Lexium 28S and BCH2 Servo Drive System User Guide

Original instructions

07/2020

The information provided in this documentation contains general descriptions and/or technical characteristics of the performance of the products contained herein. This documentation is not intended as a substitute for and is not to be used for determining suitability or reliability of these products for specific user applications. It is the duty of any such user or integrator to perform the appropriate and complete risk analysis, evaluation and testing of the products with respect to the relevant specific application or use thereof. Neither Schneider Electric nor any of its affiliates or subsidiaries shall be responsible or liable for misuse of the information contained herein. If you have any suggestions for improvements or amendments or have found errors in this publication, please notify us.

You agree not to reproduce, other than for your own personal, noncommercial use, all or part of this document on any medium whatsoever without permission of Schneider Electric, given in writing. You also agree not to establish any hypertext links to this document or its content. Schneider Electric does not grant any right or license for the personal and noncommercial use of the document or its content, except for a non-exclusive license to consult it on an "as is" basis, at your own risk. All other rights are reserved.

All pertinent state, regional, and local safety regulations must be observed when installing and using this product. For reasons of safety and to help ensure compliance with documented system data, only the manufacturer should perform repairs to components.

When devices are used for applications with technical safety requirements, the relevant instructions must be followed.

Failure to use Schneider Electric software or approved software with our hardware products may result in injury, harm, or improper operating results.

Failure to observe this information can result in injury or equipment damage.

© 2020 Schneider Electric. All rights reserved.

Table of Contents

5	

	Safety Information.
	About the Book
Part I	Servo Drive System Planning
Chapter 1	General Overview.
Chaptor	Servo Drive Device Overview
	Drive / Motor References.
Chapter 2	Document Navigator
Chapter 2	Document Navigator
Part II	Servo Drive System Technical Data
Chapter 3	Certifications.
Unapter U	Conditions for UL 508C
	Conditions for CSA
Chapter 4	Drive
4.1	General Overview
	Servo Drive Description.
	Servo Drive Nameplate
	Servo Drive Type Code
4.2	Drive Technical Data
4.2	Environmental Conditions
	Dimensions
	Electrical Data
	Single-Phase Connection
	Three-Phase Connection
	Inputs / Outputs Characteristics
Chapter 5	Motor.
5.1	General Overview
	Components and Interfaces
	Servo Motor Nameplate
	Servo Motor Type Code
5.2	Motor Technical Data
	Environmental Conditions
	Tightening Torque and Property Class of Screws
	Overload Characteristics Curves
	Encoder Technical Data
5.3	BCH2MB Motor
	BCH2MB Dimensions
	BCH2MB Characteristics Table
	BCH2MB Curves
5.4	BCH2LD Motor
	BCH2LD Dimensions.
	BCH2LD Characteristics Table
	BCH2LD Curves
5.5	BCH2•F Motor
	BCH2•F Dimensions
	BCH2•F Characteristics Table.
	BCH2•F Curves
5.6	BCH2LH Motor
	BCH2LH Dimensions.
	BCH2LH Characteristics Table
	BCH2LH Curves
5.7	BCH2•M Motor
	BCH2•M Dimensions.
	BCH2•M Characteristics Table
	BCH2•M Curves

5.8	BCH2•R Motor
	BCH2•R Dimensions
	BCH2•R Characteristics Table
	BCH2•R Curves
Chapter 6	Accessories and Spare Parts
enapter e	Commissioning Tools
	Connectors and Adapters
	External Mains Filters.
	DC Bus Accessories
	Application Nameplate
	Ethernet Shielded Twisted-pair Cables
	SERCOS III Cables with Connectors
	Motor Cables
	Encoder Cables and Accessories
	Signal Cables
	Signal Cable for Safety Function STO
	External Braking Resistors and Holding Brake Controller
	Circuit Breakers
	Motor Protection Switches and Power Contactors
Part III	Engineering
Chapter 7	Engineering
7.1	Electromagnetic Compatibility (EMC) g
	Electromagnetic Compatibility (EMC) 9
	External Mains Filters 10
7.2	Cables 10
	Cables
7.3	Residual Current Device
	Residual Current Device
7.4	Common DC Bus
	Common DC Bus
7.5	Safety Function STO ("Safe Torque Off")
	Process Minimizing Risks Associated with the Machine
	Functional Safety
	Definitions
	Function
	Requirements for Using the Safety Function
	Application Examples STO
7.6	Rating the Braking Resistor
1.0	Rating the Braking Resistor
	Internal Braking Resistor
	External Braking Resistors
7.7	Monitoring Functions
1.1	
7.8	
7.0	
7.0	Configurable Inputs and Outputs
7.9	Wiring. 12 Opportunity 12
B (N (General Wiring
Part IV	Installation
Chapter 8	Before Mounting
	Inspecting the Product
	Scope of Supply
Chapter 9	Drive Installation
	Mechanical Installation Drive
	Electrical Installation Drive
	Connection Grounding Screw
	Connection I/O Interface (CN1) 13
	Connecting the Motor Encoder (CN2) 14
	Connection PC (CN3)
	Connection Fieldbus (CN4)

	Connection Logic Supply and Power Stage Supply (CN5)	151
	Connection DC Bus (CN6)	154
	Connection Braking Resistor (CN7)	155
	Connecting the Motor Phases (CN8)	157
	Holding Brake Connection	160
	Connection STO (CN9)	161
Chapter 10	Motor Installation	163
-	Mechanical Installation Motor	164
	Connections and Pin Assignments	167
	Connection of Motor and Encoder	170
	Holding Brake Connection	172
Chapter 11	Verifying Installation	173
	Verifying Installation	173
Part V	Commissioning	175
Chapter 12	Overview	177
	General	178
	Commissioning Tools	180
Chapter 13	Integrated HMI	181
	Overview	182
	Integrated HMI Structure	183
	7-Segment Display	184
	Status Information Via the HMI	187
Chapter 14		189
	Commissioning Software.	190
	Setting the Device Address, Baud Rate and Connection Settings	191
	Verifying the Direction of Movement	193
0 1 45	Verifying the Safety Function STO	195
Chapter 15	Tuning the Control Loops	197
	Tuning the Control Loops	198
	Easy Tuning.	199
	Comfort Tuning	200
	Manual Tuning	206
Dert \//		206
Part VI	Parameters	221
Part VI Chapter 16	Parameters	221 223
	Parameters	221 223 224
	Parameters	221 223 224 225
	Parameters Parameters Representation of the Parameters P0 - Status Parameters P1 - Basic Parameters	221 223 224 225 230
	Parameters Parameters Representation of the Parameters P0 - Status Parameters P1 - Basic Parameters P2 - Extended Parameters	221 223 224 225 230 238
	Parameters Parameters Parameters Representation of the Parameters P0 - Status Parameters P1 - Basic Parameters P2 - Extended Parameters P3 - Communication Parameters	221 223 224 225 230 238 244
	Parameters Parameters Parameters Representation of the Parameters P0 - Status Parameters P1 - Basic Parameters P2 - Extended Parameters P3 - Communication Parameters P4 - Diagnostics Parameters	221 223 224 225 230 238 244 246
	Parameters Parameters Parameters Representation of the Parameters P0 - Status Parameters P1 - Basic Parameters P2 - Extended Parameters P3 - Communication Parameters P4 - Diagnostics Parameters P5 - Motion Settings	221 223 224 225 230 238 244 246 249
	Parameters Parameters Parameters Po - Status Parameters P1 - Basic Parameters P2 - Extended Parameters P3 - Communication Parameters P4 - Diagnostics Parameters P5 - Motion Settings P8 - Control Loops	221 223 224 225 230 238 244 246 249 253
Chapter 16	Parameters Parameters Representation of the Parameters. P0 - Status Parameters P1 - Basic Parameters. P2 - Extended Parameters P3 - Communication Parameters P4 - Diagnostics Parameters. P5 - Motion Settings P8 - Control Loops. P9 - DTM Data.	221 223 224 225 230 238 244 246 249 253 262
Chapter 16 Part VII	Parameters Parameters Parameters Representation of the Parameters P0 - Status Parameters P1 - Basic Parameters P2 - Extended Parameters P3 - Communication Parameters P4 - Diagnostics Parameters P5 - Motion Settings P8 - Control Loops P9 - DTM Data Operation	221 223 224 225 230 238 244 246 249 253 262 269
Chapter 16	Parameters Parameters Parameters Representation of the Parameters P0 - Status Parameters P1 - Basic Parameters P2 - Extended Parameters P3 - Communication Parameters P4 - Diagnostics Parameters P5 - Motion Settings P8 - Control Loops P9 - DTM Data Operation Operation	221 223 224 225 230 238 244 246 249 253 262 269 271
Chapter 16 Part VII	Parameters Parameters Parameters Representation of the Parameters P0 - Status Parameters P1 - Basic Parameters P2 - Extended Parameters P3 - Communication Parameters P4 - Diagnostics Parameters P5 - Motion Settings P8 - Control Loops P9 - DTM Data Operation	221 223 224 225 230 238 244 246 249 253 262 269 271 272
Chapter 16 Part VII	ParametersParametersParametersRepresentation of the ParametersP0 - Status ParametersP1 - Basic ParametersP2 - Extended ParametersP3 - Communication ParametersP4 - Diagnostics ParametersP5 - Motion SettingsP8 - Control LoopsP9 - DTM Data.OperationOperationAccess Channels	221 223 224 225 230 238 244 246 249 253 262 269 271 272 273
Chapter 16 Part VII	Parameters Parameters Parameters Representation of the Parameters P0 - Status Parameters P1 - Basic Parameters P2 - Extended Parameters P3 - Communication Parameters P4 - Diagnostics Parameters P5 - Motion Settings P8 - Control Loops P9 - DTM Data Operation Access Channels Operating States	221 223 224 225 230 238 244 246 249 253 262 269 271 272
Chapter 16 Part VII	Parameters Parameters Representation of the Parameters. P0 - Status Parameters P1 - Basic Parameters. P2 - Extended Parameters P3 - Communication Parameters P4 - Diagnostics Parameters. P5 - Motion Settings P8 - Control Loops. P9 - DTM Data. Operation Access Channels. Operating States Setting the Digital Signal Inputs.	221 223 224 225 230 238 244 246 249 253 262 269 271 272 273 274
Chapter 16 Part VII	Parameters Parameters Parameters Po - Status Parameters P1 - Basic Parameters P2 - Extended Parameters P3 - Communication Parameters P4 - Diagnostics Parameters P5 - Motion Settings P8 - Control Loops P9 - DTM Data. Operation Access Channels Operating States Setting the Digital Signal Inputs. Setting the Digital Signal Outputs	221 223 224 225 230 238 244 246 249 253 262 269 271 272 273 274 276
Chapter 16 Part VII	Parameters Parameters Representation of the Parameters. P0 - Status Parameters P1 - Basic Parameters. P2 - Extended Parameters P3 - Communication Parameters P4 - Diagnostics Parameters. P5 - Motion Settings P8 - Control Loops. P9 - DTM Data. Operation Access Channels. Operating States Setting the Digital Signal Inputs. Setting the Digital Signal Outputs Functions for Target Value Processing	221 223 224 225 230 238 244 246 249 253 262 271 272 273 274 276 279
Chapter 16 Part VII	Parameters Parameters Representation of the Parameters. P0 - Status Parameters P1 - Basic Parameters P2 - Extended Parameters P3 - Communication Parameters P4 - Diagnostics Parameters. P5 - Motion Settings P8 - Control Loops. P9 - DTM Data. Operation Access Channels. Operating States Setting the Digital Signal Inputs. Setting the Digital Signal Outputs Functions for Target Value Processing. Setting a Signal Output Via Parameter	221 223 224 225 230 238 244 246 249 253 269 271 272 273 274 276 279 280
Chapter 16 Part VII	Parameters Parameters Representation of the Parameters. P0 - Status Parameters P1 - Basic Parameters P2 - Extended Parameters P3 - Communication Parameters P4 - Diagnostics Parameters P5 - Motion Settings P8 - Control Loops. P9 - DTM Data. Operation Access Channels. Operating States Setting the Digital Signal Inputs. Setting the Digital Signal Outputs Functions for Target Value Processing Setting a Signal Output Via Parameter Forcing the Digital Signal Inputs and Signal Outputs Position Capture via Signal Input Operating Modes	221 223 224 225 230 238 244 246 249 253 262 271 272 273 274 276 279 280 281
Chapter 16 Part VII Chapter 17	Parameters Parameters Representation of the Parameters. P0 - Status Parameters P1 - Basic Parameters P2 - Extended Parameters P3 - Communication Parameters P4 - Diagnostics Parameters P5 - Motion Settings P8 - Control Loops. P9 - DTM Data. Operation Access Channels. Operating States Setting the Digital Signal Inputs. Setting the Digital Signal Outputs Functions for Target Value Processing. Setting a Signal Output Via Parameter Forcing the Digital Signal Inputs and Signal Outputs	221 223 224 225 230 238 244 246 249 253 262 269 271 272 273 274 279 280 281 284
Chapter 16 Part VII Chapter 17 Chapter 18	Parameters Parameters Representation of the Parameters. P0 - Status Parameters P1 - Basic Parameters. P2 - Extended Parameters P3 - Communication Parameters P4 - Diagnostics Parameters. P5 - Motion Settings P8 - Control Loops. P9 - DTM Data. Operation Access Channels. Operating States Setting the Digital Signal Inputs. Setting the Digital Signal Outputs Functions for Target Value Processing . Setting a Signal Output Via Parameter Forcing the Digital Signal Inputs and Signal Outputs Position Capture via Signal Input Operating Modes Setting the Operating Mode.	221 223 224 225 230 238 244 246 249 253 262 273 262 273 274 276 279 280 281 284 289 280 281 289 290
Chapter 16 Part VII Chapter 17 Chapter 18	Parameters Parameters Representation of the Parameters. P0 - Status Parameters P1 - Basic Parameters P2 - Extended Parameters P3 - Communication Parameters P4 - Diagnostics Parameters P5 - Motion Settings P8 - Control Loops. P9 - DTM Data. Operation Access Channels. Operating States Setting the Digital Signal Inputs. Setting the Digital Signal Outputs Functions for Target Value Processing Setting a Signal Output Via Parameter Forcing the Digital Signal Inputs. Setting a Signal Output Via Parameter Forcing the Digital Signal Inputs. Setting a Signal Output Via Parameter Forcing the Digital Signal Inputs. Setting a Signal Output Via Parameter Forcing the Digital Signal Inputs. Setting a Signal Output Via Parameter Forcing the Digital Signal Inputs. Operating Modes Setting the Operating Mode Setting the Operating Mode Setting the Operating Mode Indication of the Operating State via Fieldbus.	221 223 224 225 230 238 244 246 249 253 262 273 269 271 272 273 274 276 279 280 281 289 290 291 292
Chapter 16 Part VII Chapter 17 Chapter 18	Parameters Parameters Representation of the Parameters. P0 - Status Parameters P1 - Basic Parameters. P2 - Extended Parameters P3 - Communication Parameters P4 - Diagnostics Parameters. P5 - Motion Settings P8 - Control Loops. P9 - DTM Data. Operation Access Channels. Operating States Setting the Digital Signal Inputs. Setting the Digital Signal Outputs Functions for Target Value Processing . Setting a Signal Output Via Parameter Forcing the Digital Signal Inputs and Signal Outputs Position Capture via Signal Input Operating Modes Setting the Operating Mode.	221 223 224 225 230 238 244 246 249 253 262 273 262 273 274 276 279 280 281 284 289 280 281 289 290

18.2	Jog Operation.	296
	Jog Operation.	296
18.3	Cyclic Synchronous Operating Modes	297
	Overview	297
18.4	Operating Mode Homing	299
	Operating Mode Homing	299
Part VIII	Diagnostics and Troubleshooting	301
Chapter 19	Diagnostics and Troubleshooting.	303
•	SERCOS III Status	304
	Diagnostics Via the Integrated HMI	305
	Diagnostics Via the Signal Outputs	306
	Diagnostics Via the Commissioning Software	306
	Status Information on Detected Errors.	307
	Connection for Fieldbus Mode	309
	Alert Codes and Error Codes	310
Part IX	Service, Maintenance and Disposal	317
Chapter 20	Service, Maintenance, and Disposal	319
•	General	320
	Service Address	321
	Maintenance of the Drive	322
	Replacement of Drive	323
	Maintenance of the Motor	324
	Changing the Motor	326
	Shipping, Storage, Disposal	327
Part X	Fieldbus	329
Chapter 21	SERCOS III IDN's	331
21.1	SERCOS III IDN's Overview	332
	List of SERCOS III Standard IDN's Parameters Supported	333
	List of Mappable Parameters to RT Data	343
21.2	P0P11 Object Group	345
	P0 Object Group	346
	P1 Object Group	348
	P2 Object Group	351
	P3 Object Group	353
	P4 Object Group	354
	P5 Object Group	355
	P8 Object Group	357
	P9 Object Group	360
04.0	P11 Object Group	362
21.3		364
		364
Chapter 22		369
	SERCOS III Connector Description (CN4).	370
	Cable Routing Practices	371
Glossary		373
Index		377

Safety Information

Important Information

NOTICE

Read these instructions carefully, and look at the equipment to become familiar with the device before trying to install, operate, service, or maintain it. The following special messages may appear throughout this documentation or on the equipment to warn of potential hazards or to call attention to information that clarifies or simplifies a procedure.

The addition of this symbol to a "Danger" or "Warning" safety label indicates that an electrical hazard exists which will result in personal injury if the instructions are not followed.

This is the safety alert symbol. It is used to alert you to potential personal injury hazards. Obey all safety messages that follow this symbol to avoid possible injury or death.

DANGER indicates a hazardous situation which, if not avoided, **will result in** death or serious injury.

WARNING indicates a hazardous situation which, if not avoided, **could result in** death or serious injury.

CAUTION indicates a hazardous situation which, if not avoided, **could result** in minor or moderate injury.

NOTICE

NOTICE is used to address practices not related to physical injury.

PLEASE NOTE

Electrical equipment should be installed, operated, serviced, and maintained only by qualified personnel. No responsibility is assumed by Schneider Electric for any consequences arising out of the use of this material.

A qualified person is one who has skills and knowledge related to the construction and operation of electrical equipment and its installation, and has received safety training to recognize and avoid the hazards involved.

QUALIFICATION OF PERSONNEL

Only appropriately trained persons who are familiar with and understand the contents of this manual and all other pertinent product documentation are authorized to work on and with this product. These persons must have sufficient technical training, knowledge and experience and be able to foresee and detect potential hazards that may be caused by using the product, by modifying the settings and by the mechanical, electrical and electronic equipment of the entire system in which the product is used.

All persons working on and with the product must be fully familiar with all applicable standards, directives, and accident prevention regulations when performing such work.

INTENDED USE

The products described or affected by this document are, along with software, accessories and options, servo drive systems for servo motors and intended for industrial use according to the instructions, directions, examples and safety information contained in the present document and other supporting documentation.

(\mathbf{i})

directives, the specified requirements and the technical data.

Prior to using the products, you must perform a risk assessment in view of the planned application. Based on the results, the appropriate safety-related measures must be implemented.

Since the products are used as components in an entire system, you must ensure the safety of persons by means of the design of this entire system.

Operate the products only with the specified cables and accessories. Use only genuine accessories and spare parts.

Any use other than the use explicitly permitted is prohibited and can result in hazards.

About the Book

At a Glance

Document Scope

This document describes the functions of the Servo Drive LXM28S and the BCH2 motor.

Validity Note

This document has been updated with the firmware release of the Lexium 28S V2.75.

The technical characteristics of the devices described in the present document also appear online. To access the information online:

Step	Action
1	Go to the Schneider Electric home page www.schneider-electric.com.
2	 In the Search box type the reference of a product or the name of a product range. Do not include blank spaces in the reference or product range. To get information on grouping similar modules, use asterisks (*).
3	If you entered a reference, go to the Product Datasheets search results and click on the reference that interests you. If you entered the name of a product range, go to the Product Ranges search results and click on the product range that interests you.
4	If more than one reference appears in the Products search results, click on the reference that interests you.
5	Depending on the size of your screen, you may need to scroll down to see the datasheet.
6	To save or print a datasheet as a .pdf file, click Download XXX product datasheet .

The characteristics that are described in the present document should be the same as those characteristics that appear online. In line with our policy of constant improvement, we may revise content over time to improve clarity and accuracy. If you see a difference between the document and online information, use the online information as your reference.

For product compliance and environmental information (RoHS, REACH, PEP, EOLI, etc.), go to <u>www.schneider-electric.com/green-premium</u>.

Related Documents

Use your tablet or your PC to quickly access detailed and comprehensive information on all our products on www.schneider-electric.com.

The internet site provides the information you need for products and solutions:

- The whole catalog for detailed characteristics and selection guides,
- The CAD files to help design your installation,
- All software and firmware to maintain your installation up to date,
- And finally all the User Guides related to your drive, listed below:

Title of documentation	Reference number
Lexium 28S and BCH2 Servo Drive System - User Guide (This document)	<u>EI00000004027</u> (English) <u>EI00000004030</u> (German) <u>EI00000004029</u> (French) <u>EI00000004031</u> (Italian) <u>EI00000004032</u> (Spanish) <u>EI00000004028</u> (Chinese)
Lexium 28S DTM Commissioning software - User Guide	<u><i>EIO000002466</i></u> (English)
LXM28 - Common DC bus - Application note	<u>0198441114085-EN</u> (English) <u>0198441114084-DE</u> (German) <u>0198441114086-FR</u> (French) <u>0198441114087-IT</u> (Italian) <u>0198441114088-ES</u> (Spanish) <u>0198441114089-ZH</u> (Chinese)
HBC Holding Brake Controller -Product Manual	<u>0198441113316</u> (English)
Multi-loader - User Manual	<u>BBV48778</u> (English) <u>BBV48777</u> (French)

You can download these technical publications and other technical information from our website at <u>www.schneider-electric.com/en/download</u>.

Product Related Information

The use and application of the information contained herein require expertise in the design and programming of automated control systems.

Only you, the user, machine builder or integrator, can be aware of all the conditions and factors present during installation and setup, operation, repair and maintenance of the machine or process.

You must also consider any applicable standards and/or regulations with respect to grounding of all equipment. Verify compliance with any safety information, different electrical requirements, and normative standards that apply to your machine or process in the use of this equipment.

Many components of the equipment, including the printed circuit board, operate with mains voltage, or present transformed high currents, and/or high voltages.

The motor itself generates voltage when the motor shaft is rotated.

A DANGER

ELECTRIC SHOCK, EXPLOSION OR ARC FLASH

- Disconnect all power from all equipment including connected devices prior to removing any covers or doors, or installing or removing any accessories, hardware, cables, or wires.
- Place a "Do Not Turn On" or equivalent hazard label on all power switches and lock them in the nonenergized position.
- Wait 15 minutes to allow the DC bus capacitors to properly discharge.
- Measure the DC bus voltage between the DC bus terminals (PA/+ and PC/-) to verify that DC bus capacitors are properly discharged (voltage less than 42.4 Vdc).
- Do not assume that the DC bus discharged properly when the DC bus LED is off.
- Block the motor shaft to prevent rotation prior to performing any type of work on the drive system.
- Do not create a short-circuit across the DC bus terminals or the DC bus capacitors.
- Replace and secure all covers, accessories, hardware, cables, and wires and confirm that a proper ground connection exists before applying power to the unit.
- Use only the specified voltage when operating this equipment and any associated products.

Failure to follow these instructions will result in death or serious injury.

This equipment has been designed to operate outside of any hazardous location. Only install this equipment in zones known to be free of a hazardous atmosphere.

POTENTIAL FOR EXPLOSION

Install and use this equipment in non-hazardous locations only.

Failure to follow these instructions will result in death or serious injury.

If the power stage is disabled unintentionally, for example as a result of power outage, errors or functions, the motor is no longer decelerated in a controlled way. Overload, errors or incorrect use may cause the holding brake to no longer operate properly and may result in premature wear.

WARNING

UNINTENDED EQUIPMENT OPERATION

- Verify that movements without braking effect cannot cause injuries or equipment damage.
- Verify the function of the holding brake at regular intervals.
- Do not use the holding brake as a service brake.
- Do not use the holding brake for safety-related purposes.

Failure to follow these instructions can result in death, serious injury, or equipment damage.

Drive systems may perform unanticipated movements because of incorrect wiring, incorrect settings, incorrect data or other errors.

A WARNING

UNINTENDED MOVEMENT OR MACHINE OPERATION

- Carefully install the wiring in accordance with the EMC requirements.
- Do not operate the product with undetermined settings and data.
- Perform comprehensive commissioning tests that include verification of configuration settings and data that determine position and movement.

Failure to follow these instructions can result in death, serious injury, or equipment damage.

A WARNING

LOSS OF CONTROL

- The designer of any control scheme must consider the potential failure modes of control paths and, for certain critical control functions, provide a means to achieve a safe state during and after a path failure. Examples of critical control functions are emergency stop and overtravel stop, power outage and restart.
- Separate or redundant control paths must be provided for critical control functions.
- System control paths may include communication links. Consideration must be given to the implications of unanticipated transmission delays or failures of the link.
- Observe all accident prevention regulations and local safety guidelines.¹
- Each implementation of this equipment must be individually and thoroughly tested for proper operation before being placed into service.

Failure to follow these instructions can result in death, serious injury, or equipment damage.

¹ For additional information, refer to NEMA ICS 1.1 (latest edition), "Safety Guidelines for the Application, Installation, and Maintenance of Solid State Control" and to NEMA ICS 7.1 (latest edition), "Safety Standards for Construction and Guide for Selection, Installation and Operation of Adjustable-Speed Drive Systems" or their equivalent governing your particular location.

DC Bus Voltage Measurement

The DC bus voltage can exceed 400 Vdc. The DC bus LED is not an indicator of the absence of DC bus voltage.

A DANGER

ELECTRIC SHOCK, EXPLOSION OR ARC FLASH

- Disconnect the voltage supply to all connections.
- Wait 15 minutes to allow the DC bus capacitors to properly discharge.
- Use a suitably-rated voltage sensing device for measuring (range greater than 400 Vdc).
- Measure the DC bus voltage between the DC bus terminals (PA/+ and PC/-) to verify that DC bus capacitors are properly discharged (voltage less than 42.4 Vdc).
- Contact your local Schneider Electric representative if the DC bus capacitors do not discharge to less than 42.4 Vdc within a period of 15 minutes.
- Do not operate the product if the DC bus capacitors do not discharge properly.
- Do not attempt to repair the product if the DC bus capacitors do not discharge properly.
- Do not assume that the DC bus discharged properly when the DC bus LED is off.

Failure to follow these instructions will result in death or serious injury.

Terminology Derived from Standards

The technical terms, terminology, symbols and the corresponding descriptions in this manual, or that appear in or on the products themselves, are generally derived from the terms or definitions of international standards.

In the area of functional safety systems, drives and general automation, this may include, but is not limited to, terms such as *safety, safety function, safe state, fault, fault reset, malfunction, failure, error, error message, dangerous*, etc.

Standard	Description
IEC 61131-2:2007	Programmable controllers, part 2: Equipment requirements and tests.
ISO 13849-1:2015	Safety of machinery: Safety related parts of control systems. General principles for design.
EN 61496-1:2013	Safety of machinery: Electro-sensitive protective equipment. Part 1: General requirements and tests.
ISO 12100:2010	Safety of machinery - General principles for design - Risk assessment and risk reduction
EN 60204-1:2006	Safety of machinery - Electrical equipment of machines - Part 1: General requirements
ISO 14119:2013	Safety of machinery - Interlocking devices associated with guards - Principles for design and selection
ISO 13850:2015	Safety of machinery - Emergency stop - Principles for design
IEC 62061:2015	Safety of machinery - Functional safety of safety-related electrical, electronic, and electronic programmable control systems
IEC 61508-1:2010	Functional safety of electrical/electronic/programmable electronic safety- related systems: General requirements.
IEC 61508-2:2010	Functional safety of electrical/electronic/programmable electronic safety- related systems: Requirements for electrical/electronic/programmable electronic safety-related systems.
IEC 61508-3:2010	Functional safety of electrical/electronic/programmable electronic safety- related systems: Software requirements.
IEC 61784-3:2016	Industrial communication networks - Profiles - Part 3: Functional safety fieldbuses - General rules and profile definitions.
2006/42/EC	Machinery Directive
2014/30/EU	Electromagnetic Compatibility Directive
2014/35/EU	Low Voltage Directive

Among others, these standards include:

In addition, terms used in the present document may tangentially be used as they are derived from other standards such as:

Standard	Description
IEC 60034 series	Rotating electrical machines
IEC 61800 series	Adjustable speed electrical power drive systems
IEC 61158 series	Digital data communications for measurement and control – Fieldbus for use in industrial control systems

Finally, the term *zone of operation* may be used in conjunction with the description of specific hazards, and is defined as it is for a *hazard zone* or *danger zone* in the *Machinery Directive* (2006/42/EC) and ISO 12100:2010.

NOTE: The aforementioned standards may or may not apply to the specific products cited in the present documentation. For more information concerning the individual standards applicable to the products described herein, see the characteristics tables for those product references.

What Is in This Part?

This part contains the following chapters:

Chapter	Chapter Name	Page
1	General Overview	19
2	Document Navigator	25

What Is in This Chapter?

