                                |
| RFC    | Request For Comment                               |
| RM     | Redundancy Manager                                |
| RSTP   | Rapid Spanning Tree Protocol                      |
| SCP    | Secure Copy                                       |
| SFP    | Small Form-factor Pluggable                       |
| SFTP   | SSH File Transfer Protocol                        |
| SNMP   | Simple Network Management Protocol                |
| SNTP   | Simple Network Time Protocol                      |
| TCP    | Transmission Control Protocol                     |
| TFTP   | Trivial File Transfer Protocol                    |
| TP     | Twisted Pair                                      |
| UDP    | User Datagram Protocol                            |
|        |                                                   |

| URL  | Uniform Resource Locator   |
|------|----------------------------|
| UTC  | Coordinated Universal Time |
| VLAN | Virtual Local Area Network |

# C Index

| 0-9 |
|-----|
|-----|

| 802.1X                  | . 67 |
|-------------------------|------|
| Α                       |      |
| Access roles            |      |
| Access security         | 115  |
| Advanced Mode           | 182  |
| Aging time              | 140  |
| Alarm                   | 243  |
| Alarm messages          | 241  |
| Alternate port          | 207  |
| APNIC                   | . 44 |
| ARIN                    | . 44 |
| ARP                     | . 46 |
| Authentication list     | . 67 |
| Automatic configuration | 116  |
|                         |      |

## в

| ackup port                 | 2, 207 |
|----------------------------|--------|
| andwidth                   | . 156  |
| est Master Clock algorithm | 93     |
| ЮОТР                       | 43     |
| oundary clock (PTP)        | 92     |
| PDU                        | . 195  |
| PDU guard                  | 3, 207 |
| ridge Identifier           | . 193  |
| ridge Protocol Data Unit   | . 195  |
|                            |        |

## \_

| CA certificate                 |      |
|--------------------------------|------|
|                                |      |
|                                | 312  |
| Classless inter domain routing | . 46 |
| Closed circuit                 |      |
| Command Line Interface         |      |
| Command tree                   |      |
| Common Industrial Protocol     |      |
| Configuration file             |      |
| Configuration modifications    |      |
| ConneXium Network Manager      | . 13 |
|                                |      |

## D

| Data traffic             | 129   |
|--------------------------|-------|
| Daylight saving time     | . 87  |
| Delay (PTP)              | . 93  |
| Delay measurement (PTP)  | . 93  |
| Delay time (MRP)         | 181   |
| Denial of Service        | 129   |
| Denial of service        | 129   |
| Designated bridge        | 201   |
| Designated port          | , 206 |
| Destination table        | 241   |
| Device status            | 245   |
| DHCP                     | . 43  |
| DHCP L2 Relay            | 290   |
| DHCP server              | , 333 |
| DHCPv6                   | . 60  |
| Diameter (Spanning Tree) | 195   |
| DiffServ                 | 145   |
| Disabled port            | 202   |
| DoS                      | 129   |
| DSCP                     | , 153 |
|                          |       |

## Е

| Edge port                    | 206  |
|------------------------------|------|
| EDS                          | 312  |
| Email notification           | 269  |
| Ethernet Switch Configurator | . 43 |
| EtherNet/IP website          | 312  |
| Event log                    | 277  |

### F

| Faulty device replacement | . 15 |
|---------------------------|------|
| First installation        | . 43 |
| Flow control              | 156  |

### G

| P                   |
|---------------------|
| way                 |
| eric object classes |
| al Config mode      |
| RP                  |
| dmaster (PTP)       |
|                     |

### н

| 11             |     |
|----------------|-----|
| HaneWin        |     |
| Hardware reset |     |
| HIPER-Ring     | 190 |
| Host address   | 44  |

| . 44              |
|-------------------|
| . 67              |
| 303               |
| . 67              |
| 262               |
| , 312             |
| 341               |
| . 67              |
| 3, 59             |
| , <sup>1</sup> 47 |
| . 48              |
| . 49              |
| . 46              |
|                   |

### L

| CNIC          | 44     |
|---------------|--------|
| AP            | 67     |
| ave message   | . 140  |
| k Aggration   | . 178  |
| nk monitoring | i, 252 |
| gin dialog    | 17     |
| op guard      | ', 209 |
| ops           | ′, 239 |

### Μ

| MAC address filter      | 137  |
|-------------------------|------|
| MAC destination address | . 46 |
| Mail notification       | 269  |
| MaxAge                  | 195  |
| Memory (RAM)            | . 95 |
| Message                 | 241  |
| MMS                     | 303  |
| Mode                    | 116  |
| MRP                     | 181  |
| MRP over LAG            | 186  |
| Multicast               | 140  |

### Ν

| Netmask                   | . 44, 53 |
|---------------------------|----------|
| Network load 1            | 92, 193  |
| Network management        | 60       |
| Non-volatile memory (NVM) | 95       |
| NVM (non-volatile memory) | 95       |