This chapter contains the following topics:

Торіс	Page
Servo Drive Device Overview	20
Drive / Motor References	22

Servo Drive Device Overview

Presentation

- The servo drive system includes:the drive *(see page 33)* and the motor *(see page 49)*:

• the accessories and spare parts (see page 87):

Item	Description
1	Commissioning tools (see page 88)
2	Connectors and adapters (see page 88)
3	External mains filters <i>(see page 88)</i>
4	DC Bus accessories (see page 89)
5	Application nameplate (see page 89)
6	Fieldbus accessories (see page 90)
7	Motor cables (see page 92)
8	Encoder cables (see page 92)
9	Signal cables (see page 92)
10	Signal cables for safety function STO (see page 93)
11	External braking resistors (see page 93)
12	Circuit breakers (see page 93)
13	Motor protection switches and power contractors (see page 94)

Drive / Motor References

Introduction

The present user guide provides information about the following Drives and Motors reference tables.

The Lexium 28S range is defined by AC-servo drives Lexium 28S for combination with AC-servo motors BCH2.

- The combinations of servo motors with servo drives are based on the power class: both servo motor and servo drive must have the same power class.
- The bundle of a servo drive with its related servo motor is designed to cover a nominal power from:
 0.05 kW up to 4.5 kW (0.067 up to 6.03 hp) with 200...240 V mains supply voltage.

Compatibility between Drive and Motor is defined in the Drive / Motor combinations table (see page 23).

Lexium 28S Drive References List

Drive references	Nominal power	Supply mains	
LXM28SUA5M3X	50 W	single phase or 3-phase, 230 Vac	
LXM28SU01M3X	100 W	single phase or 3-phase, 230 Vac	
LXM28SU02M3X	200 W	single phase or 3-phase, 230 Vac	
LXM28SU04M3X	400 W	single phase or 3-phase, 230 Vac	
LXM28SU07M3X	750 W	single phase or 3-phase, 230 Vac	
LXM28SU10M3X	1000 W	single phase or 3-phase, 230 Vac	
LXM28SU15M3X	1500 W	single phase or 3-phase, 230 Vac	
LXM28SU20M3X	2000 W	3-phase, 230 Vac	
LXM28SU30M3X	3000 W	3-phase, 230 Vac	
LXM28SU45M3X	4500 W	3-phase, 230 Vac	

For further information, refer to the servo drive general overview (see page 34).

BCH2 Motor References List

Motor references	Nominal power
BCH2MBA53····5C	50 W
BCH2MB013•••5C	100 W
BCH2LD023····5C	200 W
BCH2MM031····6C	300 W
BCH2LD043····5C	400 W
BCH2LF043····5C	400 W
BCH2MM052•••6C	500 W
BCH2MM061····6C	600 W
BCH2HF073•••5C	750 W
BCH2LF073····5C	750 W
BCH2MM081····6C	850 W
BCH2MM091····6C	900 W
BCH2MM102•••6C	1000 W
BCH2HM102•••6C	1000 W
BCH2LH103•••6C	1000 W
BCH2MM152•••6C	1500 W
BCH2MM202•••6C	2000 W
BCH2MR202•••6C	2000 W
BCH2HR202•••6C	2000 W
BCH2LH203····6C	2000 W
BCH2MR301····6C	3000 W
BCH2MR302····6C	3000 W
BCH2MR352····6C	3500 W
BCH2MR451•••6C	4500 W

For further information, refer to Servo Motor Type Code (see page 54).

Drive / Motor Combinations

The permissible Drive / Motor Combinations are detailed in the following table:

Drive	Motor	Nominal power	Nominal speed of rotation	Nominal torque	Peak torque	Rotor inertia without holding brake	Moment of inertia
		W	rpm	Nm	Nm	kg.cm ²	-
	t can be connected via		1				
LXM28SUA5M3X	BCH2MBA53•••5C Hardware version RS 01 or RS 02	50	3000	0.16	0.48	0.054	Medium
	BCH2MBA53•••5C Hardware version RS 03					0.044	
LXM28SU01M3X	BCH2MB013•••5C Hardware version RS 01 or RS 02	100	3000	0.32	0.96	0.075	Medium
	BCH2MB013•••5C Hardware version RS 03	-				0.065	
LXM28SU02M3X	BCH2LD023+++5C	200	3000	0.64	1.92	0.16	Low
	BCH2MM031 ••• 6C	300	1000	2.86	8.59	6.63	Medium
LXM28SU04M3X	BCH2LD043+++5C	400	3000	1.27	3.81	0.27	Low
	BCH2LF043+++5C	400	3000	1.27	3.81	0.67	Low
	BCH2MM052•••6C	500	2000	2.39	7.16	6.63	Medium
	BCH2MM061 ••• 6C	600	1000	5.73	17.19	6.63	Medium
LXM28SU07M3X	BCH2LF073•••5C	750	3000	2.39	7.16	1.19	Low
	BCH2HF073 ••• 5C	750	3000	2.39	7.16	1.54	High
	BCH2MM081 ••• 6C	850	1500	5.39	13.8	13.5	Medium
	BCH2MM091 ••• 6C	900	1000	8.59	25.77	9.7	Medium
LXM28SU10M3X	BCH2LH103•••6C	1000	3000	3.18	9.54	2.4	Low
	BCH2MM102 ••• 6C	1000	2000	4.77	14.3	6.63	Medium
	BCH2HM102•••6C	1000	2000	4.77	14.3	8.41	High
LXM28SU15M3X	BCH2MM152 ••• 6C	1500	2000	7.16	21.48	9.7	Medium
Devices 220 Vac that can be connected via three phases							
	BCH2LH203•••6C	2000	3000	6.37	19.11	4.28	Low
LXM28SU20M3X	BCH2MM202 ••• 6C	2000	2000	9.55	28.65	13.5	Medium
	BCH2MR202•••6C	2000	2000	9.55	28.65	26.5	Medium
	BCH2HR202•••6C	2000	2000	9.55	28.65	34.68	High
	BCH2MR301 ••• 6C	3000	1500	19.1	57.29	53.56	Medium
LXM28SU30M3X	BCH2MR302•••6C	3000	2000	14.32	42.97	53.56	Medium
	BCH2MR352 ••• 6C	3500	2000	16.7	50.3	53.56	Medium
LXM28SU45M3X	BCH2MR451 ··· 6C	4500	1500	28.65	71.62	73.32	Medium

Chapter 2 Document Navigator

Document Navigator

Document Content

This user guide contains following data:

- Technical data (see page 27)
 - o Conditions for UL 508C and CSA (see page 29)
 - Drive *(see page 33)*
 - Motor (see page 49)
 - o Accessories and spare parts (see page 87)
- Engineering (see page 95)
- Installation (see page 125)
 - Before mounting (see page 127)
 - Drive installation (see page 131)
 - Motor installation (see page 163)
 - Verifying installation (see page 173)
- Commissioning (see page 175)
 - Overview (see page 177)
 - Integrated HMI *(see page 181)*
 - Commissioning procedure (see page 189)
 - Tuning the control loop (see page 197)
- Parameters (see page 221)
 - Operation *(see page 269)*
 - Operation *(see page 271)*
 - Operating modes (see page 289)
- Diagnostics and troubleshooting *(see page 301)*
- Service, maintenance and disposal (see page 317)
- Fieldbus *(see page 329)*
 - o SERCOS III IDN's (see page 331)
 - o SERCOS III Hardware Setup (see page 369)

Part II Servo Drive System Technical Data

What Is in This Part?

This part contains the following chapters:

Chapter	Chapter Name	Page
3	Certifications	29
4	Drive	33
5	Motor	49
6	Accessories and Spare Parts	87

Chapter 3 Certifications

Download links

Item	Link	
UL certification status	UL InfoBY01	
EU Declaration of conformity	<u>NHA3487100</u>	
TÜV certificate	<u>TUEV_0120554010014</u>	

What Is in This Chapter?

This chapter contains the following topics:

Торіс	Page
Conditions for UL 508C	30
Conditions for CSA	31

Conditions for UL 508C

Introduction

The UL certification status can be downloaded on the <u>Schneider Electric</u> website. If the product is used to comply with UL 508C, the following conditions must also be met.

Wiring

Use copper conductors only, at least 75 °C (167 °F) rating.

Fuses

Use fuses as per UL 248 or circuit breaker as per UL 489.

LXM28S	UA5, U01, U02, U04, U07, U10, U15	U20, U30, U45
Maximum fuse rating of fuse to be connected upstream	25 A	32 A
Class if fuses are used	J	J
Class if circuit breakers are used	D	D

Overvoltage Category

Use only in overvoltage category III or where the maximum available Rated Impulse Withstand Voltage Peak is equal or less than 4000 Volts, or equivalent as defined in UL 840 and its equivalent defined in IEC 60664-1.

Conditions for CSA

The CSA certificate can be downloaded on the <u>Schneider Electric</u> website.

If the product is used to comply with CSA, the following conditions must also be met.

Integral solid-state short circuit protection in these drives does not provide branch circuit protection.

ELECTRIC SHOCK, EXPLOSION, OR ARC FLASH

Provide branch circuit protection in accordance with the manual instructions, National Electrical Code and any additional local codes of the type and size specified in the present document.

Failure to follow these instructions will result in death or serious injury.

For reference groups 1, 2, 3, and 4 (see Fuse Types table), this product is suitable for use on a circuit capable of delivering not more than 200 kA RMS symmetrical amperes and 230 Vac (LXM28S•••M3X) maximum, when protected by Listed Class J, CC or RK5 fuses as indicated in this instruction manual and the Fuse Types table. Instead of fuses, protection may be provided by circuit breakers of type C60 by Schneider Electric with the maximum current ratings specified in the Fuse Types table.

For reference group 1 only, this product is suitable for motor group installation on a circuit capable of delivering not more than 5 kA RMS symmetrical amperes and 230 Vac (LXM28S•••M3X) maximum, when protected by Listed Class J or CC fuses as indicated in the instruction manual and the Fuse Types table. Instead of fuses, protection may be provided by circuit breakers of type C60 by Schneider Electric with the maximum current ratings specified in the Fuse Types table.

The opening of the branch-circuit protective device may be an indication that an electrical interruption has been detected.

ELECTRIC SHOCK, EXPLOSION, OR ARC FLASH

- Examine all current carrying parts and other components of the drive controller for damage and replace if necessary before replacing fuses or engaging circuit breakers.
- Completely replace overload relays if burnout of the current element occurs.

Failure to follow these instructions will result in death or serious injury.

Capacitive voltages above 42.4 V may remain for up to 15 minutes after power is removed from the drive.

DANGER

ELECTRIC SHOCK, EXPLOSION OR ARC FLASH

- Disconnect all power from all equipment including connected devices prior to removing any covers or doors, or installing or removing any accessories, hardware, cables, or wires.
- Place a "Do Not Turn On" or equivalent hazard label on all power switches and lock them in the nonenergized position.
- Wait 15 minutes to allow the DC bus capacitors to properly discharge.
- Measure the DC bus voltage between the DC bus terminals (PA/+ and PC/-) to verify that DC bus capacitors are properly discharged (voltage less than 42.4 Vdc).
- Do not assume that the DC bus discharged properly when the DC bus LED is off.
- Block the motor shaft to prevent rotation prior to performing any type of work on the drive system.
- Do not create a short-circuit across the DC bus terminals or the DC bus capacitors.
- Replace and secure all covers, accessories, hardware, cables, and wires and confirm that a proper ground connection exists before applying power to the unit.
- Use only the specified voltage when operating this equipment and any associated products.

Failure to follow these instructions will result in death or serious injury.

These drives are provided with load and speed adjustable motor overload and short circuit protection. Adjust the parameter P1-78 'User-Defined maximal current' in the drive which protects the motor by limiting the maximum current according to the required degree of protection of the motors as indicated on the name plate.

Other Characteristics

Maximum surrounding Air Temperature: 40...55 °C (104...131 °F) with current derating of 1% per °C (per 1.8 °F).

Tightening torque for the connectors labelled CN5, CN7 and CN8 for drive reference group:

• 3 and 4: 0.7 ... 0.8 Nm (6.2 ... 7 lb.in)

Fuse Types

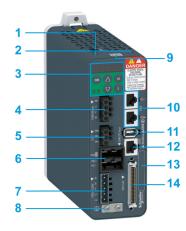
Reference Group	Reference	Class	Maximum Current	
1	LXM28SUA5M3X			
	LXM28SU01M3X			
	LXM28SU02M3X	CC or J	25 A	
	LXM28SU04M3X			
	LXM28SU07M3X			
2	LXM28SU10M3X	RK5 or CC or J	25 A	
	LXM28SU15M3X	RK5 01 CC 01 J	20 A	
3	LXM28SU20M3X	RK5 or J	45 A	
4	LXM28SU30M3X		50.4	
	LXM28SU45M3X	RK5 or J	50 A	

What Is in This Chapter?

This chapter contains the following sections:

Section	Торіс	Page
4.1	General Overview	34
4.2	Drive Technical Data	38

Section 4.1 General Overview


What Is in This Section?

This section contains the following topics:

Торіс	Page
Servo Drive Description	35
Servo Drive Nameplate	36
Servo Drive Type Code	37

Servo Drive Description

Presentation

Item	Description	Connector
1	Connector for safety function STO	CN9 (see page 161)
2	Slot for application name plate (VW3M2501)	-
3	HMI: 7-segment display, 5 buttons, and 2 status LED	-
4	Terminal for motor connection	CN8 (see page 157)
5	Terminal for braking resistor connection	CN7 (see page 155)
6	DC-bus connector with status LED	CN6 (see page 154)
7	Terminal for connecting the power supply	CN5 (see page 151)
8	Screw terminal for protective ground (protective earth)	-
9	QR code for access to technical data	-
10	2 x RJ45 connectors for integrated fieldbus connection	CN4 (see page 149)
11	Connector for the encoder of the motor	CN2 (see page 145)
12	RJ45 connector for Modbus serial link	CN3 (see page 147)
13	Device Reference	-
14	Input/output connector	CN1 (see page 138)

Integrated Fieldbus

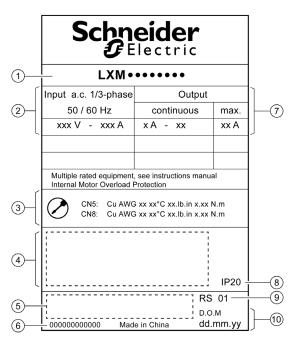
The Lexium 28S Servo Drive has an integrated dual port SERCOS III adapter that can be used in a SERCOS III industrial fieldbus.

Parameters Access

Servo drive parameters (see page 223) may be accessed using:

- The integrated HMI
- The Device Type Manager (DTM)
- Directly using the fieldbus address of the device to read and write to parameters using the object dictionary

Object Dictionary


The SERCOS III IDN's s may be accessed through the fieldbus, using their address.

- Three groups of IDN's are available.
- Standard IDN's (see page 333)
- Manufacturer-specific IDN's (see page 345)
- Mappable IDN's to RT data (see page 343)

Servo Drive Nameplate

Presentation

The nameplate contains the following data:

Item	Description
1	Drive reference (see page 37)
2	Logic supply
3	Cable specifications
4	Certifications
5	Barcode
6	Serial number
7	Output power
8	Degree of protection
9	Hardware version
10	Date of manufacture

Servo Drive Type Code

Servo Drive Type Code

Item	1	2	3	4	5
Type code (example)	LXM	28	S	U07	M3X

Item	Meaning
1	Product designation LXM = Lexium
2	Product type 28 = AC servo drive for one axis
3	Interfaces S = SERCOS III, I/O interface, commissioning via Modbus RTU
4	Continuous power UA5 = 0.05 kW U01 = 0.1 kW U02 = 0.2 kW U04 = 0.4 kW U07 = 0.75 kW U10 = 1 kW U15 = 1.5 kW U20 = 2 kW U30 = 3 kW U45 = 4.5 kW
5	Power stage supply [Vac] M3X = single phase or 3-phase, 200/230 Vac

Section 4.2 Drive Technical Data

What Is in This Section?

This section contains the following topics:

Торіс	Page
Environmental Conditions	39
Dimensions	41
Electrical Data	43
Single-Phase Connection	44
Three-Phase Connection	45
Inputs / Outputs Characteristics	47

Environmental Conditions

Ambient Conditions During Operation

The maximum permissible ambient temperature during operation depends on the mounting distances between the devices and on the required power. Observe the instructions in the chapter Installation *(see page 132)*.

Description	Unit	Value
Ambient temperature without current derating (no icing, non- condensing	°C (°F)	040 (32104)
Ambient temperature with current derating of 1% per 1 °C (1.8 °F)	°C (°F)	4055 (104131)

The following relative humidity is permissible during operation:

Description		Value
Relative humidity (non-condensing)		<95

Description	Unit	Value
Installation altitude above mean sea level without current derating	m (ft)	<2000 (<6561)

Ambient Conditions During Transportation and Storage

The environment during transportation and storage must be dry and free from dust.

Description	Unit	Value
Temperature	°C (°F)	-2565 (-4149)

The following relative humidity is permissible during transportation and storage:

Description		Value
Relative humidity (non-condensing)		<95

Installation Site and Connection

For operation, the device must be mounted in a closed control cabinet with a degree of protection of at least IP 54. The device may only be operated with a permanently installed connection.

ELECTRIC SHOCK, EXPLOSION, OR ARC FLASH

Install the drive in a control cabinet or housing with a minimum IP 54 rating.

Failure to follow these instructions will result in death or serious injury.

Pollution Degree and Degree of Protection

Description	Value
Pollution degree	2
Degree of protection	IP20

Degree of Protection When the Safety Function Is Used

You must ensure that conductive substances cannot get into the product (pollution degree 2). Conductive substances may cause the safety function to become inoperative.

WARNING

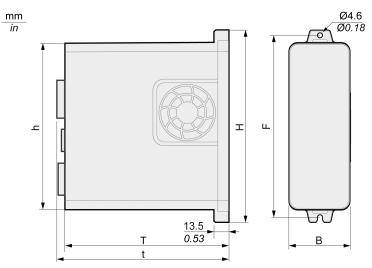
INOPERABLE SAFETY FUNCTION

Ensure that conductive substances (water, contaminated or impregnated oils, metal shavings, etc.) cannot get into the drive.

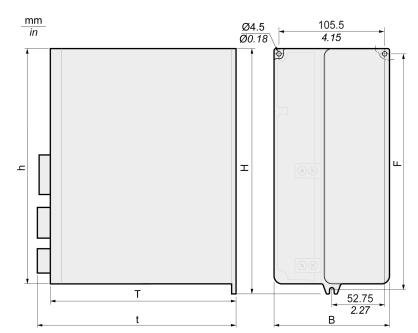
Failure to follow these instructions can result in death, serious injury, or equipment damage.

Vibration and Shock During Operation

Description	Value
Class as per IEC 60721-3-3	3M4 3 mm from 9200 Hz
Maximum shock	98.1 m/s ² (10 g) Type I


Vibration and Shock During Transportation and Storage

Description	Value
Class as per IEC 60721-3-2	2M2 3.5 mm (29 Hz) 9.81 m/s ² (1 g) from 9200 Hz 14.715 m/s ² (1.5 g) from 200500 Hz 34.335 m/s ² (3.5 g) from 29 Hz
Maximum shock	294.3 m/s ² (30 g) Type II


Dimensions

Lexium 28S Dimensions

LXM28SUA5, LXM28SU01, LXM28SU02, LXM28SU04, LXM28SU07, LXM28SU10, LXM28SU15, LXM28SU20

LXM28S	Unit	UA5M3X, U01M3X, U02M3X, U04M3X, U07M3X	U10M3X, U15M3X	U20M3X
В	mm (in)	55 (2.17)	55 (2.17)	62 (2.44)
Н	mm (in)	173.2 (6.82)	173.5 (6.83)	194.5 (7.66)
h	mm (in)	150 (5.91)	150 (5.91)	170 (6.69)
F	mm (in)	164 (6.46)	164 (6.46)	185 (7.28)
Т	mm (in)	146 (5.75)	170 (6.69)	184 (7.24)
t	mm (in)	152.7 (6.01)	176.3 (6.94)	197 (7.76)

LXM28SU30, LXM28SU45

LXM28S	Unit	U30M3X, U45M3X
В	mm (in)	116 (4.57)
Н	mm (in)	245 (9.65)
h	mm (in)	234 (9.21)
F	mm (in)	235 (9.25)
Т	mm (in)	186 (7.32)
t	mm (in)	199 (7.83)

Electrical Data

Introduction

The products are intended for industrial use and may only be operated with a permanently installed connection.

220 Vac Mains Voltage: Range and Tolerance

LXM28S•••M3X

Description	Unit	Value
220 Vac single-phase/three-phase (LXM28S•••M3X)	Vac	200 -15 % 230 +10 %
Frequency	Hz	50 -5 % 60 +5 %
Transient overvoltages	-	Overvoltage category III ⁽¹⁾
Rated voltage to ground	Vac	230
(1) Depends on installation altitude, see Environmental Cor	nditions <i>(see</i>	e page 39)

Type of Grounding

Description	Value
TT grounding system, TN grounding system	Approved
IT mains	Not approved
Mains with grounded line conductor	Not approved

Leakage Current

Description	Unit	Value
Leakage current (as per IEC 60990, figure 3)	mA	<30 ⁽¹⁾
(1) Measured on mains with grounded neutral point and with a 30 mA RCD can already trigger at 15 mA. In addition, is not considered in the measurement. The response to device.	there is a hig	gh-frequency leakage current which

Monitoring of the Continuous Output Power

The continuous output power is monitored by the device. If the continuous output power is exceeded, the device reduces the output current.

PWM Frequency Power Stage

PWM frequency power stage The PWM frequency of the power stage is set to a fixed value.

LXM28S	UA5, U01, U02, U04, U07, U10, U15	U20, U30, U45
PWM frequency power stage	16 kHz	8 kHz

Type of Cooling

LXM28S	UA5, U01, U02	U04, U07, U10, U15, U20, U30, U45
Type of cooling	Convection	Fan

Permissible Drive / Motor Combinations

The BCH2 motors can be connected to the Lexium 28S drive range.

Compatibility between Drive and Motor is defined in the Drive / Motor combinations table (see page 23).

Single-Phase Connection

Electrical Data for LXM28S ••• M3X Drive Connected Via a Single-Phase 220 Vac

LXM28S•••M3X	Unit	UA5	U01	U02	U04	U07	U10	U15	
Nominal voltage	V			230) (single-p	hase)			
Inrush current limitation	А		8						
Maximum fuse to be connected upstream ⁽¹⁾	A		25						
Short-circuit current rating (SCCR)	kA		5						
Continuous output current	A _{rms}	0.64	0.9	1.5	2.6	4.5	7	7	
Peak output current	A _{rms}	2	2.7	4.5	7.8	13.5	21	21	
Nominal power ⁽²⁾	W	50	100	200	400	750	1000	1500	
Input current ⁽²⁾⁽³⁾	A _{rms}	0.8	1.2	2.4	3.8	6	8.5	10	
THD (total harmonic distortion) ⁽²⁾⁽⁴⁾	%	262.8	239.2	226.8	211.6	181.8	176.3	166.6	
Power dissipation ⁽⁵⁾	W	8	10	14	22	38	36	41	
Maximum inrush current ⁽⁶⁾	А	175 235					235		
Time for maximum inrush current	ms			0.5			(0.6	

(1) As per IEC 60269; Circuit breakers with C characteristic; See Conditions for UL 508C *(see page 29)* for UL and CSA; Lower ratings are permissible; The fuse must be rated in such a way that the fuse does not trip at the specified input current.

(2) At a mains impedance corresponding to the short-circuit current rating (SCCR)

(3) At nominal power and nominal voltage

(4) With reference to the input current

(5) Condition: internal braking resistor not active; value at nominal current, nominal voltage, and nominal power; value approximately proportional with output current

(6) Extreme case, off/on pulse before the inrush current limitation responds, see next line for maximum time

DC bus data for drives connected via a single-phase 220 Vac

LXM28S••••M3X	Unit	UA5	U01	U02	U04	U07	U10	U15
Nominal voltage (single-phase)	Vac				230			
Nominal voltage DC bus	Vdc	322						
Undervoltage limit	Vdc	160						
Overvoltage limit	Vdc		420					
Maximum continuous power via DC bus	W	50	100	200	400	750	1000	1500
Maximum continuous power via DC bus	А	0.2	0.3	0.6	1.2	2.3	3.1	4.6

Three-Phase Connection

LXM28S•••M3X	Unit	UA5	U01	U02	U04	U07	U10			
Nominal voltage	V			230 (3	B-phase)					
Inrush current limitation	А		8							
Maximum fuse to be connected upstream ⁽¹⁾	А		25							
Short-circuit current rating (SCCR)	kA	5								
Continuous output current	A _{rms}	0.64	0.9	1.5	2.6	4.5	7			
Peak output current	A _{rms}	2	2.7	4.5	7.8	13.5	21			
Nominal power ⁽²⁾	W	50	100	200	400	750	1000			
Input current ⁽²⁾⁽³⁾	A _{rms}	0.42	0.74	1.25	2.2	3.9	5			
THD (total harmonic distortion) ⁽²⁾⁽⁴⁾	%	227.8	212.7	200.7	183.7	160.8	155.5			
Power dissipation ⁽⁵⁾	W	8	10	14	22	38	36			
Maximum inrush current ⁽⁶⁾	А	175				235				
Time for maximum inrush current	ms			0.5	0.5 0.6					

Electrical Data for LXM28S •••• M3X Drive Connected Via Three-Phase 220 Vac

(1) As per IEC 60269; Circuit breakers with C characteristic; See Conditions for UL 508C *(see page 29)* for UL and CSA; Lower ratings are permissible; The fuse must be rated in such a way that the fuse does not trip at the specified input current.

(2) At a mains impedance corresponding to the short-circuit current rating (SCCR)

(3) At nominal power and nominal voltage

(4) With reference to the input current

(5) Condition: internal braking resistor not active; value at nominal current, nominal voltage, and nominal power; value approximately proportional with output current

(6) Extreme case, off/on pulse before the inrush current limitation responds, see next line for maximum time

LXM28S•••M3X	Unit	U15	U20	U30	U45	
Nominal voltage	V		230 (3	-phase)		
Inrush current limitation	А	8	19.2		17	
Maximum fuse to be connected upstream ⁽¹⁾	А	25		32		
Short-circuit current rating (SCCR)	kA		5	2	22	
Continuous output current	A _{rms}	7	12	19.8	22.8	
Peak output current	A _{rms}	21	36	60	61	
Nominal power ⁽²⁾	W	1500	2000	3000	4500	
Input current ⁽²⁾⁽³⁾	A _{rms}	5.9	8.7	12.9	18	
THD (total harmonic distortion) ⁽²⁾⁽⁴⁾	%	144.8	137.1	155.8	147.1	
Power dissipation ⁽⁵⁾	W		41	9	97	
Maximum inrush current ⁽⁶⁾	А	235	295	295 300		
Time for maximum inrush current	ms	0.6		1.0		

(1) As per IEC 60269; Circuit breakers with C characteristic; See Conditions for UL 508C (see page 29) for UL and CSA; Lower ratings are permissible; The fuse must be rated in such a way that the fuse does not trip at the specified input current.

(2) At a mains impedance corresponding to the short-circuit current rating (SCCR)

(3) At nominal power and nominal voltage

(4) With reference to the input current

(5) Condition: internal braking resistor not active; value at nominal current, nominal voltage, and nominal power; value approximately proportional with output current

(6) Extreme case, off/on pulse before the inrush current limitation responds, see next line for maximum time DC bus data for drives connected via three-phase 220 Vac

LXM28S••••M3X	Unit	UA5	U01	U02	U04	U07	U10	
Nominal voltage (three phases)	Vac			:	230			
Nominal voltage DC bus	Vdc		322					
Undervoltage limit	Vdc		160					
Overvoltage limit	Vdc		420					
Maximum continuous power via DC bus	W	50	100	200	400	750	1000	
Maximum continuous power via DC bus	А	0.2	0.3	0.6	1.2	2.3	3.1	

LXM28S•••M3X	Unit	U15	U20	U30	U45
Nominal voltage (three phases)	Vac		23	30	
Nominal voltage DC bus	Vdc	322			
Undervoltage limit	Vdc	160			
Overvoltage limit	Vdc	420			
Maximum continuous power via DC bus	W	1500	2000	3000	4500
Maximum continuous power via DC bus	А	4.6	6.2	9.2	13.8

Inputs / Outputs Characteristics

Logic Type

The outputs are short-circuit protected. The inputs and outputs are galvanically isolated. The digital inputs and outputs of this product can be wired for positive or negative logic.

Logic type	Active state
Positive logic	Output supplies current (source output) Current flows to the input (sink input)
Negative logic	Output draws current (sink output) Current flows from the input (source input)

Digital Input Signals 24 V

When wired as positive logic, the levels of the opto-isolated inputs DI1...DI5 and DI8 comply with IEC 61131-2, type 1. The electrical characteristics are also valid when wired as negative logic.

Description	Unit	Value			
"0" signal voltage	Vdc	≤5			
"1" signal voltage	Vdc	≥11			
Input current (typical)	mA	6			
Debounce time ⁽¹⁾	mA	020			
(1) Adjustable via parameter P2-09 in increments of 1 ms.					

Digital Output Signals 24 V

The levels of the digital 24 V output signals DO• comply with IEC 61131-2.

Description	Unit	Value
Switching voltage	Vdc	24
Maximum switching current	mA	100
Voltage drop at 100 mA load	Vdc	< 3

Touch Probe Input Signals 24 V

When wired as positive logic, the levels of the opto-isolated inputs DI6 and DI7 comply with IEC 61131-2, type 1. The electrical characteristics are also valid when wired as negative logic.

Description	Unit	Value			
"0" signal voltage	Vdc	≤5			
"1" signal voltage	Vdc	≥11			
Input current (typical)	mA	7			
Debounce time ⁽¹⁾	μs	0100			
Jitter Capture	μs	1			
(1) Adjustable via parameter P2-24 in increments of 1 µs.					

Safety Function STO

The signal inputs STO_0V and STO_24V (CN9) are protected against reverse polarity.

Description	Unit	Value
Nominal voltage	Vdc	24
PELV power supply unit	-	Required
"0" signal voltage ⁽¹⁾	Vdc	< 5
"1" signal voltage ⁽¹⁾	Vdc	1530
Input current (typical) LXM28SUA5M3X, U01M3X, U02M3X, U04M3X, U07M3X LXM28SU10M3X, U15M3X LXM28SU20 LXM28SU30, U45	mA	190 190 190 240
Maximum peak current	A	18
Maximum frequency for OSSD (Output Signal Switching Device) test pulses	Hz	475
Debounce time	ms	< 1
Response time of safety function STO	ms	< 40

11 Vdc. The condition between 5 Vdc and 15 Vdc is undefined and not permissible.

For further information, refer to data for maintenance plan and the calculation for the safety function *(see page 110).*

24 Vdc Power Supply (Pin 17):

24 Vdc power supply (pin 17):

Description	Unit	Value
Output voltage	Vdc	24
Maximum output current	mA	200

Ethernet Signals:

The Ethernet signals comply with the Ethernet standard.

ESIM Output Signals

The ESIM output signals comply with the RS422 interface specification.

Description	Unit	Value			
Logic level	-	As per RS422 ⁽¹⁾			
Output frequency per signal	kHz	800			
Maximum output frequency (quadruple evaluation)	kHz	3200			
(1) Due to the input surrent of the entregular in the input size it a percellal connection of a driver surtput to					

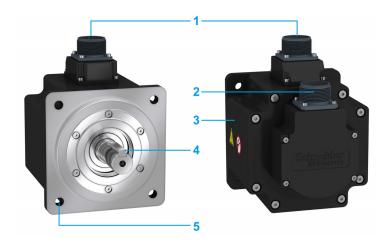
(1) Due to the input current of the optocoupler in the input circuit, a parallel connection of a driver output to several devices is not permitted.

What Is in This Chapter?

This chapter contains the following sections:

Section	Торіс			
5.1	General Overview	50		
5.2	Motor Technical Data	55		
5.3	BCH2MB Motor	59		
5.4	BCH2LD Motor	63		
5.5	BCH2•F Motor	67		
5.6	BCH2LH Motor	71		
5.7	BCH2•M Motor	75		
5.8	BCH2•R Motor	81		

Section 5.1 General Overview


What Is in This Section?

This section contains the following topics:

Торіс	Page
Components and Interfaces	51
Servo Motor Nameplate	52
Servo Motor Type Code	54

Components and Interfaces

Presentation

BCH2 servo motors, with a 3-phase stator and rotor with rare earth-based permanent magnets, consist of:

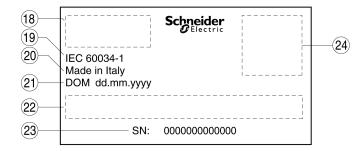
Item	Description
1	Connector of the motor cable (see page 92)
2	Connector of the encoder cable (see page 92)
3	Housing
4	Smooth or keyed shaft end, depending on the motor reference
5	4-point axial mounting flange

Servo Motor Nameplate

BCH2•B

The nameplate contains the following data:

1						8
2	BCH2	2000000000	000	Schneider Electric	[]_/	9
345	- Un - I0 - M0 - IMax	000 Vrms 0.00 Arms 0.00 Nm 0.00 Arms	In Mn	0.00 kW — 0.00 Arms — 0.00 Nm — 0000 rpm —		(10) (11) (12)
6 7		SN: 0000	00000	00000	Made in Italy —	-13


			_		-20
Schn	eider lectric				(21)
- Ubr - Pbr	000 V 000 W	IEC 6	60034-	·1	-21
- Nbr - Mass					-(23)
			RS	00-	-24
	- Ubr - Pbr - Nbr - Mass - DOM d	- Pbr 000 W - Nbr 0.00 Nm	- Ubr 000 V IEC 6 - Pbr 000 W - Nbr 0.00 Nm MMax - Mass 0.00 kg nMax - DOM dd.mm.yyyy	- Ubr 000 V IEC 60034 - Pbr 000 W - Nbr 0.00 Nm MMax 0.00 - Mass 0.00 kg nMax 0000 - DOM dd.mm.yyyy	Ubr 000 V IEC 60034-1 Pbr 000 W Nbr 0.00 Nm MMax 0.00 Nm Mass 0.00 kg nMax 0000 rpm- DOM dd.mm.yyyy

Item	Description	Item	Description
1	Motor reference (see page 54)	13	Country of manufacture
2	Nominal voltage	14	Nominal voltage of the holding brake (optional)
3	Continuous stall current	15	Nominal power of the holding brake (optional)
4	Continuous stall torque	16	Nominal torque of the holding brake (optional)
5	Maximum current	17	Mass
6	Barcode	18	Date of manufacture DOM
7	Serial number	19	Number of motor phases, temperature class, degree of protection
8	QR code	20	Certifications
9	Nominal power	21	Applied standard
10	Nominal current	22	Peak torque
11	Nominal torque	23	Maximum permissible speed of rotation
12	Nominal speed of rotation	24	Hardware version

BCH2•D, BCH2•F, BCH2•H, BCH2•M, and BCH2•R

The nameplate contains the following data:

(2)	BCH200	0000000000	Sc	bneider	
\mathbf{S}	Un	000 Vrms	In	0.00 Arms	
$(4) \sim$	- 10	0.00 Arms	PN	0.00 kW -	· (12)
(5)	- MO	0.00 Nm	Mn	0.00 Nm -	13
	- IMax	0.00 Arms	nN	0000 rpm -	
(6)	MMax	0.00 Nm	Mass	0.00 kg –	—(14)
	nMax	0000 rpm		-	
\cup			Ubr	000 V -	(15)
\sim \square	- 3 Th - CL	F - IPXX	Pbr	000 W -	16
(8) / _	RS 00		Nbr	0.00 Nm -	
9	L				(17)

Item	Description	Item	Description
1	Motor reference (see page 54)	13	Nominal speed of rotation
2	Nominal voltage	14	Mass
3	Continuous stall current	15	Nominal voltage of the holding brake (optional)
4	Continuous stall torque	16	Nominal power of the holding brake (optional)
5	Maximum current	17	Nominal torque of the holding brake (optional)
6	Peak torque	18	Certifications
7	Maximum permissible speed of rotation	19	Applied standard
8	Number of motor phases, temperature class, degree of protection	20	Country of manufacture
9	Hardware version	21	Date of manufacture DOM
10	Nominal current	22	Barcode
11	Nominal power	23	Serial number
12	Nominal torque	24	QR code

Servo Motor Type Code

Servo Motor Type Code

Item	1	2	3	4	5	6	7	8	9	10
Type code (example)	BCH2	М	В	01	3	3	С	А	5	С

Item	Meaning			
1	Product family BCH2 = Brushless servo motors - second gene	Product family BCH2 = Brushless servo motors - second generation		
2	Moment of inertia L = Low M = Medium H = High			
3	Size (housing) B = 40 mm flange D = 60 mm flange F = 80 mm flange H = 100 mm flange M = 130 mm flange R = 180 mm flange			
4	01 = 100 W 02 = 200 W 03 = 300 W 04 = 400 W 05 = 500 W	10 = 1.0 kW 13 = 1.3 kW 15 = 1.5 kW 20 = 2.0 kW 30 = 3.0 kW 35 = 3.5 kW 45 = 4.5 kW		
5	Winding 1 = Optimized in terms of torque (1000 rpm/1500 rpm) 2 = Optimized in terms of torque and speed of rotation (2000 rpm) 3 = Optimized in terms of speed of rotation (3000 rpm)			
6	 Shaft and degree of protection⁽¹⁾ 0 = Smooth shaft; degree of protection: shaft IP 54, housing IP 65⁽²⁾ 1 = Parallel key; degree of protection: shaft IP 54, housing IP 65⁽²⁾ 2 = Smooth shaft; degree of protection: shaft and housing IP 65 3 = Parallel key; degree of protection: shaft and housing IP 65 			
7	B Final and rodsing in observed on protection. Shart and rodsing in observed on protection. Shart and rodsing in observed on the shart and rodsin the shart and rodsing in observed on the shart and rodsin			
8	Holding brake A = Without holding brake F = With holding brake			
9	Connection version 5 = Flying leads (for BCH2•B, BCH2•D, BCH2•F) 6 = MIL connector (for BCH2•H, BCH2•M, BCH2•R)			
10	Mechanical interface - mounting C = Asian style			
protec	e case of mounting position IM V3 (drive shaft vertical ction IP 50. available with single turn encoder, up to 4.5 kW.	, shaft end up), the motor has degree of		

(3) Planned marketing end of November 2018.

Motor

Section 5.2 Motor Technical Data

What Is in This Section?

This section contains the following topics:

Торіс	Page
Environmental Conditions	56
Tightening Torque and Property Class of Screws	
Overload Characteristics Curves	57
Encoder Technical Data	58

Environmental Conditions

Ambient Conditions During Operation

The maximum permissible ambient temperature during operation depends on the mounting distances between the devices and on the required power. Observe the instructions in the chapter Installation *(see page 164).*

Description	Unit	Value
Ambient temperature ⁽¹⁾ for motors without holding brake (no icing, non-condensing).	°C (°F)	-2040 (-4104)
Ambient temperature for motors with holding brake (no icing, non-condensing).	°C (°F)	040 (32104)
Ambient temperature with current derating of 1% per °C (per 1.8 °F)	°C (°F)	4060 (104140)
Relative humidity (non-condensing)	%	585
Class as per IEC 60721-3-3	-	3K3, 3Z12, 3Z2, 3B2, 3C1, 3M6 ⁽²⁾
Installation altitude above mean sea level without current derating	m (ft)	<1000 (<3281)
Installation altitude above mean sea level with current derating of 1% per 100 m at altitudes higher than 1000 m	m (ft)	10003000 (32819843)
(1) Limit values with flanged motor, see Flange Sizes for L (2) Tested as per IEC 60068-2-6 and IEC 60068-2-27	imit Values	(see page 56)

Ambient Conditions During Transportation and Storage

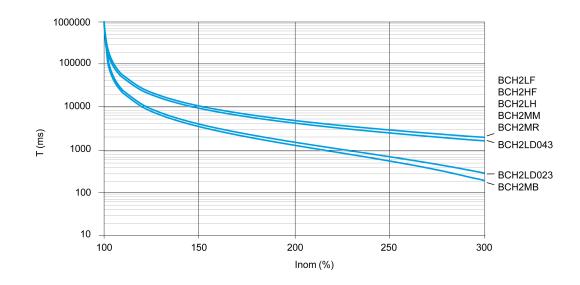
The environment during transportation and storage must be dry and free from dust.

Description	Unit	Value
Temperature	°C (°F)	-4070 (-40158)
Relative humidity (non-condensing)	%	≤75
Set of class combinations as per IEC 60721-3-2	-	IE 21

Flange Sizes for Limit Values

Limit values referring to this table relate to flanged motors with the following flange sizes:

Motor	Flange material	Flange size in [mm (in)]
BCH2MB	Aluminum	185 x 185 x 8 (7.28 x 7.28 x 0.31)
BCH2LD	Aluminum	250 x 250 x 12 (9.84 x 9.84 x 0.47)
BCH2•F	Aluminum	250 x 250 x 12 (9.84 x 9.84 x 0.47)
BCH2LH	Steel	300 x 300 x 20 (11.8 x 11.8 x 0.79)
BCH2•M	Steel	400 x 400 x 20 (15.7 x 15.7 x 0.79)
BCH2•R	Steel	550 x 550 x 20 (21.7 x 21.7 x 0.79)


Compatibility with Foreign Substances

The motor has been tested for compatibility with many known substances and with the latest available knowledge at the moment of the design. Nonetheless, you must perform a compatibility test before using a foreign substance.

Tightening Torque and Property Class of Screws

Housing screws	Unit	Tightening torque
M3 x 0.50	Nm (lb.in)	1 (8.85)
M4 x 0.70	Nm (lb.in)	2.9 (25.67)
M5 x 0.80	Nm (lb.in)	5.9 (52.22)
M6 x 1.00	Nm (lb.in)	9.9 (87.62)
M7 x 1.25	Nm (lb.in)	24 (212.40)
M8 x 1.50	Nm (lb.in)	49 (433.65)
Property class of the screws	Н	8.8

Overload Characteristics Curves

Encoder Technical Data

Overview

The drive can access the electronic nameplate via the electronic interface of the encoder for easy commissioning.

The signals meet the PELV requirements.

Depending on the motor reference, the motor are delivered with a single turn encoder or a multi turn encoder.

Single Turn Encoder

Technical data

Description	Value
Measuring range absolute	1 revolution
Resolution in increments	Depending on evaluation
Accuracy of position	±0.044°
Supply voltage	4.15.25 Vdc
Maximum supply current	100 mA
Maximum permissible speed of rotation	6000 rpm
Maximum angular acceleration	100,000 rad/s ²

Multi Turn Encoder

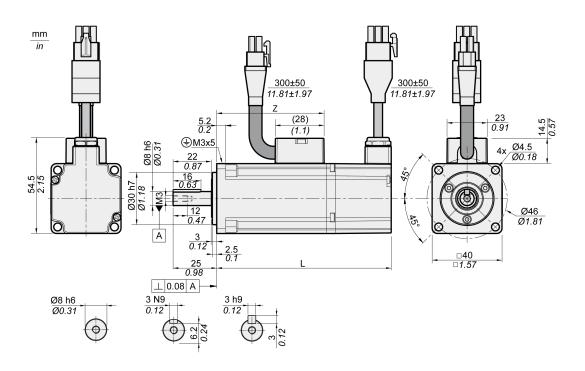
Technical data

Description	Value
Measuring range absolute	1 revolution
Resolution in increments	Depending on evaluation
Accuracy of position	±0.044°
Supply voltage	4.15.25 Vdc
Maximum supply current	40 µA
Maximum permissible speed of rotation	6000 rpm
Maximum angular acceleration	100,000 rad/s ²
Battery nominal voltage	3.6 Vdc
Battery nominal current consumption while the encoder is not powered by the drive	20 μA at standstill40 μA with rotating shaft
Battery life time (at 25 °C)	7 years

The multi turn counting is preserved through power down by an external battery.

• For further information on the battery compartment connection, refer to the motor encoder connection *(see page 146).*

• For further information on the battery replacement, refer to the maintenance of the motor *(see page 325).*


Section 5.3 BCH2MB Motor

What Is in This Section?

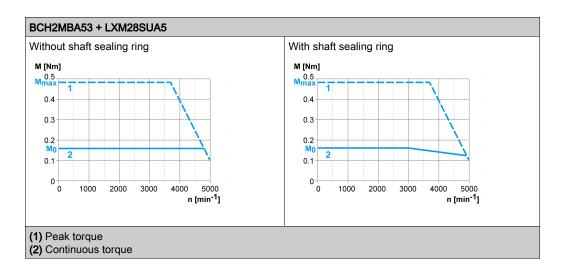
This section contains the following topics:

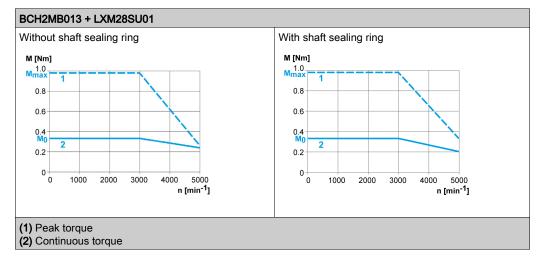
Торіс	Page
BCH2MB Dimensions	60
BCH2MB Characteristics Table	61
BCH2MB Curves	62

BCH2MB Dimensions

BCH2MB	Unit	A5	01
L (without holding brake)	mm (in)	82 (3.23)	100 (3.94)
L (with holding brake)	mm (in)	112 (4.41)	130 (5.12)
Ζ	mm (in)	43.5 (1.71)	61.5 (2.42)

BCH2MB Characteristics Table

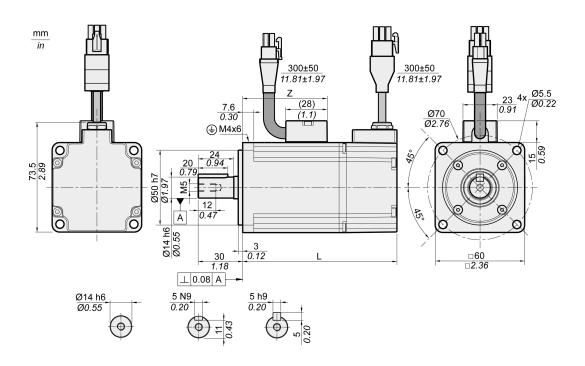

BCH2MB ⁽¹⁾			A53	013
Technical data - general			I	I
Continuous stall torque ⁽²⁾	M ₀	Nm	0.16	0.32
Peak torque	M _{max}	Nm	0.48	0.96
With supply voltage U _n = 230 Vac				I
Nominal speed of rotation	n _N	rpm	3000	3000
Nominal torque	M _N	Nm	0.16	0.32
Nominal Current	I _N	A _{rms}	0.59	0.89
Nominal power		kW	0.05	0.10
Technical data - electrical	P _N			
Maximum winding voltage	U _{max}	Vac	255	255
Maximum winding voltage	U _{max}	Vdc	360	360
Maximum voltage to ground	-	Vac	255	255
Maximum Current	I _{max}	A _{rms}	1.8	2.7
Continuous stall current	I ₀	A _{rms}	0.54	0.81
Voltage constant ⁽³⁾	k _E u-v	V _{rms}	18	24
Torque constant ⁽⁴⁾	k _t	Nm/A	0.30	0.40
Winding resistance		Ω	31.0	23.4
Winding inductance	R ₂₀ u-v L _q u-v	mH	26.4	21.5
Winding inductance		mH	24.7	20.6
Technical data - mechanical				
Maximum permissible speed of rotation	n _{max}	rpm	5000	5000
Rotor inertia without brake Hardware version RS 01 or RS 0	2 J _M	kgcm ²	0.054	0.075
Hardware version RS 03		5	0.044	0.065
Rotor inertia with brake Hardware version RS 01 or RS 0	2 J _M	kgcm ²	0.055	0.076
Hardware version RS 03			0.045	0.066
Mass without brake	m	kg	0.40	0.56
Mass with brake	m	kg	0.60	0.77
Degree of protection of the shaft	-	_	IP 65	IP 65
Degree of protection of the housing	-	-	IP 65	IP 65
Technical data - holding brake				
Holding torque	-	Nm	0.32	0.32
Nominal voltage	-	Vdc	24 +/-10%	24 +/-100
Nominal power (electrical pull-in power)	-	W	4.4	4.4


• Flange size in mm (in): 185 x 185 x 8 (7.28 x 7.28 x 0.31)

(2) M_0 = Continuous stall torque at 20 rpm and 100 % duty cycle; at speeds of rotation of <20 rpm the continuous stall torque is reduced to 87 %.

(3) RMS value at 1000 rpm and 20 °C (68 °F).
(4) At n = 20 rpm and 20 °C (68 °F).

BCH2MB Curves


Section 5.4 BCH2LD Motor

What Is in This Section?

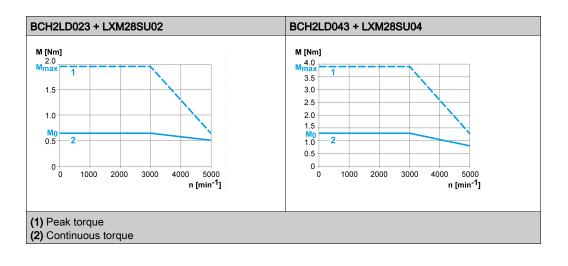
This section contains the following topics:

Торіс	Page
BCH2LD Dimensions	64
BCH2LD Characteristics Table	65
BCH2LD Curves	66

BCH2LD Dimensions

BCH2LD	Unit	02	04
L (without holding brake)	mm (in)	104 (4.09)	129 (5.08)
L (with holding brake)	mm (in)	140 (5.51)	165 (6.5)
Z	mm (in)	57 (2.24)	82 (3.23)

BCH2LD Characteristics Table

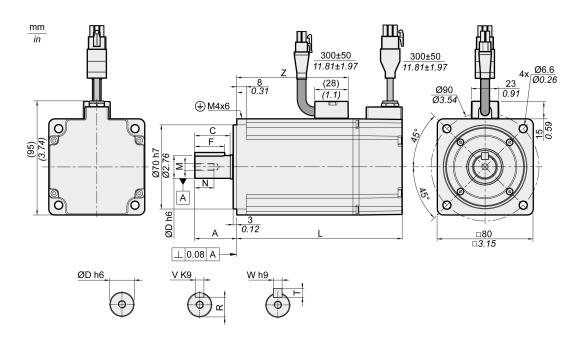

3CH2LD ⁽¹⁾			023	043
Fechnical data - general				
Continuous stall torque ⁽²⁾	M ₀	Nm	0.64	1.27
Peak torque	M _{max}	Nm	1.92	3.81
Nith supply voltage U _n = 230 Vac	0			
Nominal speed of rotation	n _N	rpm	3000	3000
Nominal torque	M _N	Nm	0.64	1.27
Nominal Current	I _N	A _{rms}	1.30	2.50
Nominal power	P _N		0.20	0.40
Fechnical data - electrical		1		1
Maximum winding voltage	U _{max}	Vac	255	255
Maximum winding voltage	U _{max}	Vdc	360	360
Maximum voltage to ground	_	Vac	255	255
Maximum Current	I _{max}	A _{rms}	4.5	7.8
Continuous stall current	Ι _Ο	A _{rms}	1.11	2.19
/oltage constant ⁽³⁾	k _E u-v	V _{rms}	35	35
Forque constant ⁽⁴⁾	k _t	Nm/A	0.58	0.58
Ninding resistance	R ₂₀ u-v	Ω	12.2	5.2
Ninding inductance	L _q u-v	mH	24.8	12.5
Ninding inductance	L _d u-v	mH	22.7	12.0
Fechnical data - mechanical	I	4	L	I.
Maximum permissible speed of rotation	n _{max}	rpm	5000	5000
Rotor inertia without brake	J _M	kgcm ²	0.15	0.26
Rotor inertia with brake	J _M	kgcm ²	0.16	0.27
Mass without brake	m	kg	1.02	1.45
Mass with brake	m	kg	1.50	2.00
Degree of protection of the shaft	-	-	IP 65	IP 65
Degree of protection of the housing	-	-	IP 65	IP 65
Fechnical data - holding brake		1	1	1
Holding torque	_	Nm	1.3	1.3
Nominal voltage	_	Vdc	24 +/-10%	24 +/-109
Nominal power (electrical pull-in power)		W	11.2	11.2

• Flange size in mm (in): 250 x 250 x 12 (9.84 x 9.84 x 0.47)

(2) M₀=Continuous stall torque at 20 rpm and 100 % duty cycle; at speeds of rotation of <20 rpm the continuous stall torque is reduced to 87 %

(3) RMS value at 1000 rpm and 20 °C (68 °F). (4) At n = 20 rpm and 20 °C (68 °F).

BCH2LD Curves


Section 5.5 BCH2•F Motor

What Is in This Section?

This section contains the following topics:

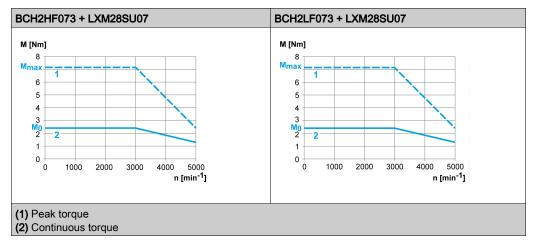
Торіс	Page
BCH2•F Dimensions	68
BCH2•F Characteristics Table	69
BCH2•F Curves	70

BCH2•F Dimensions

BCH2	Unit	LF04	HF07	LF07
L (without holding brake)	mm (in)	112 (4.41)	138 (5.43)	138 (5.43)
L (with holding brake)	mm (in)	152 (5.98)	178 (7.01)	178 (7.01)
A	mm (in)	30 (1.18)	35 (1.38)	35 (1.38)
С	mm (in)	24.5 (0.96)	29.5 (1.16)	29.5 (1.16)
D	mm (in)	14 (0.55)	19 (0.75)	19 (0.75)
F	mm (in)	20 (0.79)	25 (0.98)	25 (0.98)
Μ	-	M5	M6	M6
Ν	mm (in)	12 (0.47)	16 (0.63)	16 (0.63)
R	mm (in)	11 (0.43)	15.5 (0.61)	15.5 (0.61)
Т	mm (in)	5 (0.2)	6 (0.24)	6 (0.24)
V	mm (in)	5 (0.2)	6 (0.24)	6 (0.24)
W	mm (in)	5 (0.2)	6 (0.24)	6 (0.24)
Z	mm (in)	68 (2.68)	93 (3.66)	93 (3.66)

BCH2•F Characteristics Table

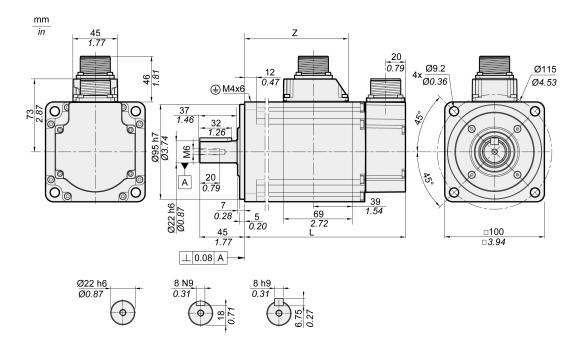

BCH2 ⁽¹⁾			LF043	HF073	LF073
Technical data - general					
Continuous stall torque ⁽²⁾	M ₀	Nm	1.27	2.39	2.39
Peak torque	M _{max}	Nm	3.81	7.16	7.16
With supply voltage U _n = 230 Vac		1			
Nominal speed of rotation	n _N	rpm	3000	3000	3000
Nominal torque	M _N	Nm	1.27	2.39	2.39
Nominal Current	I _N	A _{rms}	2.52	4.29	4.29
Nominal power	P _N	kW	0.40	0.75	0.75
Technical data - electrical				I	I
Maximum winding voltage	U _{max}	Vac	255	255	255
Maximum winding voltage	U _{max}	Vdc	360	360	360
Maximum voltage to ground	-	Vac	255	255	255
Maximum Current	I _{max}	A _{rms}	7.8	13.5	13.5
Continuous stall current	Ι _Ο	A _{rms}	2.29	4.01	4.01
Voltage constant ⁽³⁾	k _E u-v	V _{rms}	33.5	36	36
Torque constant ⁽⁴⁾	k _t	Nm/A	0.55	0.60	0.60
Winding resistance	R ₂₀ u-v	Ω	3.20	1.50	1.50
Winding inductance	L _q u-v	mH	12.0	6.6	6.6
Winding inductance	L _d u-v	mH	11.3	6.1	6.1
Technical data - mechanical				I	I
Maximum permissible speed of rotation	n _{max}	rpm	5000	5000	5000
Rotor inertia without brake	J _M	kgcm ²	0.66	1.53	1.18
Rotor inertia with brake	J _M	kgcm ²	0.71	1.58	1.23
Mass without brake	m	kg	2.00	2.90	2.80
Mass with brake	m	kg	2.80	3.70	3.60
Degree of protection of the shaft	-	-	IP 65	IP 65	IP 65
Degree of protection of the housing	_	-	IP 65	IP 65	IP 65
Technical data - holding brake					
Holding torque	-	Nm	2.5	2.5	2.5
Nominal voltage	-	Vdc	24 +/-10%	24 +/-10%	24 +/-10%
Nominal power (electrical pull-in power)	_	W	10.2	10.2	10.2
(1) Limit values with flanged motor: O Flange material: Aluminum					


• Flange size in mm (in): 250 x 250 x 12 (9.84 x 9.84 x 0.47)

(2) M₀=Continuous stall torque at 20 rpm and 100 % duty cycle; at speeds of rotation of <20 rpm the continuous stall torque is reduced to 87 %

(3) RMS value at 1000 rpm and 20 °C (68 °F). (4) At n = 20 rpm and 20 °C (68 °F).

BCH2•F Curves


Section 5.6 BCH2LH Motor

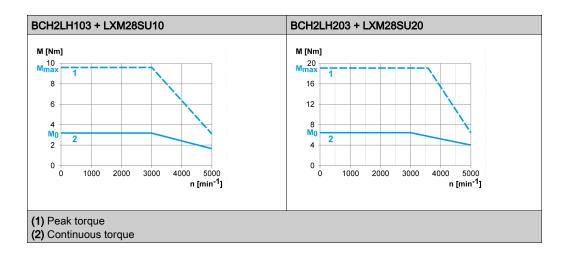
What Is in This Section?