## 0

| •                    |     |
|----------------------|-----|
| Object classes       | 341 |
| Object description   | 341 |
| Object ID            | 341 |
| ODVA                 | 312 |
| ODVA website         | 312 |
| OpenSSH-Suite        | 21  |
| Operation monitoring | 252 |
| Option 82            | 333 |
| Ordinary clock (PTP) | 93  |
|                      |     |

| -  |
|----|
| υ  |
| Г. |
| -  |

| Password                      | ,     | '     |
|-------------------------------|-------|-------|
| Polling                       |       |       |
| Port Identifier               |       |       |
| Port mirroring                |       |       |
| Port number                   |       |       |
| Port priority                 |       |       |
| Port priority (Spanning Tree) |       |       |
| Port roles (RSTP)             |       |       |
| Port State                    |       |       |
| Prefix length                 |       |       |
| Priority                      |       |       |
| Priority queue                |       |       |
|                               |       |       |
| Priority tagged frames        |       |       |
| Privileged Exec mode          |       |       |
| Protection functions (guards) |       |       |
| PTP                           |       |       |
| PTP domain                    |       |       |
| PuTTY                         |       | . 18  |
|                               |       |       |
| Q                             |       |       |
| QoS                           |       |       |
| Query                         |       | 140   |
|                               |       |       |
| R                             |       |       |
| RADIUS                        |       | . 67  |
| RAM (memory)                  |       | . 95  |
| Rapid Spanning Tree           | . 178 | , 201 |
| Real time                     |       | 145   |
| Reconfiguration               |       | 193   |
| Reconfiguration time (MRP)    |       |       |
| Redundancy                    |       |       |
| Reference time source         |       |       |
| Relay contact                 |       |       |
| Remote diagnostics            |       |       |
| Report                        |       |       |
| Report message                |       |       |
| RFC                           |       |       |
| Ring                          |       |       |
| Ring Manager                  |       |       |
| Ring manager                  |       |       |
| Ring/Network coupling         |       |       |
| RIPE NCC                      |       |       |
| RM function                   |       |       |
|                               |       |       |
| RMON probe                    |       |       |
| Root Bridge                   |       |       |
| Root guard                    |       |       |
| Root path                     |       |       |
| Root Path Cost                |       |       |
| Root port                     |       |       |
| Router                        |       |       |
| Router Advertisement Daemon   |       |       |
| RST BPDU                      |       |       |
| RSTP                          |       | 204   |