This section contains the following topics:

Торіс	Page
BCH2LH Dimensions	72
BCH2LH Characteristics Table	73
BCH2LH Curves	74

BCH2LH Dimensions

BCH2LH	Unit	103	203
L (without holding brake)	mm (in)	153.5 (6.04)	198.5 (7.81)
L (with holding brake)	mm (in)	180.5 (7.11)	225.5 (8.88)
Ζ	mm (in)	96 (3.78)	141 (5.55)

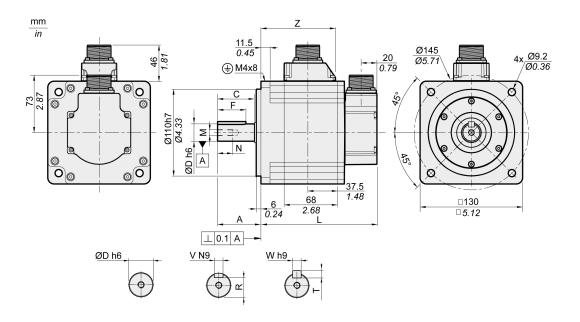

BCH2LH Characteristics Table

BCH2LH ⁽¹⁾			103	203
Technical data - general				
Continuous stall torque ⁽²⁾	M ₀	Nm	3.18	6.37
Peak torque	M _{max}	Nm	9.54	19.11
With supply voltage U _n = 230 Vac				I
Nominal speed of rotation	n _N	rpm	3000	3000
Nominal torque	M _N	Nm	3.18	6.37
Nominal Current	I _N	A _{rms}	6.64	10.27
Nominal power	P _N	kW	1.00	2.00
Technical data - electrical				I
Maximum winding voltage	U _{max}	Vac	255	255
Maximum winding voltage	U _{max}	Vdc	360	360
Maximum voltage to ground	_	Vac	255	255
Maximum Current	I _{max}	A _{rms}	20.0	35.0
Continuous stall current	Ι _Ο	A _{rms}	5.83	9.87
Voltage constant ⁽³⁾	k _E u-v	V _{rms}	33	39
Torque constant ⁽⁴⁾	k _t	Nm/A	0.55	0.65
Winding resistance	R ₂₀ u-v	Ω	0.67	0.36
Winding inductance	L _q u-v	mH	4.3	2.6
Winding inductance	L _d u-v	mH	4.20	2.59
Technical data - mechanical		1	1	1
Maximum permissible speed of rotation	n _{max}	rpm	5000	5000
Rotor inertia without brake	J _M	kgcm ²	2.39	4.27
Rotor inertia with brake	J _M	kgcm ²	2.44	4.34
Mass without brake	m	kg	4.60	6.70
Mass with brake	m	kg	5.10	7.20
Degree of protection of the shaft	-	-	IP 65	IP 65
Degree of protection of the housing	_	-	IP 65	IP 65
Technical data - holding brake				
Holding torque	-	Nm	6.5	6.5
Nominal voltage	-	Vdc	24 +/-10%	24 +/-10%
Nominal power (electrical pull-in power)	_	W	10.4	10.4

(2) M₀=Continuous stall torque at 20 rpm and 100 % duty cycle; at speeds of rotation of <20 rpm the continuous stall torque is reduced to 87 %

(3) RMS value at 1000 rpm and 20 °C (68 °F). (4) At n = 20 rpm and 20 °C (68 °F).

BCH2LH Curves


Section 5.7 BCH2•M Motor

What Is in This Section?

This section contains the following topics:

Торіс	Page
BCH2•M Dimensions	76
BCH2•M Characteristics Table	77
BCH2•M Curves	79

BCH2•M Dimensions

BCH2•M	Unit	08	03, 05, 06, 10	09, 15	20
L (without holding brake)	mm (in)	187 (7.36)	147 (5.79)	163 (6.42)	187 (7.36)
L (with holding brake)	mm (in)	216 (8.5)	176 (6.93)	192 (7.56)	216 (8.5)
A	mm (in)	48 (1.89)	55 (2.17)	55 (2.17)	55 (2.17)
С	mm (in)	40 (1.57)	47 (1.85)	47 (1.85)	47 (1.85)
D	mm (in)	19 (0.75)	22 (0.87)	22 (0.87)	22 (0.87)
F	mm (in)	25 (0.98)	36 (1.42)	36 (1.42)	36 (1.42)
М	-	M6	M8	M8	M8
Ν	mm (in)	16 (0.63)	19 (0.75)	19 (0.75)	19 (0.75)
R	mm (in)	15.5 (0.61)	18 (0.71)	18 (0.71)	18 (0.71)
Т	mm (in)	6 (0.24)	7 (0.28)	7 (0.28)	7 (0.28)
V	mm (in)	6 (0.24)	8 (0.31)	8 (0.31)	8 (0.31)
W	mm (in)	6 (0.24)	8 (0.31)	8 (0.31)	8 (0.31)
Z	mm (in)	134.5 (5.30)	94.5 (3.72)	110.5 (4.35)	134.5 (5.30)

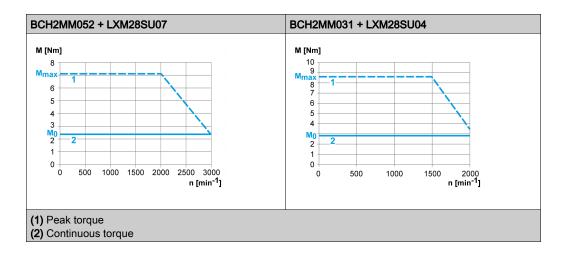
BCH2•M Characteristics Table

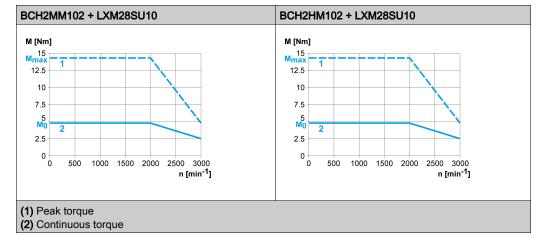
BCH2 ⁽¹⁾			MM052	MM031	MM102	HM102	MM081
Technical data - general							
Continuous stall torque ⁽²⁾	M ₀	Nm	2.39	2.86	4.77	4.77	5.39
Peak torque	M _{max}	Nm	7.16	8.59	14.30	14.30	13.80
With supply voltage U _n = 230 Va							
Nominal speed of rotation	n _N	rpm	2000	1000	2000	2000	1500
Nominal torque	M _N	Nm	2.39	2.86	4.77	4.77	5.39
Nominal Current	I _N	A _{rms}	3.24	2.09	6.29	6.29	6.29
Nominal power	P _N	kW	0.50	0.30	1.00	1.00	0.85
Technical data - electrical							
Maximum winding voltage	U _{max}	Vac	255	255	255	255	255
Maximum winding voltage	U _{max}	Vdc	360	360	360	360	360
Maximum voltage to ground	_	Vac	255	255	255	255	255
Maximum Current	I _{max}	A _{rms}	9.5	6.0	20.0	20.0	15.0
Continuous stall current	I ₀	A _{rms}	2.89	1.88	5.77	5.77	5.62
Voltage constant ⁽³⁾	k _E u-v	V _{rms}	50	92	50	50	58
Torque constant ⁽⁴⁾	k _t	Nm/A	0.83	1.52	0.83	0.83	0.96
Winding resistance	R ₂₀ u-v	Ω	0.74	2.08	0.74	0.74	0.42
Winding inductance	L _q u-v	mH	7.84	26.25	7.84	7.84	4.70
Winding inductance	L _d u-v	mH	7.14	23.91	7.14	7.14	4.30
Technical data - mechanical	I				I	I	I
Maximum permissible speed of rotation	n _{max}	rpm	3000	2000	3000	3000	3000
Rotor inertia without brake	J _M	kgcm ²	6.62	6.62	6.62	8.40	13.49
Rotor inertia with brake	J _M	kgcm ²	6.90	6.90	6.90	8.79	14.09
Mass without brake	m	kg	7.00	7.00	7.00	7.10	9.60
Mass with brake	m	kg	8.20	8.20	8.20	8.30	10.90
Degree of protection of the shaft	-	-	IP 65	IP 54	IP 65	IP 65	IP 54
Degree of protection of the housing	-	-	IP 65	IP 65	IP 65	IP 65	IP 65
Technical data - holding brake	1			1	1	1	1
Holding torque	-	Nm	9.6	9.6	9.6	9.6	9.6
Nominal voltage	-	Vdc	24 +/-10%	24 +/-10%	24 +/-10%	24 +/-10%	24 +/-10%
Nominal power (electrical pull-in power)	-	W	19.7	19.7	19.7	19.7	19.7
 (1) Limit values with flanged moto ○ Flange material: Steel ○ Flange size in mm (in): 40 	0 x 400 x 2						
(2) M ₀ =Continuous stall torque a torque is reduced to 87 %	t 20 rpm ar	nd 100 % du	ty cycle; at sp	eeds of rota	tion of <20 r	pm the conti	nuous stall

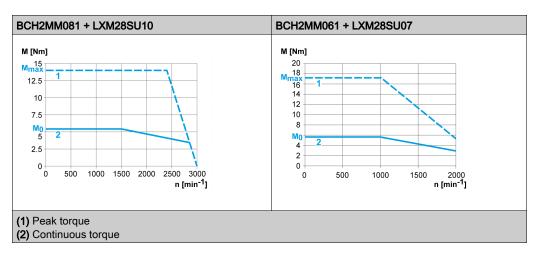
(3) RMS value at 1000 rpm and 20 °C (68 °F). (4) At n = 20 rpm and 20 °C (68 °F).

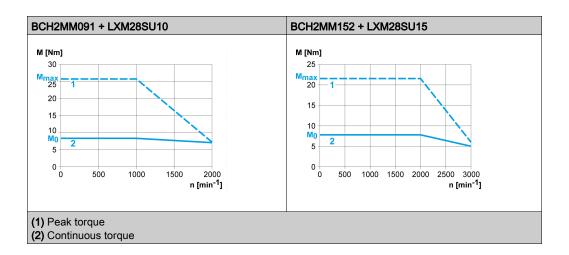
BCH2 ⁽¹⁾			MM061	MM091	MM152	MM202
Technical data - general						
Continuous stall torque ⁽²⁾	M ₀	Nm	5.73	8.59	7.16	9.55
Peak torque	M _{max}	Nm	17.19	25.77	21.48	28.65
With supply voltage U _n = 230 Vac	J		1	1	1	1
Nominal speed of rotation	n _N	rpm	1000	1000	2000	2000
Nominal torque	M _N	Nm	5.73	8.59	7.16	9.55
Nominal Current	I _N	A _{rms}	4.10	6.15	6.74	11.25
Nominal power	P _N	kW	0.60	0.90	1.50	2.00
Technical data - electrical						1
Maximum winding voltage	U _{max}	Vac	255	255	255	255
Maximum winding voltage	U _{max}	Vdc	360	360	360	360
Maximum voltage to ground	_	Vac	255	255	255	255
Maximum Current	I _{max}	A _{rms}	13.5	20.0	21.0	33.0
Continuous stall current	I ₀	A _{rms}	3.77	5.64	6.18	9.95
Voltage constant ⁽³⁾	k _E u-v	V _{rms}	92	92	70	58
Torque constant ⁽⁴⁾	k _t	Nm/A	1.52	1.52	1.16	0.96
Winding resistance	R ₂₀ u- v	Ω	2.08	1.22	0.64	0.42
Winding inductance	L _q u-v	mH	26.25	16.40	7.20	4.70
Winding inductance	L _d u-v	mH	23.91	14.90	6.40	4.30
Technical data - mechanical		4				
Maximum permissible speed of rotation	n _{max}	rpm	2000	2000	3000	3000
Rotor inertia without brake	J _M	kgcm 2	6.62	9.69	9.69	13.49
Rotor inertia with brake	J _M	kgcm 2	6.90	9.99	9.99	14.09
Mass without brake	m	kg	7.00	7.60	7.60	9.70
Mass with brake	m	kg	8.20	8.80	8.80	11.00
Technical data - holding brake			1	[1	
Holding torque	-	Nm	9.6	9.6	9.6	9.6
Nominal voltage	-	Vdc	24 +/-10%	24 +/-10%	24 +/-10%	24 +/-109
Nominal power (electrical pull-in power)	-	W	19.7	19.7	19.7	19.7

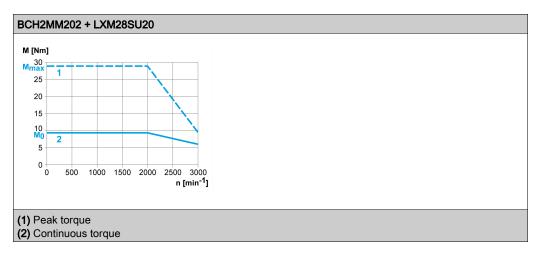
(1) Limit values with flanged motor:

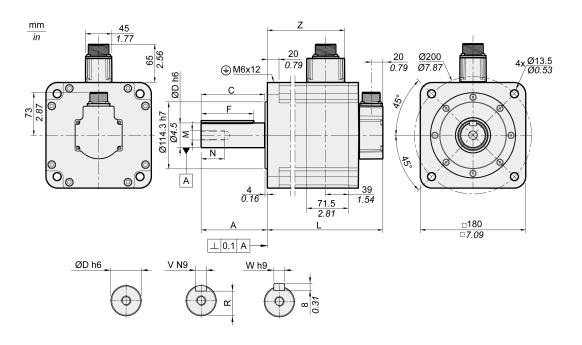

O Flange material: Steel


• Flange size in mm (in): 400 x 400 x 20 (15.7 x 15.7 x 0.79)


(2) M₀=Continuous stall torque at 20 rpm and 100 % duty cycle; at speeds of rotation of <20 rpm the continuous stall torque is reduced to 87 %


(3) RMS value at 1000 rpm and 20 °C (68 °F). (4) At n = 20 rpm and 20 °C (68 °F).


BCH2•M Curves


Section 5.8 BCH2•R Motor

What Is in This Section?

This section contains the following topics:

Торіс	Page
BCH2•R Dimensions	82
BCH2•R Characteristics Table	83
BCH2•R Curves	85

BCH2•R Dimensions

BCH2•R	Unit	20	30, 35	45		
L (without holding brake)	mm (in)	168 (6.61)	201 (7.91)	234 (9.21)		
L (with holding brake)	mm (in)	203 (7.99)	236 (9.29)	269 (10.59)		
A	mm (in)		79 (3.11)			
С	mm (in)		73 (2.87)			
D	mm (in)	35 (1.38)				
F	mm (in)	63 (2.48)				
М	-	M12				
Ν	mm (in)	28 (1.10)				
R	mm (in)		30 (1.18)			
V	mm (in)	10 (0.39)				
W	mm (in)	10 (0.39)				
Z	mm (in)	103 (4.06) 136 (5.35) 169 (6.6				

BCH2•R Characteristics Table

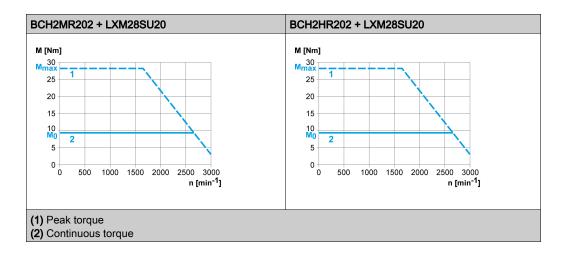
BCH2MR202/301/302, BCH2HR202 technical data

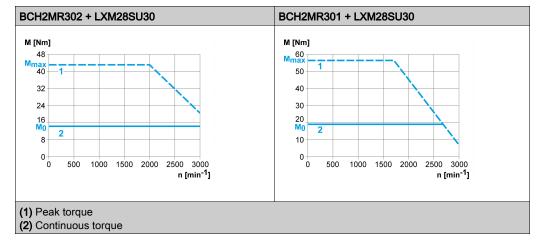
BCH2 ⁽¹⁾			MR202	HR202	MR302	MR301
Technical data - general					1	1
Continuous stall torque ⁽²⁾	M ₀	Nm	9.55	9.55	14.32	19.10
Peak torque	M _{max}	Nm	28.65	28.65	42.97	57.29
With supply voltage U _n = 230 Vac				1	1	I
Nominal speed of rotation	n _N	rpm	2000	2000	2000	1500
Nominal torque	M _N	Nm	9.55	9.55	14.32	19.10
Nominal Current	I _N	A _{rms}	9.6	9.6	18.8	18.8
Nominal power	P _N	kW	2.00	2.00	3.00	3.00
Technical data - electrical	I				1	1
Maximum winding voltage	U _{max}	Vac	255	255	255	255
Maximum winding voltage	U _{max}	Vdc	360	360	360	360
Maximum voltage to ground	-	Vac	255	255	255	255
Maximum Current	I _{max}	A _{rms}	35.5	35.5	56.0	61.0
Continuous stall current	I ₀	A _{rms}	8.75	8.75	16.33	16.49
Voltage constant ⁽³⁾	k _E u-v	V _{rms}	66	66	53	70
Torque constant ⁽⁴⁾	k _t	Nm/A	1.09	1.09	0.88	1.16
Winding resistance	R ₂₀ u-v	Ω	0.572	0.572	0.168	0.234
Winding inductance	L _q u-v	mH	6.70	6.70	2.88	3.78
Winding inductance	L _d u-v	mH	6.10	6.10	2.71	3.45
Technical data - mechanical	I			I	I	1
Maximum permissible speed of rotation	n _{max}	rpm	3000	3000	3000	3000
Rotor inertia without brake	J _M	kgcm ²	26.49	34.67	53.55	53.55
Rotor inertia with brake	J _M	kgcm ²	26.99	36.17	54.09	54.09
Mass without brake	m	kg	13.00	14.30	18.50	18.50
Mass with brake	m	kg	18.00	19.30	23.00	23.00
Degree of protection of the shaft	-	-	IP 65	IP 65	IP 65	IP 54
Degree of protection of the housing	-	-	IP 65	IP 65	IP 65	IP 65
Technical data - holding brake						
Holding torque	-	Nm	48	48	48	48
Nominal voltage	-	Vdc	24 +/-10%	24 +/-10%	24 +/-10%	24 +/-10%
Nominal power (electrical pull-in power)	_	W	49.6	49.6	49.6	49.6

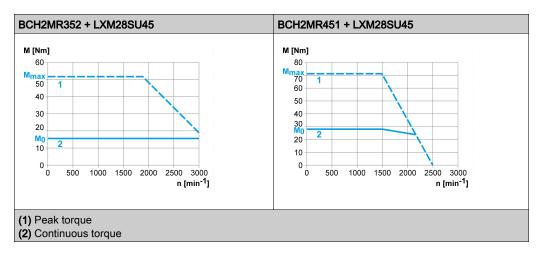
• Flange size in mm (in): 550 x 550 x 20 (21.7 x 21.7 x 0.79)

(2) M₀=Continuous stall torque at 20 rpm and 100 % duty cycle; at speeds of rotation of <20 rpm the continuous stall torque is reduced to 87 %

(3) RMS value at 1000 rpm and 20 °C (68 °F).
(4) At n = 20 rpm and 20 °C (68 °F).


BCH2MR352/451 technical data


BCH2 ⁽¹⁾			MR352	MR451
Technical data - general				
Continuous stall torque ⁽²⁾	M ₀	Nm	16.70	28.65
Peak torque	M _{max}	Nm	50.30	71.62
With supply voltage U _n = 230 Vac				1
Nominal speed of rotation	n _N	rpm	2000	1500
Nominal torque	M _N	Nm	16.70	28.65
Nominal Current	I _N	A _{rms}	19.3	22.8
Nominal power	P _N	kW	3.50	4.50
Technical data - electrical				
Maximum winding voltage	U _{max}	Vac	255	255
Maximum winding voltage	U _{max}	Vdc	360	360
Maximum voltage to ground	_	Vac	255	255
Maximum Current	I _{max}	A _{rms}	61.0	61.0
Continuous stall current	I ₀	A _{rms}	16.83	19.68
Voltage constant ⁽³⁾	k _E u-v	V _{rms}	60	88
Torque constant ⁽⁴⁾	k _t	Nm/A	0.99	1.46
Winding resistance	R ₂₀ u- v	Ω	0.168	0.199
Winding inductance	L _q u-v	mH	2.80	4.00
Winding inductance	L _d u-v	mH	2.57	3.80
Technical data - mechanical				1
Maximum permissible speed of rotation	n _{max}	rpm	3000	3000
Rotor inertia without brake	J _M	kgcm 2	53.55	73.31
Rotor inertia with brake	J _M	kgcm 2	54.09	72.99
Mass without brake	m	kg	18.50	23.64
Mass with brake	m	kg	23.00	28.00
Technical data - holding brake		1	1	I
Holding torque	-	Nm	48	48
Nominal voltage	-	Vdc	24 +/-10%	24 +/-10%
Nominal power (electrical pull-in power)	_	W	49.6	49.6


(2) M₀=Continuous stall torque at 20 rpm and 100 % duty cycle; at speeds of rotation of

<20 rpm the continuous stall torque is reduced to 87 %
(3) RMS value at 1000 rpm and 20 °C (68 °F).
(4) At n = 20 rpm and 20 °C (68 °F).

BCH2•R Curves

Chapter 6 Accessories and Spare Parts

What Is in This Chapter?

This chapter contains the following topics:

Торіс	Page
Commissioning Tools	88
Connectors and Adapters	88
External Mains Filters	88
DC Bus Accessories	89
Application Nameplate	89
Ethernet Shielded Twisted-pair Cables	90
SERCOS III Cables with Connectors	91
Motor Cables	92
Encoder Cables and Accessories	92
Signal Cables	92
Signal Cable for Safety Function STO	93
External Braking Resistors and Holding Brake Controller	93
Circuit Breakers	93
Motor Protection Switches and Power Contactors	94

Commissioning Tools

Description	Reference
Commissioning software LXM28 DTM Library, can be downloaded at: <u>www.schneider-</u> <u>electric.com</u>	-
SDDML Description file, can be downloaded at: <u>www.schneider-electric.com</u>	-
PC connection kit, serial connection between drive and PC, USB-A to RJ45	TCSMCNAM3M002P
Multi-Loader, device for copying the parameter settings to a PC or to another drive	VW3A8121
Connection cable for Multi-Loader	VW3A8126
Modbus cable, 1 m (3.28 ft), 2 x RJ45	VW3A8306R10

Connectors and Adapters

Description		Drive Type	Reference		
Connector kit for logic supply and power stage supply (CN5), braking resistor (CN7), and motor (CN8)		LXM28SUA5, LXM28SU01, LXM28SU02, LXM28SU04, LXM28SU07, LXM28SU10, LXM28SU15	VW3M4C21		
		LXM28SU20	VW3M4C23		
		LXM28SU30, LXM28SU45	VW3M4C24		
Cable shield connection plate, clamps, and screws		LXM28SUA5, LXM28SU01, LXM28SU02, LXM28SU04, LXM28SU07, LXM28SU10, LXM28SU15	VW3M2C31		
		LXM28SU20	VW3M2C33		
		LXM28SU30, LXM28SU45 VW3M2C34			
		Interface adapter for CN1, connector with 0.5 m (1.64 ft) cable and connection module with screw terminals for DIN rail mounting			
Connector kit for motor	Motor end plastic connector	Without holding brake	VW3M5D1A		
		With holding brake	VW3M5D1F		
	Motor end MIL connector	With holding brake, size 100 130	VW3M5D2A		
		With holding brake, size 180	VW3M5D2B		
		For 8 mm ² (AWG8) up to 16 mm ² (AWG16) with holding brake, size 180	VW3M5D2C		
		Device end IEEE1394 connector	VW3M8D2A		
	Motor end flying leads	Device end IEEE1394 connector	VW3M8D1A		

External Mains Filters

Description	Reference	
Mains filter single-phase;115/230 Vac	9 A	VW3A4420
	16 A	VW3A4421
	23 A	VW3A4426
Mains filter three-phase; 208/400/480 Vac	15 A	VW3A4422
	25 A	VW3A4423
	47 A	VW3A4424

DC Bus Accessories

Description		Reference
DC bus connection cable,	Pre-assembled, 0.1 m (0.33 ft), 5 pieces	VW3M7101R01
2 x 6 mm ² (2 x AWG 10)	Twisted Pair, shielded, 15 m (49.2 ft)	VW3M7102R150
		VW3M2207

A crimping tool is required for the crimp contacts of the connector kit.

Manufacturer: Tyco Electronics, Heavy Head Hand Tool, Tool Pt. No 180250

Application Nameplate

Description	Reference
Application nameplate to be clipped onto the top of the drive, size 38.5 mm (1.52 in) x 13 mm	VW3M2501
(0.51 in), 50 pieces	

Ethernet Shielded Twisted-pair Cables

Description	Reference		
2 x RJ45, shielded twisted-pair cable	-	2 m (6.56 ft)	490NTW00002
		5 m (16.4 ft)	490NTW00005
		12 m (39.37 ft)	490NTW00012
	With UL and CSA 22.1 certification	2 m (6.56 ft)	490NTW00002U
		5 m (16.4 ft)	490NTW00005U
		12 m (39.37 ft)	490NTW00012U

SERCOS III Cables with Connectors

Description	Reference
SERCOS III cable, 2 x RJ45, shielded cable, Twisted Pair, 0.5 m (1.64 ft)	VW3E5001R005
SERCOS III cable, 2 x RJ45, shielded cable, Twisted Pair, 1 m (3.28 ft)	VW3E5001R010
SERCOS III cable, 2 x RJ45, shielded cable, Twisted Pair, 1.5 m (4.92 ft)	VW3E5001R015
SERCOS III cable, 2 x RJ45, shielded cable, Twisted Pair, 2 m (6.56 ft)	VW3E5001R020
SERCOS III cable, 2 x RJ45, shielded cable, Twisted Pair, 3 m (9.84 ft)	VW3E5001R030
SERCOS III cable, 2 x RJ45, shielded cable, Twisted Pair, 5 m (16.4 ft)	VW3E5001R050
SERCOS III cable, 2 x RJ45, shielded cable, Twisted Pair, 10 m (32.8 ft)	VW3E5001R100
SERCOS III cable, 2 x RJ45, shielded cable, Twisted Pair, 15 m (49.2 ft)	VW3E5001R150
SERCOS III cable, 2 x RJ45, shielded cable, Twisted Pair, 20 m (65.6 ft)	VW3E5001R200
SERCOS III cable, 2 x RJ45, shielded cable, Twisted Pair, 25 m (82 ft)	VW3E5001R250
SERCOS III cable, 2 x RJ45, shielded cable, Twisted Pair, 30 m (98.4 ft)	VW3E5001R300
SERCOS III cable, 2 x RJ45, shielded cable, Twisted Pair, 40 m (131 ft)	VW3E5001R400
SERCOS III cable, 2 x RJ45, shielded cable, Twisted Pair, 50 m (164 ft)	VW3E5001R500

Motor Cables

Description				Reference
Shielded motor cable	Motor end plastic connector,	4 x 0.82 mm ²	1.5 m (4.92 ft)	VW3M5D1AR15
without holding brake	other cable end flying leads	(AWG 18)	3 m (9.84 ft)	VW3M5D1AR30
			5 m (16.4 ft)	VW3M5D1AR50
	Motor end MIL connector,	4 x 1.3 mm ²	3 m (9.84 ft)	VW3M5D2AR30
	other cable end flying leads	(AWG 16)	5 m (16.4 ft)	VW3M5D2AR50
		4 x 3.3 mm ²	3 m (9.84 ft)	VW3M5D4AR30
		(AWG 12)	5 m (16.4 ft)	VW3M5D4AR50
		4 x 6 mm ²	3 m (9.84 ft)	VW3M5D6AR30
		(AWG 10)	5 m (16.4 ft)	VW3M5D6AR50
	Shielded motor cable with holding brake Motor end plastic connector, other cable end flying leads	Motor end plastic	6 x 0.82 mm ²	3 m (9.84 ft)
		cable end flying	(AWG 18)	5 m (16.4 ft)
		Motor end MIL	6 x 1.3 mm ²	3 m (9.84 ft)
		connector, other	(AWG 16)	5 m (16.4 ft)
6 x 3.3 mm ²		cable end flying	3 m (9.84 ft)	VW3M5D4FR30
(AWG 12)			5 m (16.4 ft)	VW3M5D4FR50
6 x 6 mm ² (AWG 10)			3 m (9.84 ft)	VW3M5D6FR30
			5 m (16.4 ft)	VW3M5D6FR50

Encoder Cables and Accessories

Description	Reference		
Encoder cable, 10 x 0.13 mm ² (AWG 26) shielded	Motor end and device end plastic	1.5 m (4.92 ft)	VW3M8D1AR15
	connector	3 m (9.84 ft)	VW3M8D1AR30
		5 m (16.4 ft)	VW3M8D1AR50
	Motor end MIL connector, other	3 m (9.84 ft)	VW3M8D2AR30
	cable end plastic connector	5 m (16.4 ft)	VW3M8D2AR50
Battery compartment for multi turr	VW3M8BATC		
Battery 3.6 Vdc for multi turn encoder			VW3M9BATT

NOTE: The battery compartment and the battery are not provided with motor equipped with a multi turn encoder and must be ordered separately.

Signal Cables

Description	Reference	
Signal cable for signal interface CN1, device end 50-pin connector, other cable end flying leads	1 m (3.28 ft)	VW3M1C10R10
	2 m (6.56 ft)	VW3M1C10R20
	3 m (9.84 ft)	VW3M1C10R30

Signal Cable for Safety Function STO

Description	Reference	
STO cable is not allowed to be used outside the cabinet	1 m (3.28 ft)	VW3M1C20R10
	2 m (6.56 ft)	VW3M1C20R20
	3 m (9.84 ft)	VW3M1C20R30

External Braking Resistors and Holding Brake Controller

Description	Reference			
Holding brake controller HBC with autor	VW3M3103			
Braking resistor IP 65 connection cable 2.1 mm ² (AWG 14)		Maximum continuous	0.75 m (2.46 ft)	VW3A7601R07
		power 400 W	2 m (6.56 ft)	VW3A7601R20
			3 m (9.84 ft)	VW3A7601R30
Braking resistor IP 65, UL	27 Ω Maximum continuous	0.75 m (2.46 ft)	VW3A7602R07	
connection cable 2.1 mm ² (AWG 14)		power 100 W	2 m (6.56 ft)	VW3A7602R20
			3 m (9.84 ft)	VW3A7602R30
	Maximum continuous	Maximum continuous	0.75 m (2.46 ft)	VW3A7603R07
		power 200 W	2 m (6.56 ft)	VW3A7603R20
		3 m (9.84 ft)	VW3A7603R30	
	Maximum continuous	0.75 m (2.46 ft)	VW3A7604R07	
		power 400 W	2 m (6.56 ft)	VW3A7604R20
			3 m (9.84 ft)	VW3A7604R30
	72 Ω	Maximum continuous	0.75 m (2.46 ft)	VW3A7606R07
		power 200 W	2 m (6.56 ft)	VW3A7606R20
			3 m (9.84 ft)	VW3A7606R30
		Maximum continuous	0.75 m (2.46 ft)	VW3A7607R07
	power 400 W	2 m (6.56 ft)	VW3A7607R20	
			3 m (9.84 ft)	VW3A7607R30
Braking resistor IP20, UL	16 Ω	Maximum continuous		VW3A7733
screw terminals M6	10 Ω	power 956 W	-	VW3A7734

Circuit Breakers

Description		Reference
Circuit breaker - thermal magnetic -screw terminals	4 6.3 A	GV2P10
	6 10 A	GV2P14
	9 14 A	GV2P16
	13 18 A	GV2P20
	17 23 A	GV2P21
	20 25 A	GV2P22
	24 32 A	GV2P32

Motor Protection Switches and Power Contactors

Drive	Nominal power	Order no. motor protection switch	Rated continuous current motor protection switch	Order no. power contactor
LXM28SUA5	50 W	GV2L10	6.3 A	LC1K0610••
LXM28SU01	100 W	GV2L10	6.3 A	LC1K0610••
LXM28SU02	200 W	GV2L14	10 A	LC1D09••
LXM28SU04	400 W	GV2L14	10 A	LC1D09••
LXM28SU07	750 W	GV2L16	14 A	LC1D12••
LXM28SU15	1500 W	GV2L22	25 A	LC1D18••
LXM28SU20	2000 W	GV2L32	30 A	LC1D32••
LXM28SU30	3000 W	GV2L32	30 A	LC1D32••

Control voltage power cont	actor	24 V	48 V	110 V	220 V	230 V	240 V
LC1K••••	50/60 Hz	B7	E7	F7	M7	P7	U7

Control voltage power contactor		24 V	48 V	110 V	220/230 V	230	230/240 V
LC1D	50 Hz	B5	E5	F5	M5	P5	U5
	60 Hz	B6	E6	F6	M6	-	U6
	50/60 Hz	B7	E7	F7	M7	P7	U7

Part III Engineering

This chapter contains information on the application of the Servo Drive system for the engineering phase.

What Is in This Chapter?

This chapter contains the following sections:

Section	Торіс	Page
7.1	Electromagnetic Compatibility (EMC)	98
7.2	Cables	102
7.3	Residual Current Device	104
7.4	Common DC Bus	105
7.5	Safety Function STO ("Safe Torque Off")	106
7.6	Rating the Braking Resistor	118
7.7	Monitoring Functions	122
7.8	Configurable Inputs and Outputs	123
7.9	Wiring	124

Section 7.1 Electromagnetic Compatibility (EMC)

What Is in This Section?

This section contains the following topics:

Торіс	Page
Electromagnetic Compatibility (EMC)	99
External Mains Filters	101

Electromagnetic Compatibility (EMC)

Signal interference can cause unexpected responses of the drive and of other equipment in the vicinity of the drive.

A WARNING

SIGNAL AND EQUIPMENT INTERFERENCE

- Only operate the drive with the specified external mains filter.
- Install the wiring in accordance with the EMC requirements described in the present document.
- Verify compliance with the EMC requirements described in the present document.
- Verify compliance with all EMC regulations and requirements applicable in the country in which the product is to be operated and with all EMC regulations and requirements applicable at the installation site.

Failure to follow these instructions can result in death, serious injury, or equipment damage.

Limit Values

This product meets the EMC requirements according to the standard IEC 61800-3 if the measures described in this manual, and in particular the installation of the mains filters, are implemented during installation.

WARNING

ELECTROMAGNETIC DISTURBANCES OF SIGNALS AND DEVICES

Use proper EMC shielding techniques to help prevent unintended device operation in accordance with the standard IEC 61800-3.

Failure to follow these instructions can result in death, serious injury, or equipment damage.

These types of devices are not intended to be used on a low-voltage public network which supplies domestic premises. Radio frequency interference is expected if used in such a network.

WARNING

RADIO INTERFERENCE

Do not use these products in domestic electrical networks.

Failure to follow these instructions can result in death, serious injury, or equipment damage.

As a system provider, you may have to include this information in the documentation to your customer.

Equipotential Bonding Conductors

Potential differences can result in excessive currents on the cable shields. Use equipotential bonding conductors to reduce currents on the cable shields.

A WARNING

UNINTENDED EQUIPMENT OPERATION

- Ground cable shields for all fast I/O, analog I/O, and communication signals at a single point. 1)
- Route communications and I/O cables separately from power cables.

Failure to follow these instructions can result in death, serious injury, or equipment damage.

¹⁾ Multipoint grounding is permissible if connections are made to an equipotential ground plane dimensioned to help avoid cable shield damage in the event of power system short-circuit currents.

The equipotential bonding conductors must be rated for the maximum current. The following conductors cross sections can be used:

- 16 mm² (AWG 4) for equipotential bonding conductors up to a length of 200 m (656 ft)
- 20 mm² (AWG 4) for equipotential bonding conductors with a length of more than 200 m (656 ft)

EMC Requirements for the Control Cabinet

EMC measures	Objective
Use mounting plates with good electrical conductivity, connect large surface areas of metal parts, remove paint from contact areas.	Good conductivity due to large surface contact.
Ground the control cabinet, the control cabinet door, and the mounting plate with ground straps or ground wires. The conductor cross section must be at least 10 mm^2 (AWG 6).	Reduces emissions.
Install switching devices such as power contactors, relays, or solenoid valves with interference suppression units or arc suppressors (for example, diodes, varistors, RC circuits).	Reduces mutual interference
Do not install power components and control components adjacent to one another.	Reduces mutual interference

Additional Measures for EMC Improvement

Depending on the application, the following measures can improve the EMC-dependent values:

EMC measures	Objective
Use mains reactors.	Reduces mains harmonics, prolongs product service life.
Mount in a closed control cabinet with shielded attenuation of radiated interference	Improves the EMC limit values.

External Mains Filters

Filter/Drive Combinations

You can obtain EMC conformance by following the wiring standards and practices in the present document and installing, for each drive, the following filter/drive combination:

For further information, refer to Electromagnetic compatibility (EMC) (see page 98).

LXM28S	Mains filter for single-phase connection	Mains filter for three-phase connection
UA5 = 0.05 kW U01 = 0.1 kW U02 = 0.2 kW U04 = 0.4 kW U07 = 0.75 kW U10 = 1 kW	VW3A4420	VW3A4422
U15 = 1.5 kW	VW3A4421	VW3A4422
U20 = 2 kW	-	VW3A4423
U30 = 3 kW U45 = 4.5 kW	-	VW3A4424

If you use mains filters of other manufacturers, these mains filters must have the same technical data as specified mains filters.

Emission

The specified limit values are complied with if the external mains filters available as accessories are used. The following limit values for emission are complied with if the installation is EMC-compliant and if the cables offered as accessories are used.

Lexium 28S	Category
Conducted interference	C3
Radiated emission	C3

Section 7.2 Cables

Cables

Suitability of the Cables

Cables must not be twisted, stretched, crushed, or bent. Use only cables that comply with the cable specification. Consider the following in determining suitability of the cables:

- Suitable for drag chain applications
- Temperature range
- Chemical resistance
- Outdoor installation
- Underground installation

Equipotential Bonding Conductors

Potential differences can result in excessive currents on the cable shields. Use equipotential bonding conductors to reduce currents on the cable shields

A WARNING

UNINTENDED EQUIPMENT OPERATION

- Ground cable shields for all fast I/O, analog I/O, and communication signals at a single point. 1)
- Route communications and I/O cables separately from power cables.

Failure to follow these instructions can result in death, serious injury, or equipment damage.

¹⁾ Multipoint grounding is permissible if connections are made to an equipotential ground plane dimensioned to help avoid cable shield damage in the event of power system short-circuit currents.

The equipotential bonding conductor must be rated for the maximum current. The following conductor cross sections can be used:

- 16 mm² (AWG 4) for equipotential bonding conductors up to a length of 200 m (656 ft)
- 20 mm² (AWG 4) for equipotential bonding conductors with a length of more than 200 m (656 ft)

Conductor Cross Sections According to Method of Installation

The following sections describe the conductor cross sections for two methods of installation:

- Method of installation B2: Cables in conduits or cable trunking systems
- Method of installation E: Cables on open cable trays

Cross section in mm ² (AWG) ⁽¹⁾	Current-carrying capacity with method of installation B2 in A ⁽²⁾	Current carrying capacity with method of installation E in $A^{(2)}$
0.75 (18)	8.5	10.4
1 (16)	10.1	12.4
1.5 (14)	13.1	16.1
2.5 (12)	17.4	22
4 (10)	23	30
6 (8)	30	37
10 (6)	40	52
16 (4)	54	70
25 (2)	70	88

(1) See chapter "Accessories and spare parts" *(see page 87)* for available cables.

(2) Values as per IEC 60204-1 for continuous operation, copper conductors, and ambient air temperature 40 °C (104 °F); see IEC 60204-1 for additional information.

Note the derating factors for grouping of cables and correction factors for other ambient conditions (IEC 60204-1).

The conductors must have a sufficiently large cross section so that the upstream fuse can trip.

In the case of longer cables, it may be necessary to use a greater conductor cross section to reduce the energy losses.

For conformance to UL requirements, use 75 °C (167 °F) copper conductors.

Section 7.3 Residual Current Device

Residual Current Device

Direct current can be introduced in the protective ground conductor of this drive. If a residual current device (RCD / GFCI) or a residual current monitor (RCM) is used for protection against direct or indirect contact, the following specific types must be used:

WARNING

DIRECT CURRENT CAN BE INTRODUCED INTO THE PROTECTIVE GROUND CONDUCTOR

- Use a Type A Residual Current Device (RCD / GFCI) or a Residual Current Monitor (RCM) for singlephase drives connected to a phase and to the neutral conductor.
- Use a Type B Residual Current Device (RCD / GFCI) or a Residual Current Monitor (RCM) that has approval for use with frequency inverters and is sensitive to all types of current for three-phase drives and for single-phase drives not connected to a phase and the neutral conductor.

Failure to follow these instructions can result in death, serious injury, or equipment damage.

Conditions for Use of Residual Current Device

- The drive has an increased leakage current at the moment power is applied. Use residual current devices with a response delay.
- High-frequency currents must be filtered.

Section 7.4 Common DC Bus

Common DC Bus

Function Principle

The DC buses of several devices can be connected so that energy can be used efficiently. If on device decelerates, a different device connected to the common DC bus can use the generated braking energy. Without a common DC bus, the braking energy would be converted to heat by the braking resistor while the other device would have to be supplied with energy from mains.

Another advantage of having a common DC bus is that several devices can share one external braking resistor. The number of the individual external braking resistors can be reduced to a single braking resistor if the braking resistor is properly rated.

This and other important information can be found in the Common DC bus Application Note for the drive. If you wish to take advantage of DC bus sharing, you must first consult the Common DC bus Application Note for important safety-related information.

Requirements for Use

The requirements and limit values for parallel connection of multiple devices via the DC bus are described in the Common DC bus Application Note for the drive that can be found on <u>http://www.schneider-</u><u>electric.com</u>. If there are any issues or questions related to obtaining the Common DC bus Application Note, consult your local Schneider-Electric representative.

Section 7.5 Safety Function STO ("Safe Torque Off")

For information on using the IEC 61508 standard, refer to Functional Safety (see page 108).

What Is in This Section?

This section contains the following topics:

Торіс	Page
Process Minimizing Risks Associated with the Machine	107
Functional Safety	108
Definitions	111
Function	112
Requirements for Using the Safety Function	113
Application Examples STO	116

Process Minimizing Risks Associated with the Machine

General

The goal of designing machines safely is to protect people. The risk associated with machines with electrically controlled drives comes chiefly from moving machine parts and electricity itself.

Only you, the user, machine builder, or system integrator can be aware of all the conditions and factors realized in the design of your application for the machine. Therefore, only you can determine the automation equipment and the related safeties and interlocks which can be properly used, and validate such usage.

Hazard and Risk Analysis

Based on the system configuration and utilization, a hazard and risk analysis must be carried out for the system (for example, according to ISO 12100 or ISO 13849-1). The results of this analysis must be considered when designing the machine, and subsequently applying safety-related equipment and safety-related functions. The results of your analysis may deviate from any application examples contained in the present or related documentation. For example, additional safety components may be required. In principle, the results from the hazard and risk analysis have priority.

WARNING

NON-CONFORMANCE TO SAFETY FUNCTION REQUIREMENTS

- Specify the requirements and/or measures to be implemented in the risk analysis you perform.
- Verify that your safety-related application complies to applicable safety regulations and standards.
- Make certain that appropriate procedures and measures (according to applicable sector standards)
- have been established to help avoid hazardous situations when operating the machine.
- Use appropriate safety interlocks where personnel and/or equipment hazards exist.
- Validate the overall safety-related function and thoroughly test the application.

Failure to follow these instructions can result in death, serious injury, or equipment damage.

The ISO 13849-1 Safety of machinery - Safety-related parts of control systems - Part 1: General principle for design describes an iterative process for the selection and design of safety-related parts of controllers to reduce the risk to the machine to a reasonable degree:

- To perform risk assessment and risk minimization according to ISO 12100, proceed as follows:
- 1. Defining the boundary of the machine.
- 2. Identifying risks associated with the machine.
- **3.** Assessing risks.
- 4. Evaluating risks.
- 5. Minimizing risks by:
 - Intrinsically safe design
 - o Protective devices
 - O User information (see ISO 12100)
- 6. Designing safety-related controller parts (SRP/CS, Safety-Related Parts of the Control System) in an interactive process.

To design the safety-related controller parts in an interactive process, proceed as follows:

Step	Action
1	Identify necessary safety functions that are executed via SRP/CS (Safety-Related Parts of the Control System).
2	Determine required properties for each safety function.
3	Determine the required performance level PL _r .
4	Identify safety-related parts executing the safety function.
5	Determine the performance level PL of the afore-mentioned safety-related parts.
6	Verify the performance level PL for the safety function (PL \ge PL _r).
7	Verify if all requirements have been met (validation).

Additional information is available on www.schneider-electric.com.

Functional Safety

Overview

Automation and safety engineering are closely related. Engineering, installation, and operation of complex automation solutions are greatly simplified by integrated safety-related functions and modules.

Usually, the safety-related engineering requirements depend on the application. The level of the requirements results from, among other things, the risk, and the hazard potential arising from the specific application and from the applicable standards and regulations.

IEC 61508 and IEC 61800-5-2

The standard IEC 61508 "Functional safety of electrical/electronic/programmable electronic safety-related systems" defines the safety-related aspects of systems. Instead of a single functional unit of a safety-related system, the standard treats all elements of a function chain as a unit. These elements must meet the requirements of the specific safety integrity level as a whole.

The standard IEC 61800-5-2 "Adjustable speed electrical power drive systems – Safety requirements – Functional" is a product standard that defines the safety-related requirements regarding drives. Among other things, this standard defines the safety functions for drives.

Safety Integrity Level (SIL)

The standard IEC 61508 defines 4 safety integrity levels (Safety Integrity Level (SIL)). Safety integrity level SIL1 is the lowest level, safety integrity level SIL4 is the highest level. The safety integrity level required for a given application is determined on the basis of the hazard potential resulting from the hazard and risk analysis. This is used to decide whether the relevant function chain is to be considered as a safety-related function chain and which hazard potential it must cover.

Average Frequency of a Dangerous Failure Per Hour (PFH)

To maintain the function of the safety-related system, the IEC 61508 standard requires various levels of measures for avoiding and controlling faults, depending on the required safety integrity level (Safety Integrity Level (SIL)). All components must be subjected to a probability assessment to evaluate the effectiveness of the measures implemented for controlling faults. This assessment determines the probability of a dangerous failure per hour PFH (Average Frequency of a Dangerous Failure per Hour (PFH)) for a safety-related system. This is the frequency per hour with which a safety-related system fails in a hazardous manner so that it can no longer perform its function correctly. Depending on the SIL, the average frequency of a dangerous failure per hour must not exceed certain values for the entire safety-related system. The individual PFH values of a function chain are added. The result must not exceed the maximum value specified in the standard.

SIL	PFH at high demand or continuous demand
4	≥10 ⁻⁹ <10 ⁻⁸
3	≥10 ⁻⁸ <10 ⁻⁷
2	≥10 ⁻⁷ <10 ⁻⁶
1	≥10 ⁻⁶ <10 ⁻⁵

Hardware Fault Tolerance (HFT) and Safe Failure Fraction (SFF)

Depending on the safety integrity level (Safety Integrity Level (SIL)) for the safety-related system, the IEC 61508 standard requires a specific hardware fault tolerance (Hardware Fault Tolerance (HFT)) in connection with a specific safe failure fraction (Safe Failure Fraction (SFF)). The hardware fault tolerance is the ability of a safety-related system to execute the required function even if one or more hardware faults are present. The safe failure fraction of a safety-related system is defined as the ratio of the rate of safe failures to the total failure rate of the safety-related system. As per IEC 61508, the maximum achievable safety integrity level of a safety-related system.

IEC 61800-5-2 distinguishes two types of subsystems (type A subsystem, type B subsystem). These types are specified on the basis of criteria which the standard defines for the safety-related components.

SFF	HFT type A subsystem			HFT type B subsystem		
	0	1	2	0	1	2
<60 %	SIL1	SIL2	SIL3		SIL1	SIL2
60 <90 %	SIL2	SIL3	SIL4	SIL1	SIL2	SIL3
90 <99 %	SIL3	SIL4	SIL4	SIL2	SIL3	SIL4
≥99 %	SIL3	SIL4	SIL4	SIL3	SIL4	SIL4

Fault Avoidance Measures

Systematic errors in the specifications, in the hardware and the software, incorrect usage and maintenance of the safety-related system must be avoided to the maximum degree possible. To meet these requirements, IEC 61508 specifies a number of measures for fault avoidance that must be implemented depending on the required safety integrity level (Safety Integrity Level (SIL)). These measures for fault avoidance must cover the entire life cycle of the safety-related system, i.e. from design to decommissioning of the system.

Data for Maintenance Plan and the Calculations for the Safety Function

The safety function must be tested at regular intervals. The interval depends on the hazard and risk analysis of the total system. The minimum interval is 1 year (high demand mode as per IEC 61508).

Use the following data of the safety function STO for your maintenance plan and the calculations for the safety function:

Description	Unit	Value		
Lifetime of the safety function STO (IEC 61508) ⁽¹⁾	Years	20		
SFF (IEC 61508) Safe Failure Fraction	%	98.9		
Safety integrity level IEC 61508 IEC 62061 IEC 61800-5-2	-	SIL CL 2		
PFH (IEC 61508) Probability of Dangerous Hardware Failure per Hour	1/h	STO_A ⁽²⁾ : 1.7 x 10 ⁻⁹ STO_B ⁽³⁾ : 1.5 x 10 ⁻⁹		
PFD _{avg} (IEC 61508) Probability of Failure on Demand, calculated as one demand per year	-	STO_A ⁽²⁾ : 1.5 x 10 ⁻⁴ STO_B ⁽³⁾ : 1.3 x 10 ⁻⁴		
PL (ISO 13849-1) Performance Level	-	d (category 3)		
MTTF _d (ISO 13849-1) Mean Time to Dangerous Failure	Years	STO_A ⁽²⁾ : 66757 STO_B ⁽³⁾ : 78457		
(1) See chapter Lifetime Safety Function STO <i>(see page 322)</i> (2) STO_A: LXM28SU45,LXM28SU01, LXM28SU02, LXM28SU04, LXM28SU07, LXM28SU10,LXM28SU15,				

LXM28SU20 (3) STO_B: LXM28SU30, LXM28SU45

If two non-adjacent IGBTs have a short circuit, a movement of a maximum of 120 degrees (electrical) can occur even if the safety function STO is active. Include in your risk analysis the probability of IGBT short circuits, and make a determination whether it is acceptable as it relates to your application.

A WARNING

UNINTENTIONAL MOVEMENT DURING STO FUNCTION

Use appropriate safety interlocks (such as a service brake) where personnel and/or equipment hazards exist.

Failure to follow these instructions can result in death, serious injury, or equipment damage.

The probability of such a condition is 1.5×10^{-15} per hour (without common cause error). Include this in your calculations for the safety function.

The probability of such a condition is highly unlikely but possible. An unexpected movement has to be considered and ruled out. A fault exclusion is required such that it is not possible to short circuit the STO by another voltage carrying line.

Contact your local sales office for additional information, if required.

Definitions

Integrated Safety-Related Function "Safe Torque Off" STO

The integrated safety-related function STO (IEC 61800-5-2) allows for a category 0 stop as per IEC 60204-1 without external power contactors. It is not necessary to interrupt the supply voltage for a category 0 stop. This reduces the system costs and the response times.

Category 0 Stop (IEC 60204-1)

In stop category 0 (Safe Torque Off, STO), the drive coasts to a stop (provided there are no external forces operating to the contrary). The safety-related function STO is intended to help prevent an unintended startup, not stop a motor, and therefore corresponds to an unassisted stop in accordance with IEC 60204-1.

In circumstances where external influences are present, the coast down time depends on physical properties of the components used (such as weight, torque, friction, etc.), and additional measures such as external safety-related brakes may be necessary to help prevent any hazard from materializing. That is to say, if this means a hazard to your personnel or equipment, you must take appropriate measures.

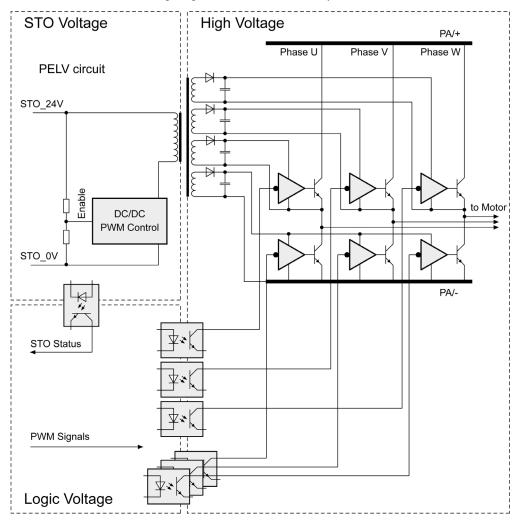
A WARNING

UNINTENDED EQUIPMENT OPERATION

- Make certain that no hazards can arise for persons or material during the coast down period of the axis/machine.
- Do not enter the zone of operation during the coast down period.
- Ensure that no other persons can access the zone of operation during the coast down period.
- Use appropriate safety interlocks where personnel and/or equipment hazards exist.

Failure to follow these instructions can result in death, serious injury, or equipment damage.

Category 1 Stop (IEC 60204-1)


For stops of category 1 (Safe Stop 1, SS1), you can initiate a controlled stop via the control system, or through the use of specific functional safety-related devices. A Category 1 Stop is a controlled stop with power available to the machine actuators to achieve the stop.

The controlled stop by the control/safety-related system is not safety-relevant, nor monitored, and does not perform as defined in the case of a power outage or if an error is detected. This has to be implemented by means of an external safety-related switching device with safety-related delay.

Function

The safety function STO integrated into the product can be used to implement an "EMERGENCY STOP" (IEC 60204-1) for category 0 stops. With an additional, approved EMERGENCY STOP safety relay module, it is also possible to implement category 1 stops.

The safety function STO switches the supply voltage of the IGBT drivers so that PWM signals cannot switch the IGBTs. The following diagram illustrates the concept:

Requirements for Using the Safety Function

The safety function STO (Safe Torque Off) does not remove power from the DC bus. The safety function STO only removes power to the motor. The DC bus voltage and the mains voltage to the drive are still present.

ELECTRIC SHOCK

- Do not use the safety function STO for any other purposes than its intended function.
- Use an appropriate switch, that is not part of the circuit of the safety function STO, to disconnect the drive from the mains power.

Failure to follow these instructions will result in death or serious injury.

After the safety function STO is triggered, the motor can no longer generate torque and coasts down without braking in the case of motors without a holding brake. In the case of motors with holding brake, the holding brake is not a safety-related function, and may not be sufficient to hold the axis at a standstill.

WARNING

UNINTENDED EQUIPMENT OPERATION

Install a dedicated service brake if coasting does not meet the deceleration requirements of your application.

Failure to follow these instructions can result in death, serious injury, or equipment damage.

The safety function STO is factory-deactivated by means of the jumper for CN9. If you want to use the safety function STO, you must remove the jumper for CN9. You may only use the safety function STO with an external PELV 24 Vdc power supply unit.

WARNING

UNINTENDED EQUIPMENT OPERATION

- Remove the jumpers connected to the STO power connector (CN9) only if you intend to use the STO safety-related function for your application.
- Use only an external PELV 24 Vdc power supply unit when applying the safety-related STO function.

Failure to follow these instructions can result in death, serious injury, or equipment damage.

For additional information on deactivating the safety function STO, refer to Connection STO (CN9) *(see page 161).*

Holding Brake and Safety Function STO

When the safety function STO is triggered, the power stage is immediately disabled. In the case of vertical axes or external forces acting on the load, you may have to take additional measures to bring the load to a standstill and to keep it at a standstill when the safety function STO is used, for example, by using a service brake.

A WARNING

FALLING LOAD

Ensure that all loads come to a secure standstill when the safety function STO is used.

Failure to follow these instructions can result in death, serious injury, or equipment damage.

If the suspension of hanging / pulling loads is a safety objective for the machine, then you can only achieve this objective by using an appropriate external brake as a safety-related measure.

A WARNING

UNINTENDED AXIS MOVEMENT

- Do not use the internal holding brake as a safety-related measure.
- Only use certified external brakes as safety-related measures.

Failure to follow these instructions can result in death, serious injury, or equipment damage.

NOTE: The drive does not provide its own safety-related output to connect an external brake to use as a safety-related measure.

Unintended Restart

To help avoid unintended restart of the motor after restoration of power (for example, after power outage), the parameter P2-68 must be set to "X=0". A controlled restart must be managed externally from the drive, note that the external management itself must not trigger an unintended restart.

WARNING

UNINTENDED EQUIPMENT OPERATION

Set parameter P2-68 setting X to 0 (zero) if the automatic enabling of the power stage presents hazards in your application.

Failure to follow these instructions can result in death, serious injury, or equipment damage.

Degree of Protection When the Safety Function Is Used

You must ensure that conductive substances cannot get into the product (pollution degree 2). Conductive substances may cause the safety function to become inoperative.

INOPERABLE SAFETY FUNCTION

Ensure that conductive substances (water, contaminated or impregnated oils, metal shavings, etc.) cannot get into the drive.

Failure to follow these instructions can result in death, serious injury, or equipment damage.

Protected Cable Installation

If short circuits or other wiring errors such as a cross fault between STO inputs can be expected in connection with safety-related signals, and if these short circuits or other wiring errors are not detected by upstream devices, protected cable installation as per ISO 13849-2 is required.

ISO 13849-2 describes protected cable installation for cables for safety-related signals. The cables for the safety function STO must be protected against external voltage. A shield with ground connection helps to keep external voltage away from the cables for the signals of the safety function STO.

- Use shielded cables for the signals of the safety function STO.
- Do not use the cable for the signals of the safety function STO for other signals.
- Connect one end of the shield.
- When daisychaining the signals of the safety function STO, connect the shield to the equipotential grounding plane associated to the drives.

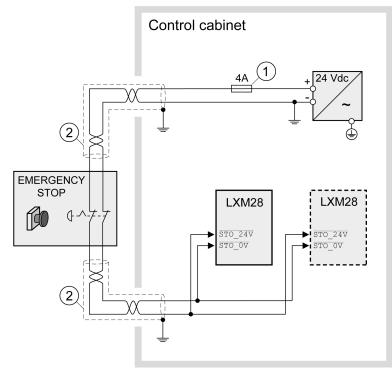
Hazard and Risk Analysis

You must conduct, or ensure that your OEM, system integrator, or anyone responsible for the development of the application containing the equipment indicated in the present document conducts a hazard and risk analysis of the entire system. The results of the analysis must be taken into account in the application of the safety function.