### S

| SE View                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                             |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------|
| Secure shell                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ,                                                                                                                                           |
| Segmentation                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                             |
| Serial interface                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ,                                                                                                                                           |
| Service                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                             |
| Service shell                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                             |
| Service Shell deactivation                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                             |
| Setting the time                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                             |
| SFP module                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                             |
| Signal contact                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                             |
| SNMP                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                             |
| SNMP trap                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                             |
| SNTPSoftware version                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                             |
| SSH                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                             |
| Starting the graphical user interface                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                             |
| Store-and-forward                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                             |
| STP-BPDU                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                             |
| Strict Priority                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                             |
| Subidentifier                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                             |
| Subnet                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                             |
| Subring                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                             |
| Sub-ring Manager                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                             |
| Sub-ring Redundant Manager                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                             |
| Symbol                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                             |
| Syslog over TLS                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                             |
| System requirements (Graphical User Interface)                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                             |
| System requirements (Graphical User Interface)                                                                                                                                                                                                                                                                                                                                                                                                                                    | 17                                                                                                                                          |
| System requirements (Graphical User Interface)                                                                                                                                                                                                                                                                                                                                                                                                                                    | 17                                                                                                                                          |
| System requirements (Graphical User Interface)                                                                                                                                                                                                                                                                                                                                                                                                                                    | 17<br>36<br>207, 209                                                                                                                        |
| System requirements (Graphical User Interface)         T         Tab Completion         TCN guard                                                                                                                                                                                                                                                                                                                                                                                 | 17<br>36<br>207, 209<br>312                                                                                                                 |
| System requirements (Graphical User Interface)         T         Tab Completion         TCN guard         TCP/IP                                                                                                                                                                                                                                                                                                                                                                  | 17<br>36<br>207, 209<br>312<br>207                                                                                                          |
| System requirements (Graphical User Interface)         T         Tab Completion         TCN guard         TCP/IP         Topology Change flag         ToS         Traffic class                                                                                                                                                                                                                                                                                                   | 17<br>36<br>207, 209<br>312<br>207<br>145, 147<br>148, 153                                                                                  |
| System requirements (Graphical User Interface)         T         Tab Completion         TCN guard         TCP/IP         Topology Change flag         ToS         Traffic class         Traffic shaping                                                                                                                                                                                                                                                                           | 17<br>36<br>207, 209<br>312<br>207<br>145, 147<br>148, 153<br>154                                                                           |
| System requirements (Graphical User Interface)                                                                                                                                                                                                                                                                                                                                                                                                                                    | 17<br>36<br>207, 209<br>312<br>207<br>145, 147<br>148, 153<br>154<br>241                                                                    |
| System requirements (Graphical User Interface)                                                                                                                                                                                                                                                                                                                                                                                                                                    | 17<br>36<br>207, 209<br>312<br>207<br>145, 147<br>148, 153<br>154<br>241<br>92                                                              |
| System requirements (Graphical User Interface)                                                                                                                                                                                                                                                                                                                                                                                                                                    | 17<br>36<br>207, 209<br>312<br>207<br>145, 147<br>148, 153<br>154<br>241<br>92<br>241, 243                                                  |
| System requirements (Graphical User Interface)         T         Tab Completion .         TCN guard .         TCP/IP .         Topology Change flag .         ToS .         Traffic class .         Traffic shaping .         Transmission reliability .         Trap .         Trap destination table .                                                                                                                                                                          | 17<br>36<br>207, 209<br>312<br>207<br>145, 147<br>148, 153<br>154<br>92<br>241, 243<br>241                                                  |
| System requirements (Graphical User Interface)                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                             |
| System requirements (Graphical User Interface)                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                             |
| System requirements (Graphical User Interface)                                                                                                                                                                                                                                                                                                                                                                                                                                    | 17<br>36<br>207, 209<br>312<br>207<br>145, 147<br>148, 153<br>154<br>241<br>92<br>241, 243<br>241<br>197, 200<br>159<br>231                 |
| System requirements (Graphical User Interface)  T Tab Completion TCN guard TCP/IP Topology Change flag ToS Traffic class Traffic shaping Transmission reliability Transparent clock (PTP) Trap Trap Trap destination table Tree structure (Spanning Tree) TSN Two-Switch coupling, Primary device Two-Switch coupling, Stand-by device                                                                                                                                            |                                                                                                                                             |
| System requirements (Graphical User Interface)                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                             |
| System requirements (Graphical User Interface)                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                             |
| System requirements (Graphical User Interface)         T         Tab Completion         TCN guard         TCP/IP         Topology Change flag         ToS         Traffic class         Transmission reliability         Trap         Trap destination table         Tree structure (Spanning Tree)         TSN         Two-Switch coupling, Primary device         Type of Service         U                                                                                     | 17<br>36<br>207, 209<br>312<br>207<br>145, 147<br>148, 153<br>154<br>241<br>92<br>241, 243<br>241<br>197, 200<br>159<br>233<br>147          |
| System requirements (Graphical User Interface)         T         Tab Completion         TCN guard         TCP/IP         Topology Change flag         ToS         Traffic class         Traffic shaping         Transmission reliability         Trap         Trap destination table         Tree structure (Spanning Tree)         TSN         Two-Switch coupling, Primary device         Two-Switch coupling, Stand-by device         Type of Service         U         UDP/IP |                                                                                                                                             |
| System requirements (Graphical User Interface)         T         Tab Completion         TCN guard         TCP/IP         Topology Change flag         ToS         Traffic class         Traffic shaping         Transmission reliability         Trap         Trap destination table         Tree structure (Spanning Tree)         TSN         Two-Switch coupling, Primary device         Type of Service         U         UDP/IP         Update                               | 17<br>36<br>207, 209<br>312<br>207<br>145, 147<br>148, 153<br>154<br>241<br>197, 200<br>159<br>231<br>233<br>147<br>312<br>312<br>41        |
| System requirements (Graphical User Interface)         T         Tab Completion         TCN guard         TCP/IP         Topology Change flag         ToS         Traffic class         Traffic shaping         Transmission reliability         Trap         Trap destination table         Tree structure (Spanning Tree)         TSN         Two-Switch coupling, Primary device         Two-Switch coupling, Stand-by device         Type of Service         U         UDP/IP | 17<br>36<br>207, 209<br>312<br>207<br>145, 147<br>148, 153<br>154<br>241<br>197, 200<br>159<br>231<br>233<br>147<br>312<br>312<br>312<br>26 |

## V

| Video                 | <br> | <br> | <br>         |
|-----------------------|------|------|--------------|
| VLAN                  | <br> | <br> | <br>         |
| VLAN (HIPER-Ring)     | <br> | <br> | <br>         |
| VLAN priority         | <br> | <br> | <br>152      |
| VLAN tag              | <br> | <br> | <br>147, 163 |
| VolP                  | <br> | <br> | <br>         |
| VT100                 | <br> | <br> | <br>24       |
| w                     |      |      |              |
| Weighted Fair Queuing |      |      |              |
| Weighted Round Robin  | <br> | <br> | <br>         |

-