The type of circuit resulting from the analysis may differ from any application examples provided in the present document or any supplementary documents concerning this equipment. Additional safety components may be required. The results of the hazard and risk analysis have priority over any other design considerations. Pay particular attention in conforming to any safety information, different electrical requirements, and normative standards that would apply to your system.

A WARNING

UNINTENDED EQUIPMENT OPERATION


- Perform a hazard and risk analysis to determine the appropriate safety integrity level, and any other safety requirements, for your specific application based on all the applicable standards.
- Ensure that the hazard and risk analysis is conducted and respected according to EN/ISO 12100 during the design of your machine.

Failure to follow these instructions can result in death, serious injury, or equipment damage.

Application Examples STO

Example of Category 0 Stop

Use without EMERGENCY STOP safety relay module, category 0 stop.

- 1 If the maximum output current of the 24 V power supply exceeds 4 A, a 4 A slow-blow fuse is required.
- 2 Grounded shielded cable for wiring out of the control cabinet.

A fault exclusion is required such that it is not possible to short circuit the STO by another voltage carrying line. For the STO Cables defined by EN 61800-5-2:2007 Table D.1 or EN 61800-5-2:2017 with reference to ISO 13849-1 Table D.4.: For the required fault exclusion the cables must be permanently connected (fixed) and protected against external damage, for example by cable ducting or armored cables (steel jacket or ridged shielding).

For further information on STO wiring, refer to Connection of STO (CN9) (see page 161)

NOTE: The internal DC power supply of the drive is only to be used to deactivate the safety function STO via the jumper supplied with the drive.

A WARNING

UNINTENDED EQUIPMENT OPERATION

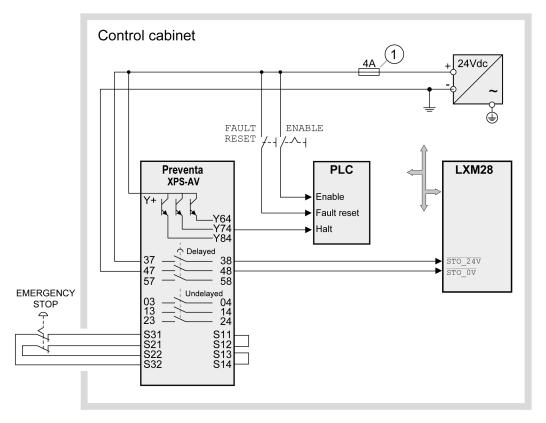
- Remove the jumpers connected to the STO power connector (CN9) only if you intend to use the STO safety-related function for your application.
- Use only an external PELV 24 Vdc power supply unit when applying the safety-related STO function.

Failure to follow these instructions can result in death, serious injury, or equipment damage.

In this example, when an EMERGENCY STOP is activated, it leads to a category 0 stop:

The power stage is immediately disabled via the inputs STO_24V and STO_0V of the safety function STO. Power can no longer be supplied to the motor. If the motor is not already at a standstill when the STO is triggered, it decelerates under the salient physical forces (gravity, friction, etc.) active at the time until presumably coasting to a standstill.

UNINTENDED EQUIPMENT OPERATION


Install a dedicated service brake if coasting does not meet the deceleration requirements of your application.

Failure to follow these instructions can result in death, serious injury, or equipment damage.

If the coasting of the motor and its potential load is unsatisfactory as determined by your risk and hazard analysis, an external service brake may also be required. Refer to Holding Brake and Safety Function STO *(see page 114).*

Example of Category 1 Stop

Use with EMERGENCY STOP safety relay module, category 1 stop. Example of category 1 stop with external Preventa XPS-AV EMERGENCY STOP safety relay module.

1 If the maximum output current of the 24 V power supply exceeds 4 A, a 4 A slow-blow fuse is required.

For more information on STO wiring, see chapter Connection of STO (CN9) (see page 161)

In this example, when an EMERGENCY STOP is activated, it leads to a category 1 stop:

- The safety relay module requests an immediate stop (undelayed) of the drive via the logic controller (Halt). The logic controller takes the configured or programmed action to instruct the drive to make a decelerated stop.
- The power stage is disabled via the inputs STO_24V and STO_0V of the safety function STO after the delay time set in the EMERGENCY STOP safety relay module has elapsed. Power can no longer be supplied to the motor. If the motor is not already at a standstill when safety function STO is triggered when the delay time has elapsed, it decelerates under the salient physical forces (gravity, friction, etc.) active at the time until presumably coasting to a standstill.

If the coasting of the motor and its potential load is unsatisfactory as determined by your risk and hazard analysis, an external service brake may also be required. Refer to Holding Brake and Safety Function STO *(see page 114).*

A WARNING

UNINTENDED EQUIPMENT OPERATION

Install a dedicated service brake if coasting does not meet the deceleration requirements of your application.

Failure to follow these instructions can result in death, serious injury, or equipment damage.

NOTE: The specified minimum current and the permissible maximum current of the relay outputs of the EMERGENCY STOP safety relay module must be respected.

Section 7.6 Rating the Braking Resistor

What Is in This Section?

This section contains the following topics:

Торіс	Page
Rating the Braking Resistor	119
Internal Braking Resistor	120
External Braking Resistors	121

Rating the Braking Resistor

Braking resistors are required for dynamic applications. During deceleration, the kinetic energy is transformed into electrical energy in the motor. The electrical energy increases the DC bus voltage. The braking resistor is activated when the defined threshold value is exceeded. The braking resistor transforms electrical energy into heat. If highly dynamic deceleration is required, the braking resistor must be well adapted to the system. External driving forces acting on the motor can cause high currents to be regenerated and supplied back to the drive.

FIRE DUE TO EXTERNAL DRIVING FORCES ACTING ON MOTOR

Verify that no external forces can act on the motor that will exceeded the capacity of the braking resistor.

Failure to follow these instructions will result in death or serious injury.

An insufficiently rated braking resistor can cause overvoltage on the DC bus. Overvoltage on the DC bus causes the power stage to be disabled. The motor is no longer actively decelerated.

WARNING

UNINTENDED EQUIPMENT OPERATION

- Verify that the braking resistor has a sufficient rating by performing a test run under maximum load conditions.
- Verify that the parameter settings for the braking resistor are correct.

Failure to follow these instructions can result in death, serious injury, or equipment damage.

If multiple drives are connected via a common DC bus, this affects all motors. For further information, refer to Common DC bus *(see page 105)*.

An external braking resistor *(see page 93)* is required for applications in which the motor must be decelerated quickly and the internal braking resistor cannot absorb the excess braking energy.

Internal Braking Resistor

Introduction

The drive has an internal braking resistor. If the internal braking resistor is insufficient for the dynamics of the application, one or more external braking resistors must be used.

The resistance values for external braking resistors must not be below the specified minimum resistance. If an external braking resistor is activated by using the appropriate parameter, the internal braking resistor is deactivated.

LXM28S····M3X	Unit	UA5, U01, U02, U04	U07	U10, U15	U20	U30, U45	
Resistance value of internal braking resistor	Ω	100	40			22	
Continuous power internal braking resistor P_{PR}	W	60		60		100	
Peak energy E _{CR} ⁽¹⁾	Ws	152		380		691	
External braking resistor minimum		2	25 15			8	
External braking resistor maximum ⁽²⁾		50			25		
Maximum continuous power external braking resistor	W	W 640		1000	1500	2500	
Switch-on voltage braking resistor				390			
Capacitance of the internal capacitors	μF	μF 820 1640 211		2110	3280		
Energy absorption of internal capacitors E_{var} at nominal voltage 230 V +10%	Ws	8.	87	17.76	22.82	35.51	

(1) Parameter P1-71 is set to 100 ms.

(2) The maximum specified braking resistor can derate the peak power of the device. Depending on the application, it is possible to use a greater ohm resistor.

External Braking Resistors

Introduction

An external braking resistor is required for applications in which the motor must be decelerated quickly and the internal braking resistor cannot absorb the excess braking energy. The temperature of the braking resistor may exceed 250 °C (482 °F) during operation.

HOT SURFACES

- Ensure that it is not possible to make any contact with a hot braking resistor.
- Do not allow flammable or heat-sensitive parts in the immediate vicinity of the braking resistor.
- Verify that the heat dissipation is sufficient by performing a test run under maximum load conditions.

Failure to follow these instructions can result in death, serious injury, or equipment damage.

VW3A760•	Unit	1R•• ⁽¹⁾	2R••	3R••	4R•• ⁽¹⁾	5R••	6R••	7R•• ⁽¹⁾	
Resistance	Ω	10		27			72		
Continuous power	W	400	100	200	400	100	200	400	
Maximum time in braking at 115 V / 230 V	S	0.72	0.552	1.08	2.64	1.44	3.72	9.6	
Peak power at 115 V / 230 V	kW	18.5		6.8			2.6		
Maximum peak energy at 115 V / 230 V	Ws	13300	3800	7400	18100	3700	9600	24700	
Degree of protection	-	IP 65							
(1) Resistors with a continuous power of 400 W are not UL/CSA-approved.									

VW3A77•	Unit	04	05
Resistance	Ω	15	10
Continuous power	W	10	00
Maximum time in braking at 115 V / 230 V	s	3.5	1.98
Peak power at 115 V / 230 V	kW	12.3	18.5
Maximum peak energy at 115 V / 230 V	Ws	43100	36500
Degree of protection	-	IP	20

Section 7.7 Monitoring Functions

Monitoring Functions

Overview

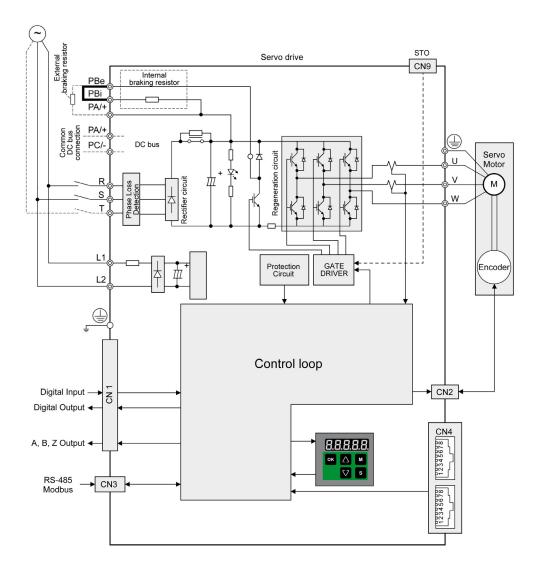
The monitoring functions of the drive can be used to monitor movements and to monitor internal signals. These monitoring functions are not safety-related functions.

The following monitoring functions are available:

Monitoring function	Task
Data connection	Monitors data connection for interruption
Limit switch signals	Monitors for permissible movement range
Position deviation	Monitors for difference between actual position and reference position
Motor overload	Monitors for excessively high current in the motor phases
Overvoltage and undervoltage	Monitors for overvoltage and undervoltage of the power stage supply and the DC bus
Overtemperature	Monitors the drive for overtemperature
Encoder overtemperature	Monitors the encoder for overtemperature
Overvoltage and undervoltage	Monitors the logic supply and power stage supply for permissible voltage range
Overvoltage at digital inputs	Monitors the digital inputs for overvoltage
Power supply encoder	Monitors the encoder supply for short circuit and permissible voltage range
Current limitation (Foldback)	Power limitation in the case of overloads for the motor, the output current, the output power, and the braking resistor.

Section 7.8 Configurable Inputs and Outputs

Configurable Inputs and Outputs


Presentation

This drive has digital inputs and outputs that can be configured. The inputs and outputs have a defined default assignment depending on the operating mode. This assignment can be adapted to the requirements of the customer's installation.

For further details, refer to chapter Operation (see page 271).

Section 7.9 Wiring

General Wiring

Introduction

An engineering phase is mandatory prior to mechanical and electrical installation. For basic information, refer to Engineering *(see page 97)*.

A DANGER

INSUFFICIENT GROUNDING

- Use a protective ground conductor with at least 10 mm2 (AWG 6) or two protective ground conductors with the cross section of the conductors supplying the power terminals.
- Verify compliance with all local and national electrical code requirements as well as all other applicable regulations with respect to grounding of the entire drive system.
- Ground the drive system before applying voltage.
- Do not use conduits as protective ground conductors; use a protective ground conductor inside the conduit.
- Do not use cable shields as protective ground conductors.
- Keep foreign objects from getting into the product.
- Verify the correct seating of seals and cable entries in order to avoid contamination such as deposits and humidity.

Failure to follow these instructions will result in death or serious injury.

In the case of a ground error, the maximum permissible current in the motor phases may be exceeded.

▲ DANGER

FIRE CAUSED BY INCORRECT INSTALLATION

Use upstream, external ground error detection equipment (Residual Current Device / Ground Fault Circuit Interrupter).

Failure to follow these instructions will result in death or serious injury.

A WARNING

LOSS OF CONTROL

- The designer of any control scheme must consider the potential failure modes of control paths and, for certain critical control functions, provide a means to achieve a safe state during and after a path failure. Examples of critical control functions are emergency stop and overtravel stop, power outage and restart.
- Separate or redundant control paths must be provided for critical control functions.
- System control paths may include communication links. Consideration must be given to the implications of unanticipated transmission delays or failures of the link.
- Observe all accident prevention regulations and local safety guidelines.¹
- Each implementation of this equipment must be individually and thoroughly tested for proper operation before being placed into service.

Failure to follow these instructions can result in death, serious injury, or equipment damage.

¹ For additional information, refer to NEMA ICS 1.1 (latest edition), "Safety Guidelines for the Application, Installation, and Maintenance of Solid State Control" and to NEMA ICS 7.1 (latest edition), "Safety Standards for Construction and Guide for Selection, Installation and Operation of Adjustable-Speed Drive Systems" or their equivalent governing your particular location. Conductive foreign objects, dust or liquids may cause safety functions to become inoperative.

LOSS OF SAFETY FUNCTION CAUSED BY FOREIGN OBJECTS

Protect the system against contamination by conductive substances.

Failure to follow these instructions can result in death, serious injury, or equipment damage.

The metal surfaces of the product may exceed 65 °C (149 °F) (for bare metal) during operation.

WARNING

HOT SURFACES

- Avoid unprotected contact with hot surfaces.
- Do not allow flammable or heat-sensitive parts in the immediate vicinity of hot surfaces.
- Verify that the heat dissipation is sufficient by performing a test run under maximum load conditions.

Failure to follow these instructions can result in death, serious injury, or equipment damage.

ACAUTION

INOPERABLE EQUIPMENT DUE TO INCORRECT MAINS VOLTAGE CONNECTION

- Verify that you use the correct mains voltage; install a transformer, if necessary.
- Do not connect mains voltage to the output terminals (U, V, W).

Failure to follow these instructions can result in injury or equipment damage.

What Is in This Part?

This part contains the following chapters:

Chapter	Chapter Name	Page
8	Before Mounting	127
9	Drive Installation	131
10	Motor Installation	163
11	Verifying Installation	173

What Is in This Chapter?

This chapter contains the following topics:

Торіс	Page
Inspecting the Product	128
Scope of Supply	129

Inspecting the Product

Inspecting the Product

- Verify the product version by means of the type code on the nameplate. Refer to chapter Nameplate *(see page 36)* and chapter Type Code *(see page 37)*.
- Prior to mounting, inspect the product for visible damage.

Damaged products may cause electric shock or unintended equipment operation.

🗛 \Lambda DANGER

ELECTRIC SHOCK OR UNINTENDED EQUIPMENT OPERATION

- Do not use damaged products.
- Keep foreign objects (such as chips, screws or wire clippings) from getting into the product.

Failure to follow these instructions will result in death or serious injury.

Contact your local Schneider Electric representative if you detect any damage whatsoever to the products.

Scope of Supply

Drive

- Drive Lexium 28S
- Connector kit with 3 connectors for:
 - Power stage supply and logic supply
 - Braking resistor
 Including jumper between PBi and PBe
 - o Motor
- Plastic tool for opening the spring terminals (available for devices from 50 W to 1.5 kW)
- 4-pin connector for deactivating the safety function STO (CN9)
- Adhesive hazard labels in 5 languages (German, French, Italian, Spanish, Chinese)
- Instruction sheet for the product

Motor

- BCH2 servo motor
- BCH2•R: 2 eyebolts
- Information sheet for the product

Chapter 9 Drive Installation

What Is in This Chapter?

This chapter contains the following topics:

Торіс	Page	
Mechanical Installation Drive	132	
Electrical Installation Drive	135	
Connection Grounding Screw	137	
Connection I/O Interface (CN1)	138	
Connecting the Motor Encoder (CN2)	145	
Connection PC (CN3)	147	
Connection Fieldbus (CN4)	149	
Connection Logic Supply and Power Stage Supply (CN5)		
Connection DC Bus (CN6)	154	
Connection Braking Resistor (CN7)	155	
Connecting the Motor Phases (CN8)		
Holding Brake Connection		
Connection STO (CN9)	161	

Mechanical Installation Drive

A A DANGER

ELECTRIC SHOCK OR UNINTENDED EQUIPMENT OPERATION

- Keep foreign objects from getting into the product.
- Verify the correct seating of seals and cable entries in order to avoid contamination such as deposits and humidity.

Failure to follow these instructions will result in death or serious injury.

Conductive foreign objects, dust or liquids may cause safety functions to become inoperative.

WARNING

LOSS OF SAFETY FUNCTION CAUSED BY FOREIGN OBJECTS

Protect the system against contamination by conductive substances.

Failure to follow these instructions can result in death, serious injury, or equipment damage.

The metal surfaces of the product may exceed 70 °C (158 °F) during operation.

WARNING

HOT SURFACES

- Avoid unprotected contact with hot surfaces.
- Do not allow flammable or heat-sensitive parts in the immediate vicinity of hot surfaces.
- Verify that the heat dissipation is sufficient by performing a test run under maximum load conditions.

Failure to follow these instructions can result in death, serious injury, or equipment damage.

Attaching a Hazard Label with Safety Instructions

Included in the packaging of the drive are adhesive hazard labels in German, French, Italian, Spanish, and Chinese languages. The English version is affixed to the drive by the factory. If the country to which your final machine or process is to be delivered is other than English speaking:

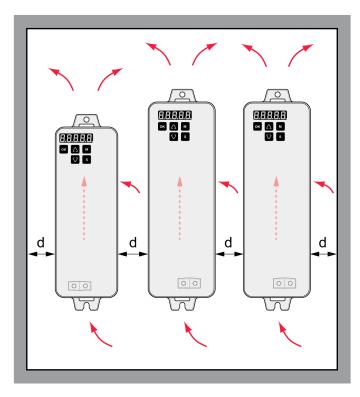
- Select the hazard label suitable for the target country. Respect the safety regulations in the target country.
- Attach the hazard label to the front of the device so that it is clearly visible.

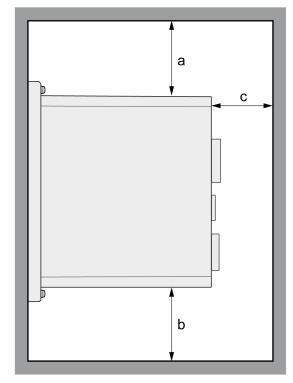
Control Cabinet

The control cabinet (enclosure) must have a sufficient size so that all devices and components can be permanently installed and wired in compliance with the EMC requirements.

The ventilation of the control cabinet must be sufficient to comply with the specified ambient conditions for the devices and components operated in the control cabinet.

Install and operate this equipment in a control cabinet rated for its intended environment and secured by a keyed or tooled locking mechanism.


Mounting Distances, Ventilation


When selecting the position of the device in the control cabinet, note the following:

- Mount the device in a vertical position (±10°). This is required for cooling the device.
- Adhere to the minimum installation distances for required cooling. Avoid heat accumulations.
- Do not mount the device close to heat sources.
- Do not mount the device on or near flammable materials.
- The heated airflow from other devices and components must not heat up the air used for cooling the device.

The connection cables of the devices are routed to the top and to the bottom. The minimum distances must be adhered to for air circulation and cable installation.

Mounting distances and air circulation

LXM28SUA5, U01, U02, U04, U07, U10, U15, U20, U30, U45

Distance	Unit	Value	
Free space a above the device	mm (in)	≥50 (≥1.97)	
Free space b	mm	≥50	
below the device	(in)	(≥1.97)	
Free space c	mm	≥60	
in front of the device ⁽¹⁾	(in)	(≥2.36)	
Free space d	mm	≥15	
between devices	(in)	(≥0.59)	
(1) The free space is strictly for observing proper ventilation and may not be sufficient for your wiring requirements.			

Mounting the Drive

For further information on the dimensions of the mounting holes, refer to chapter Dimensions *(see page 41).*

Painted surfaces may create electrical resistance or isolation. Before mounting the device to a painted mounting plate, remove all paint across a large area of the mounting points.

- Respect the ambient conditions in chapter Environmental Conditions (see page 39).
- Mount the device in a vertical position (±10°).

Electrical Installation Drive

Introduction

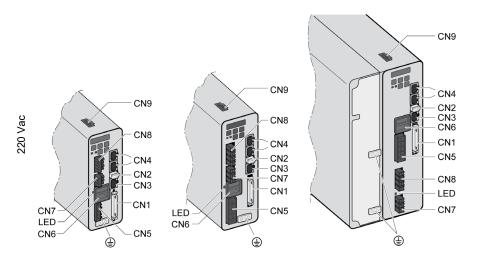
A A DANGER

INSUFFICIENT GROUNDING

- Use a protective ground conductor with at least 10 mm2 (AWG 6) or two protective ground conductors with the cross section of the conductors supplying the power terminals.
- Verify compliance with all local and national electrical code requirements as well as all other applicable regulations with respect to grounding of the entire drive system.
- Ground the drive system before applying voltage.
- Do not use conduits as protective ground conductors; use a protective ground conductor inside the conduit.
- Do not use cable shields as protective ground conductors.
- Keep foreign objects from getting into the product.
- Verify the correct seating of seals and cable entries in order to avoid contamination such as deposits and humidity.

Failure to follow these instructions will result in death or serious injury.

Direct current can be introduced in the protective ground conductor of this drive. If a residual current device (RCD / GFCI) or a residual current monitor (RCM) is used for protection against direct or indirect contact, the following specific types must be used:


WARNING

DIRECT CURRENT CAN BE INTRODUCED INTO THE PROTECTIVE GROUND CONDUCTOR

- Use a Type A Residual Current Device (RCD / GFCI) or a Residual Current Monitor (RCM) for singlephase drives connected to a phase and to the neutral conductor.
- Use a Type B Residual Current Device (RCD / GFCI) or a Residual Current Monitor (RCM) that has approval for use with frequency inverters and is sensitive to all types of current for three-phase drives and for single-phase drives not connected to a phase and the neutral conductor.

Failure to follow these instructions can result in death, serious injury, or equipment damage.

The entire installation procedure must be performed without voltage present.

LXM28SU20

LXM28SU30, U45

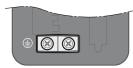
Item	Description	Refer to
CN1	Signal interface For connecting master controller or I/O signals.	Connection I/O Interface (CN1) (see page 138)
CN2	Connection for motor encoder	Connecting the Motor Encoder (CN2) (see page 145)
CN3	Modbus (commissioning interface) For connecting PC via converter TCSMCNAM3M002P	Connection PC (CN3) (see page 147)
CN4	2 connections for fieldbus SERCOS III For connecting master controller.	Connection Fieldbus (CN4) (see page 149)
CN5	Power stage supply (R,S,T) and logic supply (L1, L2)	Connection Logic Supply and Power Stage Supply (CN5) <i>(see page 151)</i>
CN6	DC bus connection	Connection DC bus (CN6) (see page 154)
LED	DC bus LED The LED is illuminated when mains voltage or internal charge are present. The DC bus LED is not an indicator of the absence of DC bus voltage.	-
CN7	Connection for external braking resistor	Connection braking resistor (CN7) (see page 155)
CN8	Motor phases connection (U, V, W, PE)	Connecting the motor phases (CN8) (see page 157)
CN9	Connection for safety function STO	Connection STO (CN9) (see page 161)

Connection Grounding Screw

This product has a leakage (touch) current greater than 3.5 mA. If the protective ground connection is interrupted, a hazardous leakage (touch) current may flow if the housing is touched.

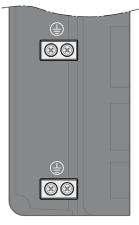
\Lambda 🗛 DANGER

INSUFFICIENT GROUNDING


- Use a protective ground conductor with at least 10 mm2 (AWG 6) or two protective ground conductors with the cross section of the conductors supplying the power terminals.
- Verify compliance with all local and national electrical code requirements as well as all other applicable regulations with respect to grounding of the entire drive system.
- Ground the drive system before applying voltage.
- Do not use conduits as protective ground conductors; use a protective ground conductor inside the conduit.
- Do not use cable shields as protective ground conductors.
- Keep foreign objects from getting into the product.
- Verify the correct seating of seals and cable entries in order to avoid contamination such as deposits and humidity.

Failure to follow these instructions will result in death or serious injury.

The central grounding screws of the product are located at the front side.


LXM28SUA5...U15

LXM28SU20

LXM28SU30, U45

- Use ring-type cable lugs or fork-type cable lugs.
- Connect the ground connection of the device to the equipotential ground plane of your system.

LXM28S	Unit	UA5, U01, U02, U04, U07, U10, U15, U20, U30, U45
Tightening torque of grounding screw	Nm (lb.in)	1.3 (11.5)
Screw type	-	M4 x 8 socket button head screw

Connection I/O Interface (CN1)

The I/O Interface (CN1) is a Sub-D 50-pin female connector. The following table describes the contacts of the connector:

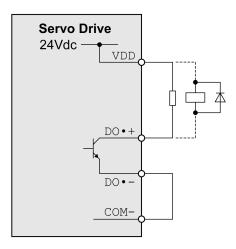
Pin	Signal	Meaning	Pin	Signal	Meaning
1	DO4+	Digital output 4	2	DO3-	Digital output 3
3	DO3+	Digital output 3	4	DO2-	Digital output 2
5	DO2+	Digital output 2	6	DO1-	Digital output 1
7	DO1+	Digital output 1	8	DI4-	Digital input 4
9	DI1-	Digital input 1	10	DI2-	Digital input 2
11	COM	Reference potential to DI1 DI8	12	-	Reserved
13	-	Reserved	14	-	Reserved
15	-	Reserved	16	-	Reserved
17	VDD	24 Vdc power supply (for external I/O)	18	-	Reserved
19	-	Reserved	20	-	Reserved
21	OA	ESIM channel A	22	/OA	ESIM channel A, inverted
23	/OB	ESIM channel B, inverted	24	/OZ	ESIM index pulse, inverted
25	OB	ESIM channel B	26	DO4-	Digital output 4
27	-	Reserved	28	-	Reserved
29	-	Reserved	30	DI8-	Digital input 8
31	DI7-	Digital input 7	32	DI6-	Digital input 6
33	DI5-	Digital input 5	34	DI3-	Digital input 3
35	-	Reserved	36	-	Reserved
37	-	Reserved	38	-	Reserved
39	-	Reserved	40	-	Reserved
41	-	Reserved	42	-	Reserved
43	-	Reserved	44	-	Reserved
45	COM-	Reference potential to VDD and OCZ	46	-	Reserved
47	COM-	Reference potential to VDD and OCZ	48	OCZ	ESIM index pulse Open collector output
49	COM-	Reference potential to VDD and OCZ	50	OZ	ESIM index pulse Line driver output

WARNING

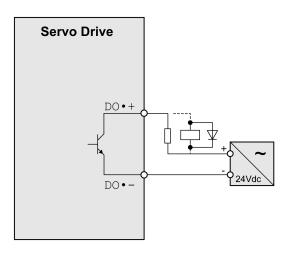
UNINTENDED EQUIPMENT OPERATION

Do not connect any wiring to reserved, unused connections, or to connections designated as No Connection (N.C.).

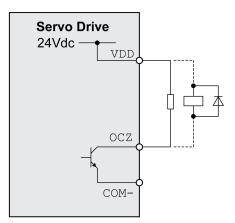
Failure to follow these instructions can result in death, serious injury, or equipment damage.

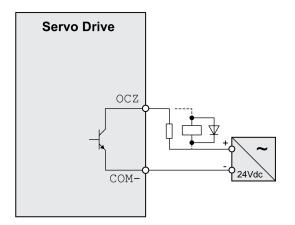

Inputs and Outputs Signals

The following inputs and outputs signals are available:


- Digital outputs (negative logic) (see page 139)
- Digital outputs (positive logic) (see page 141)
- Digital inputs (negative logic) (see page 142)
- Digital inputs (positive logic) *(see page 143)*
- Encoder output signal) (see page 144)

Wiring of the Digital Outputs (Negative Logic)


Example of digital outputs DO1 ... DO4 with internal power supply (negative logic):


Example of digital outputs DO1 ... DO4 with external power supply (negative logic):

Example of digital output OCZ with internal power supply (negative logic):

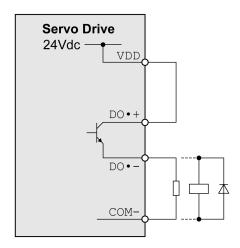
Example of digital output OCZ with external power supply (negative logic):

Inductive loads using DC voltages may damage the signal outputs. A protection circuit is required to protect the signal outputs against inductive loads.

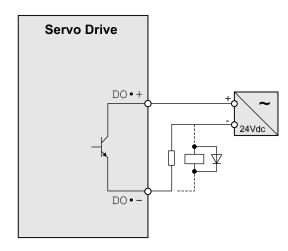
OUTPUT CIRCUIT DAMAGE DUE TO INDUCTIVE LOADS

Use an appropriate external protective circuit or device to reduce the inductive direct current load damage.

Failure to follow these instructions can result in injury or equipment damage.


A diode can be used to protect the signal outputs against inductive loads.

Use a diode with the following ratings:


- Reverse withstand voltage: voltage of signal output times 10
- Forward current: greater than the load current

Wiring of the Digital Outputs (Positive Logic)

Example of digital outputs DO1 ... DO4 with internal power supply (positive logic):

Example of digital outputs DO1 ... DO4 with external power supply (positive logic):

Inductive loads using DC voltages may damage the signal outputs. A protection circuit is required to protect the signal outputs against inductive loads.

ACAUTION

OUTPUT CIRCUIT DAMAGE DUE TO INDUCTIVE LOADS

Use an appropriate external protective circuit or device to reduce the inductive direct current load damage.

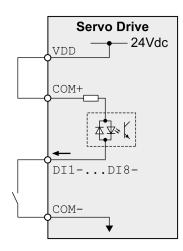
Failure to follow these instructions can result in injury or equipment damage.

A diode can be used to protect the signal outputs against inductive loads. Use a diode with the following ratings:

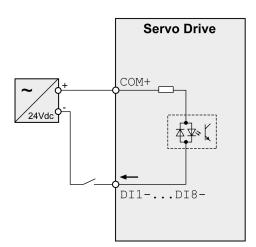
Reverse withstand voltage: voltage of signal output times 10

Forward current: greater than the load current

Wiring of the Digital Inputs (Negative Logic)


WARNING

UNINTENDED EQUIPMENT OPERATION

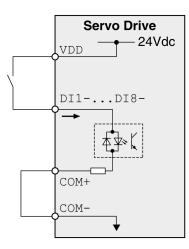

Do not connect an external, 24 Vdc power supply to the VDD connection of the I/O interface (CN1) connector.

Failure to follow these instructions can result in death, serious injury, or equipment damage.

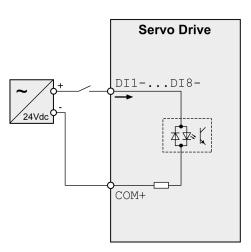
Use a relay or an open collector output (NPN transistor) for the input signal. Example of digital input (negative logic) with internal power supply:

Example of digital input (negative logic) with external power supply:

Wiring of the Digital Inputs (Positive Logic)

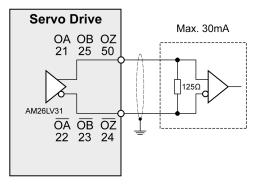


UNINTENDED EQUIPMENT OPERATION

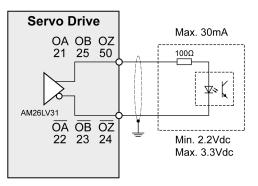

Do not connect an external, 24 Vdc power supply to the VDD connection of the I/O interface (CN1) connector.

Failure to follow these instructions can result in death, serious injury, or equipment damage.

Use a relay or an open collector output (PNP transistor) for the input signal. Example of digital input with internal power supply (positive logic):



Example of digital input with external power supply (positive logic):



Encoder Output Signal

Example of encoder output signal Line Driver.

Example of encoder output signal, high-speed optocoupler.

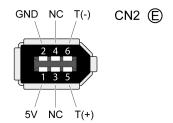
Connecting the Motor Encoder (CN2)

Function and Encoder Type

The motor encoder is an integrated, high-resolution absolute encoder. It provides the device with information on the motor position (analog and digital).

Compatibility between Drive and Motor is defined in the Drive / Motor combinations table (see page 23).

Cable Specifications


For further information, refer to chapter Cables (see page 102).

Shield:	Required, both ends grounded
Twisted Pair:	Required
PELV:	Required
Cable composition:	10 x 0.13 mm ² (10 x AWG 24)
Maximum cable length:	20 m (65.6 ft)
Special characteristics:	Fieldbus cables are not suitable for connecting encoders.

NOTE: Use pre-assembled cables to reduce the risk of wiring errors.

Wiring Diagram

Connection assignment motor encoder (CN2)

The motor encoder interface (CN2) is a 6-pin connector. The following table describes the contacts of the connector:

Pin	Signal	Color ⁽¹⁾	Meaning	Motor military connector	Motor plastic connector	I/O
5	T+	Blue (BU)	Serial communication	A	1	I/O
6	T-	Blue/Black (BU/BK)	Senal communication	В	4	1/0
1	+5 V	Red, red/white (RD, RD/WH)	5 V encoder supply	S	7	Ι
2	GND	Black, black/white (BK, BK/WH)	Reference potential for encoder supply	R	8	0
3, 4	N.C.	Reserved	-	-	-	-
(1) Color information relates to the cables available as accessories.						

WARNING

UNINTENDED EQUIPMENT OPERATION

Do not connect any wiring to reserved, unused connections, or to connections designated as No Connection (N.C.).

Failure to follow these instructions can result in death, serious injury, or equipment damage.

Connecting the Motor Encoder

- Verify that wiring, cables, and connected interface meet the PELV requirements.
- Note the information on EMC, see chapter Electromagnetic Compatibility (EMC) *(see page 98)*. Use equipotential bonding conductors for equipotential bonding.
- Connect the connector to
 - O CN2 Encoder if using a motor equipped with a single turn encoder.
 - o the battery compartment if using a motor equipped with a multi turn encoder.
- Verify that the connector locks snap in properly at the housing.

Route the cables from the motor and the encoder to the device (starting from the motor). Due to the preassembled connectors, this direction is often faster and easier.

Connecting the Battery Compartment When Using a Motor Equipped With a Multi Turn Encoder

The battery compartment is connected to CN2 Encoder, between the drive and the motor encoder cable.

NOTE: The multi turn counting is preserved through power down by the external battery located into the battery compartment.

For further information on the battery replacement, refer to the maintenance of the motor *(see page 325)*. For LXM28S•••UA5 ...U45, the battery compartment should be installed on a baseplate near the drive

Connection PC (CN3)

Function

The commissioning interface (CN3) is an RS-485 connection, supported on an RJ45 connector. If the PC used to connect to the commissioning interface has an RS-485 port, typically supported on a DB9 connector, you can connect it to this connector (RJ45 / DB9 cable). Otherwise, you can use the USB port of the PC with a USB to RS-485 converter.

The commissioning interface may only be used for a point-to-point connection, but not for a point-tomultipoint connection (RS-485 network).

If the commissioning interface at the product is directly connected to an Ethernet interface at the PC, the PC interface may be damaged and rendered inoperable.

INOPERABLE EQUIPMENT

Do not directly connect an Ethernet interface to the commissioning interface of this product.

Failure to follow these instructions can result in equipment damage.

Connecting a PC

A PC with the commissioning software LXM28 DTM Library can be connected for commissioning. The PC is connected via a bidirectional USB/RS485 converter, refer to Accessories and Spare Parts *(see page 88)*.

Cable Specifications

For further information, refer to chapter Cables (see page 102).

Shield:	Required, both ends grounded
Twisted Pair:	Required
PELV:	Required
Cable composition:	8 x 0.25 mm ² (8 x AWG 22)
Maximum cable length:	100 m (328 ft)
Special characteristics:	-

Wiring Diagram

Wiring diagram PC with commissioning software

CN3 Modbus

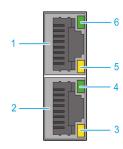
The commissioning interface (CN3) is an RJ45 connector. The following table describes the contacts of the connector:

Pin	Signal	Meaning	I/O
1 3	-	Reserved	-
4	MOD_D1 ⁽¹⁾	Bidirectional transmit/receive signal	RS-485
5	MOD_D0 ⁽¹⁾	Bidirectional transmit/receive signal, inverted	level
6 7	-	Reserved	-
8 and connector housing	SHLD	Functional ground / shield - internally connected to ground potential of the drive	-
(1) No polari	zation.		

WARNING

UNINTENDED EQUIPMENT OPERATION

Do not connect any wiring to reserved, unused connections, or to connections designated as No Connection (N.C.).


Failure to follow these instructions can result in death, serious injury, or equipment damage.

NOTE: Verify that the connector locks snap in properly at the housing.

Connection Fieldbus (CN4)

SERCOS III LED Diagnostic

The following figure shows the dual port/RJ45 connector

Item	Description
1	(X1) RJ45 connector
2	(X2) RJ45 connector
3	 Link LED: Off: No connection, for example no cable connected or connected device has no power Yellow ON: Connection established
4	Activity LED: • Green Flashing 2 Hz for 1 sec then Off: SERCOS III Phase is NRT • Green ON: SERCOS III Communication phase 0 to 3 active • Green Flashing 4 Hz: Communication phase 4 active
5	Link LED: • Off: No connection, for example no cable connected or connected device has no power • Yellow ON: Connection established
6	 Activity LED: Green Flashing 2 Hz for 1 sec then Off: SERCOS III Phase is NRT Green ON: SERCOS III Communication phase 0 to 3 active Green Flashing 4 Hz: Communication phase 4 active

Pin Assignment

The following figure presents the RJ45 connector pin assignment:

The table provides the pin out details of each RJ45 connector:

Pin	RJ45 signal	Description
1	TD+	Transmit data +
2	TD-	Transmit data -
3	RD+	Receive data +
4	-	Not connected
5	-	Not connected
6	RD-	Receive data -
7	-	Not connected
8	-	Not connected

Cable Specification

- Minimum Cat 5e
- Use equipotential bonding conductors
- Shield: both ends grounded
- Twisted-pair cable
- Cable: 8 x 0.25 mm² (8x AWG 22)
- Use pre-assembled cables to reduce the wiring mistakes
- Verify that wiring, cables, and connected interfaces meet the PELV requirements
- Maximum cable length between devices = 100 m (328 ft)

Use the Schneider Electric cables (see page 90).

Connection Logic Supply and Power Stage Supply (CN5)

This product has a leakage (touch) current greater than 3.5 mA. If the protective ground connection is interrupted, a hazardous leakage (touch) current may flow if the housing is touched.

🚯 🕼 DANGER

INSUFFICIENT GROUNDING

- Use a protective ground conductor with at least 10 mm2 (AWG 6) or two protective ground conductors with the cross section of the conductors supplying the power terminals.
- Verify compliance with all local and national electrical code requirements as well as all other applicable regulations with respect to grounding of the entire drive system.
- Ground the drive system before applying voltage.
- Do not use conduits as protective ground conductors; use a protective ground conductor inside the conduit.
- Do not use cable shields as protective ground conductors.
- Keep foreign objects from getting into the product.
- Verify the correct seating of seals and cable entries in order to avoid contamination such as deposits and humidity.

Failure to follow these instructions will result in death or serious injury.

WARNING

INSUFFICIENT PROTECTION AGAINST OVERCURRENT

- Use the external fuses specified in chapter "Technical Data".
- Do not connect the product to a supply mains whose short-circuit current rating (SCCR) exceeds the value specified in the chapter "Technical Data".

Failure to follow these instructions can result in death, serious injury, or equipment damage.

WARNING

INCORRECT MAINS VOLTAGE

Verify that the product is approved for the mains voltage before applying power and configuring the product.

Failure to follow these instructions can result in death, serious injury, or equipment damage.

The equipment, drives and motors, are intended for industrial use and may only be operated with a permanently installed connection.

Prior to connecting the equipment, verify the approved mains types, see chapter Electrical Data Drive *(see page 43)*.

Cable Specifications

Respect the required cable properties in chapter Cables *(see page 102)* and in chapter Electromagnetic Compatibility (EMC) *(see page 98)*.

Shield:	-
Twisted Pair:	-
PELV:	-
Cable composition:	The conductors must have a sufficiently large cross section so that the fuse at the mains connection can trip if required.
Maximum cable length:	3 m (9.84 ft)
Special characteristics:	-

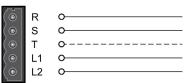
Properties of the Terminals

The terminals are approved for stranded conductors and solid conductors. Use cable ends (ferrules), if possible.

LXM28S	Unit	UA5, U01, U02, U04, U07, U10, U15	U20, U30, U45
Connection cross section	mm ²	0.75 2.5	0.75 6
	(AWG)	(20 14)	(20 10)
Stripping length	mm	8 9	15
	(in)	(0.31 0.35)	(0.59)

Prerequisites for Connecting the Logic Supply

Note the following information:

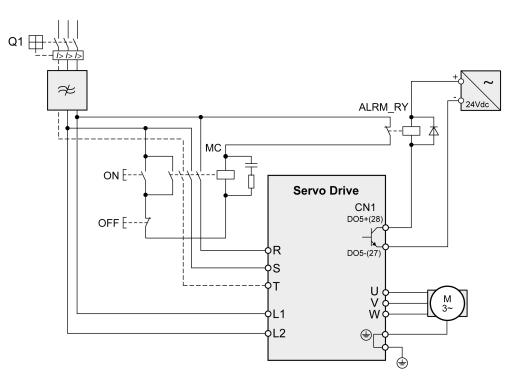

- Use upstream mains fuses. For further information about fuse types and fuse ratings, refer to chapter Electrical Data Drive (see page 43).
- Note the EMC requirements. Where required, use surge arresters and mains reactors.
- If the length of the mains cable between the external mains filter and the drive exceeds 200 mm (7.87 in), it must be shielded and grounded at both ends.
- For a UL-compliant design, refer to chapter Conditions for UL 508C (see page 29).

Connection Logic Supply

Wiring diagram logic supply LXM28S ···· M3X

UA5, U01, U02, U04, U07, U10, U15, U20, U30, U45

~220V



Connection	Meaning
R, S, (T)	Power stage supply
L1, L2	Logic supply

- Verify the type of mains. For the approved types of mains, refer to chapter Electrical Data Drive *(see page 43).*
- Connect the mains cable.
- Verify that the connector locks snap in properly at the housing.

Wiring Diagram for Devices That Can Be Connected Via a Single-Phase or Three Phases

Drives with a continuous power from 50 W to 1500 W can be connected via a single-phase or via three phases. Drives with a continuous power of more than 1500 W must be connected via three phases. Wiring diagram for devices that can be connected via a single-phase or three-phases

Connection DC Bus (CN6)

Incorrect use of the DC bus may permanently damage the drives either immediately or over time.

INOPERABLE SYSTEM COMPONENTS AND LOSS OF CONTROL

Verify that all requirements for using the DC bus are met.

Failure to follow these instructions can result in death, serious injury, or equipment damage.

This and other important information can be found in the "LXM28 - Common DC bus - Application note" *(see page 12).* If you wish to take advantage of DC bus sharing, you must first consult the LXM28 - Common DC bus - Application note for important safety-related information.

Requirements for Use

The requirements and limit values for parallel connection of multiple devices via the DC bus can be found on <u>www.schneider-electric.com</u> in the form of an application note (refer to chapter Related Documents (see page 12)).

Connection Braking Resistor (CN7)

An insufficiently rated braking resistor can cause overvoltage on the DC bus. Overvoltage on the DC bus causes the power stage to be disabled. The motor is no longer actively decelerated.

A WARNING

UNINTENDED EQUIPMENT OPERATION

- Verify that the braking resistor has a sufficient rating by performing a test run under maximum load conditions.
- Verify that the parameter settings for the braking resistor are correct.

Failure to follow these instructions can result in death, serious injury, or equipment damage.

Internal Braking Resistor

A braking resistor is integrated in the device to absorb braking energy. The drive is shipped with the internal braking resistor active.

External Braking Resistor

An external braking resistor is required for applications in which the motor must be decelerated quickly and the internal braking resistor cannot absorb the excess braking energy.

Selection and rating of the external braking resistor are described in chapter Rating the Braking Resistor *(see page 118).* For suitable braking resistors, refer to chapter Accessories and Spare Parts *(see page 93).*

Cable Specifications

For further information, refer to chapter Cables (see page 102).

Shield:	Required, both ends grounded
Twisted Pair:	-
PELV:	-
Cable composition:	Minimum conductor cross section: Same cross section as logic supply. The conductors must have a sufficiently large cross section so that the fuse at the mains connection can trip if required.
Maximum cable length:	3 m (9.84 ft)
Special characteristics:	Temperature resistance

The braking resistors listed in chapter Accessories and Spare Parts *(see page 93)* have a 3-wire, temperature-resistant cable with a length of 0.75 m (2.46 ft) to 3 m (9.84 ft).

Properties of the Terminals (CN7) LXM28SUA5, U01, U02, U04, U07, U10, U15, U20, U30, U45

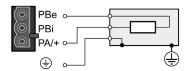
The terminals are approved for stranded conductors and solid conductors. Use cable ends (ferrules), if possible.

LXM28S	Unit	UA5, U01, U02, U04, U07, U10, U15	U20, U30, U45
Connection cross section	mm ²	0.75 2.5	0.75 6
	(AWG)	(20 14)	(20 10)
Stripping length	mm	8 9	15
	(in)	(0.31 0.35)	(0.59)

The removable terminals are approved for fine-stranded conductors and solid conductors. Respect the maximum permissible connection cross section. Take into account the fact that cable ends (ferrules) increase the conductor cross section.

NOTE: If you use cable ends (ferrules), use only cable ends (ferrules) with collars for these terminals.

Wiring Diagram


Wiring diagram internal braking resistor activated

LXM28SUA5...U45

Wiring diagram external braking resistor

LXM28SUA5...U45

Connecting the External Braking Resistor

- Remove power from all supply voltages. Respect the safety instructions concerning electrical installation.
- Verify that no voltages are present.
- Ground the ground connection (PE) of the braking resistor.
- Connect the external braking resistor to the device.
- Connect a large surface area of the cable shield to the central grounding point of your system.

ELECTRIC SHOCK, EXPLOSION OR ARC FLASH

- Disconnect all power from all equipment including connected devices prior to removing any covers or doors, or installing or removing any accessories, hardware, cables, or wires.
- Place a "Do Not Turn On" or equivalent hazard label on all power switches and lock them in the nonenergized position.
- Wait 15 minutes to allow the DC bus capacitors to properly discharge.
- Measure the DC bus voltage between the DC bus terminals (PA/+ and PC/-) to verify that DC bus capacitors are properly discharged (voltage less than 42.4 Vdc).
- Do not assume that the DC bus discharged properly when the DC bus LED is off.
- Block the motor shaft to prevent rotation prior to performing any type of work on the drive system.
- Do not create a short-circuit across the DC bus terminals or the DC bus capacitors.
- Replace and secure all covers, accessories, hardware, cables, and wires and confirm that a proper ground connection exists before applying power to the unit.
- Use only the specified voltage when operating this equipment and any associated products.

Failure to follow these instructions will result in death or serious injury.

Connecting the Motor Phases (CN8)

High voltages may be present at the motor connection. The motor itself generates voltage when the motor shaft is rotated. AC voltage can couple voltage to unused conductors in the motor cable.

A A DANGER

ELECTRIC SHOCK

- Verify that no voltage is present prior to performing any type of work on the drive system.
- Block the motor shaft to prevent rotation prior to performing any type of work on the drive system.
- Insulate both ends of unused conductors of the motor cable.
- Supplement the motor cable grounding conductor with an additional protective ground conductor to the motor housing.
- Verify compliance with all local and national electrical code requirements as well as all other applicable regulations with respect to grounding of all equipment.

Failure to follow these instructions will result in death or serious injury.

Incorrect wiring of the motor connection may cause live wires to be exposed outside of the motor connector below the HMI.

A A DANGER

ELECTRIC SHOCK CAUSED BY INCORRECT WIRING

- Verify that the protective ground connection (PE) of the device is connected to ground.
- Do not remove the cable end (ferrule) from the protective ground terminal (PE) of the motor connector until you are prepared to wire the protective ground conductor of the motor to the protective ground terminal (PE) of the motor connector.
- Verify that no bare metal of the wires is exposed outside of the motor connector housing when wiring the motor connector.
- Regularly, as part of a maintenance plan, assure that the motor wires are secured in the terminals of the motor connector due to vibration or other influences.

Failure to follow these instructions will result in death or serious injury.

Drive systems may perform unintended movements if unapproved combinations of drive and motor are used. Even if motors are similar, different adjustment of the encoder system may be a source of hazards. Even if the connectors for motor connection and encoder connection match mechanically, this does not imply that the motor is approved for use.

A WARNING

UNINTENDED MOVEMENT

Only use approved combinations of drive and motor.

Failure to follow these instructions can result in death, serious injury, or equipment damage.

Compatibility between Drive and Motor is defined in the Drive / Motor combinations table (see page 23).

Route the cables from the motor and the encoder to the device (starting from the motor). Due to the preassembled connectors, this direction is often faster and easier.

Cable Specifications

For further information, refer to chapter Cables (see page 102).

Shield:	Required, both ends grounded
Twisted Pair:	-
PELV:	The wires for the holding brake must be PELV-compliant.
Cable composition:	3 wires for motor phases The conductors must have a sufficiently large cross section so that the fuse at the mains connection can trip if required.
Maximum cable length:	Depends on the required limit values for conducted interference. Category C3: 20 m (65.6 ft)
Special characteristics:	Contains wires for the temperature sensor

Note the following information:

- You may only connect the original motor cable.
- If you do not connect the wires at the motor end, you must isolate each wire individually (inductive voltages).
- Use pre-assembled cables to reduce the risk of wiring errors.

Properties of the Terminals (CN8)

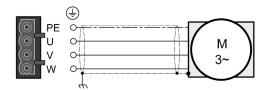
The terminals are approved for stranded conductors and solid conductors. Use cable ends (ferrules), if possible.

LXM28S	Unit	UA5, U01, U02, U04, U07, U10, U15	U20, U30, U45	
Connection cross section	mm ²	0.75 2.5	0.75 6	
	(AWG)	(20 14)	(20 10)	
Stripping length	mm	8 9	15	
	(in)	(0.31 0.35)	(0.59)	

Monitoring

The drive monitors the motor phases for:

- Short circuit between the motor phases
- Short circuit between the motor phases and ground (Not applicable for LXM28SUA5 ... U07 M3X.)


Short circuits between the motor phases and the DC bus, the braking resistor, or the holding brake wires are not detected.

When a short-circuit is detected, power is removed by disabling the power stage. The firmware reports error AL001. Once you have resolved the issue of the over-current, you can re-enable the power stage of the drive.

NOTE: After three successive unsuccessful retries of resetting the power stage, the reset will be blocked for a minimum of one minute.

Wiring Diagram Motor

LXM28SUA5...U45

Connection	Meaning	Color ⁽¹⁾ (IEC 757)			
U		Red (RD)			
V	Motor phase	White (WH)			
W		Black (BK)			
PE Protective ground conductor		Green/Yellow (GN/YE)			
(1) Color information relates to the cables available as accessories.					

Connecting the Motor Cable

- Note the information on EMC, refer to chapter Electromagnetic Compatibility (EMC) (see page 98).
- Connect the motor phases and protective ground conductor to CN8. Verify that the connections U, V, W, and PE (ground) match at the motor and the device.
- If the product is equipped with removable connectors, Verify that the connector locks snap in properly at the housing.

Holding Brake Connection

The holding brake in the motor has the task of holding the motor position when the power stage is disabled. The holding brake is not a safety function and not a service brake.

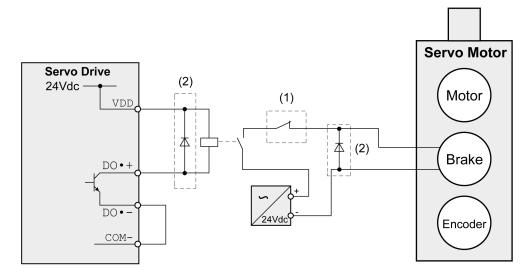
A motor with a holding brake requires a suitable holding brake controller which releases the brake when the power stage is enabled and locks the motor shaft when the power stage is disabled.

The holding brake is connected to one of the digital outputs **DO1**...**DO4**. The signal output function BRKR must be assigned to the digital output to which the holding brake is connected. The signal output function BRKR releases the holding brake when the power stage is enabled. When the power stage is disabled, the holding brake is reapplied.

The factory settings for the signal outputs depend on the operating mode, see chapter Setting the Digital Signal Outputs *(see page 276)*. Depending on the operating mode, the signal output function is either assigned to the digital output DO4 or not assigned at all. When you reset the drive to the factory settings with P2-08 = 10, the assignments of the signal output functions are also reset to the factory settings.

When you switch the operating mode using the parameter P1-01 or the signal input functions V-Px and V-T, the signal output functions may also be reset to the factory settings for the new operating mode. If you use the setting D = 0 of parameter P1-01, the assignment of the signal output functions remains the same in the new operating mode.

Resetting the drive to the factory settings or switching the operating mode can modify the assignment of the signal output functions in such a way that the holding brake is released unintentionally.


WARNING

UNINTENDED EQUIPMENT OPERATION

- Verify that the digital output to which you have assigned the signal output function BRKR has been
 properly wired and configured.
- Before switching to a different operating mode, verify that the signal output function BRKR for the holding brake will not be assigned to an incorrect digital output in the new operating mode.
- Before resetting the drive to the factory settings, verify that the signal output function BRKR for the holding brake will be assigned to the correct digital output or reassign the signal output function BRKR after the factory reset according to the requirements of your application prior to starting the system.
- In all cases, take all necessary measures to prevent unintended movements of the load caused by a release of the holding brake.

Failure to follow these instructions can result in death, serious injury, or equipment damage.

Example (negative logic) of wiring the holding brake

Item	Description
1	Triggering an EMERGENCY STOP should apply the holding brake
2	Flyback diode

Connection STO (CN9)

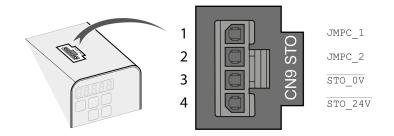
For important safety information, refer to the chapter Safety Function STO (Safe Torque Off) *(see page 106)* for the requirements for using the safety function STO.

Cable Specifications - Cables Outside of Control Cabinet

Shield:	Yes
Twisted Pair:	Yes
PELV:	Required
Minimum conductor cross section:	2 x 0.34 mm ² (AWG 22)
Maximum cable length:	30 m (98.4 ft)
Fuse:	4 A

A fault exclusion is required such that it is not possible to short circuit the STO by another voltage carrying line. For the STO Cables defined by EN 61800-5-2:2007 Table D.1 or EN 61800-5-2:2017 with reference to ISO 13849-1 Table D.4.: For the required fault exclusion the cables must be permanently connected (fixed) and protected against external damage, for example by cable ducting or armored cables (steel jacket or ridged shielding).

Cable Specifications - Cables Inside Control Cabinet


Shield:	Yes
Twisted Pair:	No
PELV:	Required
Minimum conductor cross section:	2 x 0.25 mm ² (AWG 24)
Maximum cable length:	3 m (9.84 ft)
Fuse:	4 A

Properties of the Connection

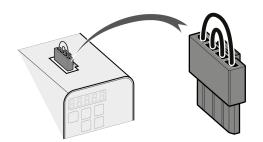
Connectors housing Connectors crimp contact	Molex 436450400 ⁽¹⁾ Molex 430300001 ⁽¹⁾	
Connection cross section	mm ² (AWG)	0.25 0.34 (24 22)
(1) Or corresponding equivalent.		

Wiring Diagram

Wiring diagram safety function STO

The STO interface (CN9) is a 4-pin female connector. The following table describes the contacts of the connector:

Pin	Signal	Meaning
1	JMPC_1	Jumper connector 1 to be connected to STO_24V if the safety function STO is not used in your application
2	JMPC_2	Jumper connector 2 to be connected to STO_0V if the safety function STO is not used in your application
3	STO_0V	Safety function STO 0 Vdc input ⁽¹⁾
4	STO_24V	Safety function STO 24 Vdc input ⁽¹⁾
(1) PELV p	power supply is required	


Connecting the Safety Function STO

- Verify that wiring, cables, and connected interfaces meet the PELV requirements.
- Connect the safety function STO in accordance with the specifications in chapter Safety Function STO (Safe Torque Off) (see page 106).

Deactivating the Safety Function STO

If the safety function STO is not to be used, it must be deactivated. Plug in the jumper for CN9 to bridge pin 1 and pin 4 as well as pin 2 and pin 3 to deactivate the safety function STO. The jumper for CN9 is factory-fitted.

Deactivating the safety function STO

WARNING

UNINTENDED EQUIPMENT OPERATION

- Remove the jumpers connected to the STO power connector (CN9) only if you intend to use the STO safety-related function for your application.
- Use only an external PELV 24 Vdc power supply unit when applying the safety-related STO function.

Failure to follow these instructions can result in death, serious injury, or equipment damage.

What Is in This Chapter?

This chapter contains the following topics:

Торіс	Page
Mechanical Installation Motor	164
Connections and Pin Assignments	167
Connection of Motor and Encoder	170
Holding Brake Connection	172

Mechanical Installation Motor

Motors are very heavy relative to their size. The mass of the motor can cause injuries and damage.

WARNING

HEAVY AND/OR FALLING PARTS

- Use a suitable crane or other suitable lifting gear for mounting the motor if this is required by the weight of the motor.
- Use the necessary personal protective equipment (for example, protective shoes, protective glasses and protective gloves).
- Mount the motor so that it cannot come loose (use of securing screws with appropriate tightening torque), especially in cases of fast acceleration or continuous vibration.

Failure to follow these instructions can result in death, serious injury, or equipment damage.

Motors can generate strong local electrical and magnetic fields. This can cause interference in sensitive devices.

WARNING

ELECTROMAGNETIC FIELDS

- Keep persons with electronic medical implants, such as pacemakers, away from the motor.
- Do not place electromagnetically sensitive devices in the vicinity of the motor.

Failure to follow these instructions can result in death, serious injury, or equipment damage.

The metal surfaces of the product may exceed 70 °C (158 °F) during operation.

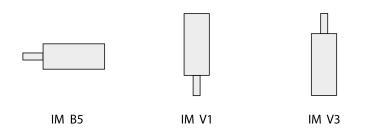
WARNING

HOT SURFACES

- Avoid unprotected contact with hot surfaces.
- Do not allow flammable or heat-sensitive parts in the immediate vicinity of hot surfaces.
- Verify that the heat dissipation is sufficient by performing a test run under maximum load conditions.

Failure to follow these instructions can result in death, serious injury, or equipment damage.

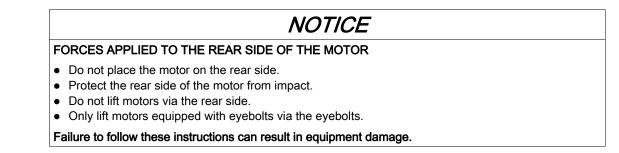
ACAUTION


IMPROPER APPLICATION OF FORCES

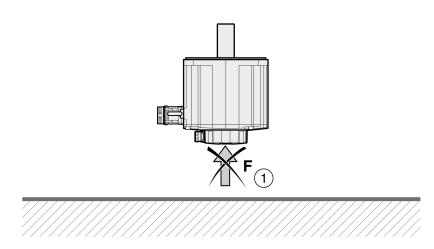
- Do not use the motor as a step to climb into or onto the machine.
- Do not use the motor as a load-bearing part.
- Use hazard labels and guards on your machine to help prevent the improper application of forces on the motor.

Failure to follow these instructions can result in injury or equipment damage.

Mounting Position

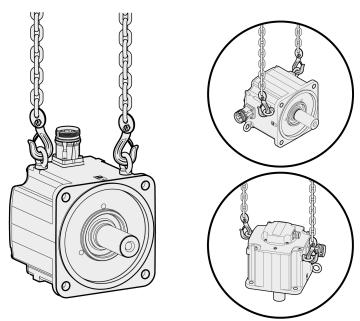

The following mounting positions are defined and permissible as per IEC 60034-7:

Mounting

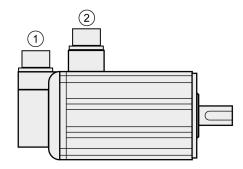

When the motor is mounted to the mounting surface, it must be accurately aligned axially and radially and make even contact with the mounting surface. All mounting screws must be tightened with the specified tightening torque. No uneven mechanical load may be applied while the mounting screws are tightened. For data, dimensions, and degrees of protection (IP), refer to chapter Motor *(see page 49)*.

Mounting Situation

Special Characteristics BCH2•H, BCH2•M, BCH2•R


Rear side of motor

Item	Description
1	Protect the rear side of the motor from application of forces.


Eyebolts BCH2•R

Consider the mass of the product when mounting the motor. It may be necessary to use suitable lifting gear.

Connections and Pin Assignments

Connection overview

Item	Description
1	Encoder connection
2	Motor connection

Pin Assignment Motor Connection

Pin assignments of motor phases and holding brake Motor connection plastic connector (type A and type B), drive side:

Motor connection MIL connector (type C and type D), motor side:

Pin Type A	Pin Type B	Pin Type C and D	Signal	Meaning	Color ⁽¹⁾ (IEC 757)
1	1	E	U	Motor phase U	Red (RD)
2	2	G	V	Motor phase V	White (WH)
3	4	В	W	Motor phase W	Black (BK)
4	5	D	PE	Protective ground (protective earth)	Green/Yellow (GN/YE)
_	3	F	BRAKE_24V	Supply voltage holding brake 24 Vdc	Blue (BU)
-	6	A	BRAKE_0V	Reference potential holding brake 0 Vdc	Brown (BN)
-	-	С	-	Reserved	-

(1) Color information relates to the cables available as accessories.

WARNING

UNINTENDED EQUIPMENT OPERATION

Do not connect any wiring to reserved, unused connections, or to connections designated as No Connection (N.C.).

Failure to follow these instructions can result in death, serious injury, or equipment damage.

Pin Assignment Encoder Connection

Pin assignment of the encoder.

Encoder connection plastic connector (Type A), drive side:

	7	4	1
	8	5	2
000	9	6	3

Encoder connection MIL connector (Type B), motor side:

Pin Type A	Pin Type B	Signal	Meaning	Color ⁽¹⁾ (IEC 757)	
1	А	T+	Data	Blue (BU)	
2	С	-	Reserved	-	
3	D	-	Reserved	-	
4	В	Т-	Data	Blue/Black (BU/BK)	
5	F	Battery +	Battery + ⁽²⁾	Red (RD)	
6	G	Battery -	Battery - ⁽²⁾	Black (BK)	
7	S	DC+5 V	Supply voltage	Red/White (RD/WH)	
8	R	GND	Reference potential	Black/White (BK/WH)	
9	L	Shield	Shield	Black (BK)	
-	E	-	Reserved	-	
-	н	-	Reserved	-	
-	J	-	Reserved	-	
-	К	-	Reserved	-	
-	М	-	Reserved	-	
_	N	-	Reserved	-	
-	Р	-	Reserved	-	
-	Т	-	Reserved	-	
 (1) Color information relates to the cables available as accessories. (2) Used with multi turn encoders 					

(2) Used with multi turn encoders.

WARNING

UNINTENDED EQUIPMENT OPERATION

Do not connect any wiring to reserved, unused connections, or to connections designated as No Connection (N.C.).

Failure to follow these instructions can result in death, serious injury, or equipment damage.

Mating Connector

For suitable mating connectors, refer to chapter Connectors and Adapters (see page 88).

Connection of Motor and Encoder

The motor is designed for operation via a drive. Connecting the motor directly to line voltage will damage the motor and can cause fires.

A DANGER

FIRE HAZARD DUE TO INCORRECT CONNECTION

Only connect the motor to a matching, approved drive.

Failure to follow these instructions will result in death or serious injury.

Compatibility between Drive and Motor is defined in the Drive / Motor combinations table (see page 23).

High voltages may be present at the motor connection. The motor itself generates voltage when the motor shaft is rotated. AC voltage can couple voltage to unused conductors in the motor cable.

A DANGER

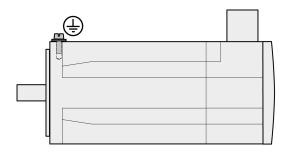
ELECTRIC SHOCK

- Verify that no voltage is present prior to performing any type of work on the drive system.
- Block the motor shaft to prevent rotation prior to performing any type of work on the drive system.
- Insulate both ends of unused conductors of the motor cable.
- Supplement the motor cable grounding conductor with an additional protective ground conductor to the motor housing.
- Verify compliance with all local and national electrical code requirements as well as all other applicable regulations with respect to grounding of all equipment.

Failure to follow these instructions will result in death or serious injury.

Drive systems may perform unintended movements if unapproved combinations of drive and motor are used. Even if motors are similar, different adjustment of the encoder system may be a source of hazards. Even if the connectors for motor connection and encoder connection match mechanically, this does not imply that the motor is approved for use.

WARNING


UNINTENDED MOVEMENT

Only use approved combinations of drive and motor.

Failure to follow these instructions can result in death, serious injury, or equipment damage.

Compatibility between Drive and Motor is defined in the Drive / Motor combinations table (see page 23).

Protective Ground Conductor Connection

- Ground the motor via a grounding screw if grounding via the flange and the protective ground conductor of the motor cable is not sufficient.
- Use parts with suitable corrosion protection.

Connecting the Cables

Incorrect installation of the cable may destroy the insulation. Broken conductors in the cable or improperly connected connectors may be melted by arcs.

🚯 🕼 DANGER

ELECTRIC SHOCK, ARC FLASH AND FIRE CAUSED BY INCORRECT INSTALLATION OF THE CABLE

- Disconnect all power before plugging in or unplugging the connectors.
- Verify correct pin assignment of the connectors according to the specifications in this chapter before connecting the cables.
- Verify that the connectors are properly inserted and locked before applying power.
- Avoid forces or movements of the cable at the cable entries.

Failure to follow these instructions will result in death or serious injury.

- Connect the motor cable and the encoder cable to the drive according to the wiring diagram of the drive.
- If your motor is equipped with a holding brake, follow the instructions in chapter Holding Brake Connection *(see page 172)*.

Holding Brake Connection

The holding brake in the motor has the task of holding the motor position when the power stage is disabled. The holding brake is not a safety function and not a service brake.

A motor with a holding brake requires a suitable holding brake controller which releases the brake when the power stage is enabled and locks the motor shaft when the power stage is disabled.

See chapter Holding Brake Connection (see page 160) for additional information.

As a result of damage to the insulation of the motor cable, mains voltage may get to the wires for the holding brake.

\Lambda 🗛 DANGER

ELECTRICAL SHOCK CAUSED BY DAMAGE TO THE MOTOR CABLE

- Use a PELV power supply for the holding brake.
- Insulate both ends of unused conductors of the motor cable.

Failure to follow these instructions will result in death or serious injury.

When the product is operated for the first time, there is a risk of unanticipated movements caused by, for example, incorrect wiring or unsuitable parameter settings. Releasing the holding brake can cause an unintended movement, for example, lowering of the load in the case of vertical axes.

WARNING

UNINTENDED MOVEMENT

- Verify that there are no persons or obstacles in the zone of operation when performing a test of the holding brake.
- Take appropriate measures to avoid damage caused by falling or lowering loads or other unintended movements.
- Run initial tests without coupled loads.
- Verify that a functioning emergency stop push-button is within reach of all persons involved in running tests.
- Anticipate movements in unintended directions or oscillations of the motor.

Failure to follow these instructions can result in death, serious injury, or equipment damage.

Cable Specifications

For further information on cable specifications, refer to chapter Cables (see page 102).

Chapter 11 Verifying Installation

Verifying Installation

Verify the mechanical installation of the entire drive system:

- Does the installation meet the specified distance requirements?
- Did you tighten all fastening screws with the specified tightening torque?

Verify the electrical connections and the wiring:

- Did you connect all protective ground conductors?
- Do all fuses have the correct rating; are the fuses of the specified type?
- Did you connect all wires of the cables or insulate them?
- Did you properly connect and install all cables and connectors?
- Are the mechanical locks of the connectors correct and effective?
- Did you properly connect the signal wires?
- Are the required shield connections EMC-compliant?
- Did you take all measures for EMC compliance?
- Does the drive installation conform to all local, regional, and national electrical safety codes for the eventual placement of the equipment?

Verify that all covers and seals of the control cabinet are properly installed to meet the required degree of protection.

What Is in This Part?

This part contains the following chapters:

Chapter	Chapter Name	Page
12	Overview	177
13	Integrated HMI	181
14	Commissioning Procedure	189
15	Tuning the Control Loops	197

What Is in This Chapter?

This chapter contains the following topics:

Торіс	Page
General	178
Commissioning Tools	

General

You must recommission an already configured device if you want to use it under different operating conditions.

The safety function STO (Safe Torque Off) does not remove power from the DC bus. The safety function STO only removes power to the motor. The DC bus voltage and the mains voltage to the drive are still present.

ELECTRIC SHOCK

- Do not use the safety function STO for any other purposes than its intended function.
- Use an appropriate switch, that is not part of the circuit of the safety function STO, to disconnect the drive from the mains power.

Failure to follow these instructions will result in death or serious injury.

Unsuitable settings or unsuitable data may trigger unintended movements, trigger signals, damage parts and disable monitoring functions. Some parameters and other operational data do not become active until after a restart.

WARNING

UNINTENDED EQUIPMENT OPERATION

- Only start the system if there are no persons or obstructions in the zone of operation.
- Do not operate the drive system with undetermined parameter values.
- Never modify a parameter value unless you fully understand the parameter and all effects of the modification.
- Restart the drive and verify the saved operational data and/or parameter values after modification.
- Carefully run tests for all operating states and potential error situations when commissioning, upgrading or otherwise modifying the operation of the drive.
- Verify the functions after replacing the product and also after making modifications to the parameter values and/or other operational data.

Failure to follow these instructions can result in death, serious injury, or equipment damage.

If the power stage is disabled unintentionally, for example as a result of a power outage, errors or functions, the motor is no longer decelerated in a controlled way.

WARNING

UNINTENDED EQUIPMENT OPERATION

Verify that movements without braking effect cannot cause injuries or equipment damage.

Failure to follow these instructions can result in death, serious injury, or equipment damage.

Applying the holding brake while the motor is running will cause excessive wear and loss of the braking force.

A WARNING

LOSS OF BRAKING FORCE DUE TO WEAR OR HIGH TEMPERATURE

- Do not use the holding brake as a service brake.
- Do not exceed the maximum number of brake applications and the kinetic energy during braking of moving loads.

Failure to follow these instructions can result in death, serious injury, or equipment damage.

The metal surfaces of the product may exceed 70 °C (158 °F) during operation.

WARNING

HOT SURFACES

- Avoid unprotected contact with hot surfaces.
- Do not allow flammable or heat-sensitive parts in the immediate vicinity of hot surfaces.
- Verify that the heat dissipation is sufficient by performing a test run under maximum load conditions.

Failure to follow these instructions can result in death, serious injury, or equipment damage.

Rotating parts may cause injuries and may catch clothing or hair. Loose parts or parts that are out of balance may be ejected.

WARNING

MOVING, UNGUARDED EQUIPMENT

Verify that rotating parts cannot cause injuries or equipment damage.

Failure to follow these instructions can result in death, serious injury, or equipment damage.

When the product is operated for the first time, there is a risk of unanticipated movements caused by, for example, incorrect wiring or unsuitable parameter settings. Releasing the holding brake can cause an unintended movement, for example, lowering of the load in the case of vertical axes.

WARNING

UNINTENDED MOVEMENT

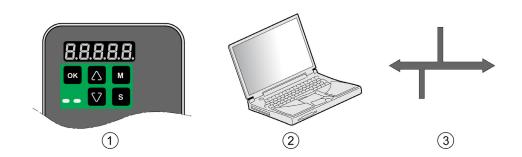
- Verify that there are no persons or obstacles in the zone of operation when performing a test of the holding brake.
- Take appropriate measures to avoid damage caused by falling or lowering loads or other unintended movements.
- Run initial tests without coupled loads.
- Verify that a functioning emergency stop push-button is within reach of all persons involved in running tests.
- Anticipate movements in unintended directions or oscillations of the motor.

Failure to follow these instructions can result in death, serious injury, or equipment damage.

The product can be accessed via different types of access channels. Simultaneous access via multiple access channels or the use of exclusive access may cause unintended equipment operation.

WARNING

UNINTENDED EQUIPMENT OPERATION


- Verify that simultaneous access via multiple access channels cannot cause unintended triggering or blocking of commands.
- Verify that the use of exclusive access cannot cause unintended triggering or blocking of commands.
- Verify that the required access channels are available.

Failure to follow these instructions can result in death, serious injury, or equipment damage.

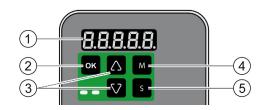
Commissioning Tools

Overview

The following tools *(see page 88)* can be used for commissioning, parameterization, and diagnostics:

Item	Description		
1	Integrated HMI		
2	PC with commissioning software LXM28 DTM Library		
3	Fieldbus		

Device settings can be duplicated. Stored device settings can be transferred to a device of the same type. Duplicating the device settings can be used if multiple devices are to have the same settings, for example, when devices are replaced.


What Is in This Chapter?

This chapter contains the following topics:

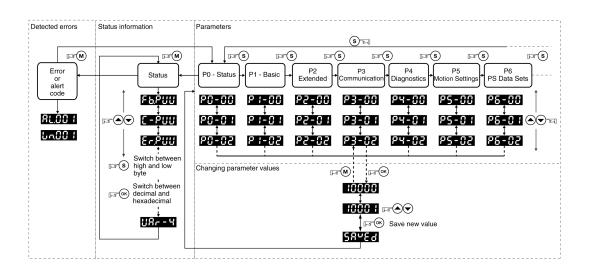
Торіс	Page
Overview	182
Integrated HMI Structure	183
7-Segment Display	184
Status Information Via the HMI	187

Overview

The integrated HMI allows you to edit parameters, start the operating mode Jog or perform autotuning via the integrated Human-Machine Interface (HMI). Diagnostics information (such as parameter values or error codes) can also be displayed. The individual sections on commissioning and operation include information on whether a function can be carried out via the integrated HMI or whether the commissioning software must be used.

Item	Description
1	5-digit 7-segment display
2	OK key
3	Arrow keys
4	M key
5	S key

Incorrect wiring of the motor connection may cause live wires to be exposed outside of the motor connector below the HMI.


A DANGER

ELECTRIC SHOCK CAUSED BY INCORRECT WIRING

- Verify that the protective ground connection (PE) of the device is connected to ground.
- Do not remove the cable end (ferrule) from the protective ground terminal (PE) of the motor connector until you are prepared to wire the protective ground conductor of the motor to the protective ground terminal (PE) of the motor connector.
- Verify that no bare metal of the wires is exposed outside of the motor connector housing when wiring the motor connector.
- Regularly, as part of a maintenance plan, assure that the motor wires are secured in the terminals of the motor connector due to vibration or other influences.

Failure to follow these instructions will result in death or serious injury.

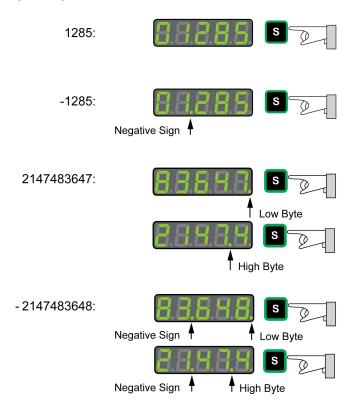
Integrated HMI Structure

When the drive is powered on, the display shows the name of the selected status information function for approximately one second; after that, it displays the corresponding actual value or status value.

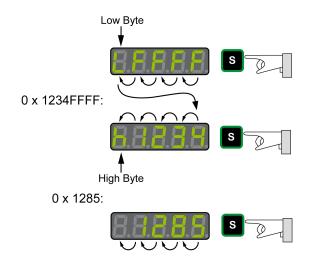
Element	Function
HMI display	The 5-digit 7-segment display shows actual values, parameter settings, status information, and error codes.
M key	The M key lets you switch between the type of information displayed: status information/actual values, error codes, and parameters. If an error is detected, the display shows the error code. If you press the M while the error is active, you can display other information; however, after approximately 20 seconds without interaction, the error code is displayed again.
S key	The S lets you scroll through the parameter groups. After you have selected a parameter and its value is displayed, you can use the S key to move the cursor to the left. The digit at the current cursor position flashes. The arrow keys let you change the value at the current cursor position.
Arrow keys	The arrow keys let you scroll through the actual values/status information and the parameters within a parameter group. Use the arrow keys to increase or decrease values.
OK key	After you have selected a parameter, press the OK key to display the current parameter value. The arrow keys let you change the displayed value. Pressing the OK key again saves the value.

7-Segment Display

Saving Settings


If you set a new parameter value and press the **OK** key, a message is displayed for approximately one second to provide feedback.

7-segment display	Description		
SAuEd	The new parameter value was successfully saved.		
r-oly	The parameter value is a read-only value and cannot be saved (Read-Only).		
Prot	Changing a parameter value requires exclusive access. See chapter Access Channels (see page 272).		
out-r	The new parameter value is outside the permissible value range (Out of range).		
Sruan	The new parameter value can only be saved when the power stage is disabled (Servo On).		
Po-On	The new parameter value becomes active the next time the product is powered on (Power On).		
Error	Displayed whenever a value you have entered for a parameter is, for various reasons, rejected by the drive.		


Representation of Numerical Values on the 7-Segment Display

The illustration below shows the decimal representation of a 16-bit value and a 32-bit value as a positive value and as a negative value each.

Example of representation of decimal values

Example of representation of hexadecimal values

Changing the Sign Via the 7-Segment Display

7-segment display	Description
24680 24.680 X343E XC6C2	You can change the sign of a value by holding down the S key for a period of more than 2 seconds. Negative decimal values are represented with a dot between the second and the third position. Negative hexadecimal values are represented as a two's complement.

Alert Messages and Error Messages on the 7-Segment Display

7-segment display	Description
Wnnnn	If an alert condition is detected, Wnnnn is displayed. Win identifies the code as an alert. The subsequent 3 digit nnn represent the number of the alert. For a list of alert codes, refer to Alert Codes and Error Codes <i>(see page 310)</i> .
Alnnn	If an error is detected ALnnn is displayed. AL identifies the code as a detected error. The subsequent 3 digit nnn represent the error number. For a list of error codes, refer to Alert Codes and Error Codes <i>(see page 310).</i>
5 L o P	The display shows STOP if exclusive access is enableds while the power stage is still enabled. For further information on access channels, refer to Access Channels <i>(see page 272)</i> .

Status Information Via the HMI

After you have powered on the drive, status information is displayed via the HMI. Use the parameter P0-02 to select the type of status information to be displayed. For example, if you set the parameter P0-02 to the value 7, the speed of rotation of the motor after is displayed after you have powered on the drive.

0 Actual position (with gear ratio applied) in the unit PUU 1 Target position (with gear ratio applied) in the unit PUU 2 Deviation between actual position and target position (with gear ratio applied) in the unit PUU 3 Actual position in motor increments (1280000 pulses/revolution) 5 Deviation between actual position and target position in motor increments (1280000 pulses/revolution) 6 Reference value in kilopulses per second (kpps) 7 Actual velocity in rpm 10 Voltage for target velocity in V 9 Target velocity in rpm 11 Target velocity in rpm 12 Average load of the motor in percent of continuous motor current 13 Peak load of the motor since the last power cycle of the drive in percent of continuous motor current (maximum value of occurring in setting 12 since last power cycle) 14 Mains voltage in V 15 Ratio of load inertia and motor inertia (divided by 10) 16 Power stage temperature in degrees Celsius (°C) 17 Resonance frequency in Hz 18 Absolute pulse number relative to encoder 19 Mapping parameter 3: Content of parameter P0-26 (mapping target is specified via parameter P0-37)	Setting P0-02	Description			
2 Deviation between actual position and target position (with gear ratio applied) in the unit PUU 3 Actual position in motor increments (1280000 pulses/revolution) 4 Target position in motor increments (1280000 pulses/revolution) 5 Deviation between actual position and target position in motor increments (1280000 pulses/revolution) 6 Reference value in kilopulses per second (kpps) 7 Actual velocity in rpm 8 Voltage for target velocity in V 9 Target velocity in rpm 10 Voltage for target torque in V 11 Target of torque in percent of continuous motor current 12 Average load of the motor increments (lawided by 10) 13 Peak load of the motor inertia (divided by 10) 16 Power stage temperature in degrees Celsius (°C) 17 Resonance frequency in Hz 18 Absolute pulse number relative to encoder 19 Mapping parameter 1: Content of parameter P0-25 (mapping target is specified via parameter P0-36) 20 Mapping parameter 3: Content of parameter P0-27 (mapping target is specified via parameter P0-37) 22 Mapping parameter 2: Content of parameter P0-28 (mapping target is specified via parameter P0-38)	0	Actual position (with gear ratio applied) in the unit PUU			
3 Actual position in motor increments (1280000 pulses/revolution) 4 Target position in motor increments (1280000 pulses/revolution) 5 Deviation between actual position and target position in motor increments (1280000 pulses/revolution) 6 Reference value in kilopulses per second (kpps) 7 Actual velocity in rpm 8 Voltage for target velocity in V 9 Target velocity in rpm 10 Voltage for target torque in V 11 Target torque in percent of continuous motor current 12 Average load of the motor in percent of continuous motor current (The sampling window duration is specified via parameter 24-29) 13 Peak load of the motor since the last power cycle of the drive in percent of continuous motor current (maximum value of occurring in setting 12 since last power cycle) 14 Mains voltage in V 15 Ratio of load inertia and motor inertia (divided by 10) 16 Power stage temperature in degrees Celsius (°C) 17 Resonance frequency in Hz 18 Absolute pulse number relative to encoder 19 Mapping parameter 1: Content of parameter P0-25 (mapping target is specified via parameter P0-36) 21 Mapping parameter 3: Content of parameter P0-27 (mapping target is specified via parameter P0	1	Target position (with gear ratio applied) in the unit PUU			
4 Target position in motor increments (1280000 pulses/revolution) 5 Deviation between actual position and target position in motor increments (1280000 pulses/revolution) 6 Reference value in kilopulses per second (kpps) 7 Actual velocity in rpm 8 Voltage for target velocity in V 9 Target velocity in rpm 10 Voltage for target torque in V 11 Target torque in percent of continuous motor current 12 Average load of the motor in percent of continuous motor current (The sampling window duration is specified via parameter P4-29) 13 Peak load of the motor since the last power cycle of the drive in percent of continuous motor current (maximum value of occurring in setting 12 since last power cycle) 14 Mains voltage in V 15 Ratio of load inertia and motor inertia (divided by 10) 16 Power stage temperature in degrees Celsius (°C) 17 Resonance frequency in Hz 18 Absolute pulse number relative to encoder 19 Mapping parameter 1: Content of parameter P0-26 (mapping target is specified via parameter P0-36) 21 Mapping parameter 3: Content of parameter P0-27 (mapping target is specified via parameter P0-37) 22 Mapping parameter P0-17) <td< td=""><td>2</td><td colspan="3">Deviation between actual position and target position (with gear ratio applied) in the unit PUU</td></td<>	2	Deviation between actual position and target position (with gear ratio applied) in the unit PUU			
5 Deviation between actual position and target position in motor increments (1280000 pulses/revolution) 6 Reference value in kilopulses per second (kpps) 7 Actual velocity in rpm 8 Voltage for target velocity in V 9 Target velocity in rpm 10 Voltage for target torque in V 11 Target torque in percent of continuous motor current 12 Average load of the motor in percent of continuous motor current (The sampling window duration is specified via parameter P4-29) 13 Peak load of the motor since the last power cycle of the drive in percent of continuous motor current (maximum value of occurring in setting 12 since last power cycle) 14 Mains voltage in V 15 Ratio of load inertia and motor inertia (divided by 10) 16 Power stage temperature in degrees Celsius (°C) 17 Resonance frequency in Hz 18 Absolute pulse number relative to encoder 19 mapping parameter 1: Content of parameter P0-25 (mapping target is specified via parameter P0-35) 20 Mapping parameter 3: Content of parameter P0-27 (mapping target is specified via parameter P0-36) 21 Mapping parameter 4: Content of parameter P0-28 (mapping target is specified via parameter P0-37) 22 Mapping parameter 4: Co	3	Actual position in motor increments (1280000 pulses/revolution)			
pulses/revolution)6Reference value in kilopulses per second (kpps)7Actual velocity in rpm8Voltage for target velocity in V9Target velocity in rpm10Voltage for target torque in V11Target torque in percent of continuous motor current12Average load of the motor in percent of continuous motor current (The sampling window duration is specified via parameter P4-29)13Peak load of the motor since the last power cycle of the drive in percent of continuous motor current (maximum value of occurring in setting 12 since last power cycle)14Mains voltage in V15Ratio of load inertia and motor inertia (divided by 10)16Power stage temperature in degrees Celsius (*C)17Resonace frequency in Hz18Absolute pulse number relative to encoder19Mapping parameter 1: Content of parameter P0-25 (mapping target is specified via parameter P0-35)20Mapping parameter 3: Content of parameter P0-26 (mapping target is specified via parameter P0-36)21Mapping parameter 4: Content of parameter P0-28 (mapping target is specified via parameter P0-37)22Mapping parameter P0-17)24Status indication 1: Content of parameter P0-28 (mapping target is specified via specified by parameter P0-18)25Status indication 3: Content of parameter P0-10 (the status information to be displayed is specified by parameter P0-19)26Status indication 4: Content of parameter P0-11 (the status information to be displayed is specified by parameter P0-19)26Status indication 4: Content of parameter P0-12 (the stat	4	Target position in motor increments (1280000 pulses/revolution)			
7 Actual velocity in rpm 8 Voltage for target velocity in V 9 Target velocity in rpm 10 Voltage for target torque in V 11 Target torque in percent of continuous motor current 12 Average load of the motor in percent of continuous motor current (The sampling window duration is specified via parameter P4-29) 13 Peak load of the motor since the last power cycle of the drive in percent of continuous motor current (maximum value of occurring in setting 12 since last power cycle) 14 Mains voltage in V 15 Ratio of load inertia and motor inertia (divided by 10) 16 Power stage temperature in degrees Celsius (°C) 17 Resonance frequency in Hz 18 Absolute pulse number relative to encoder 19 Mapping parameter 1: Content of parameter P0-25 (mapping target is specified via parameter P0-36) 20 Mapping parameter 3: Content of parameter P0-27 (mapping target is specified via parameter P0-36) 21 Mapping parameter 4: Content of parameter P0-28 (mapping target is specified via parameter P0-38) 23 Status indication 1: Content of parameter P0-20 (the status information to be displayed is specified by parameter P0-18) 24 Status indication 3: Content of parameter P0-10 (the status information to be displayed is specified b	5				
8 Voltage for target velocity in V 9 Target velocity in rpm 10 Voltage for target torque in V 11 Target torque in percent of continuous motor current 12 Average load of the motor in percent of continuous motor current (The sampling window duration is specified via parameter P4-29) 13 Peak load of the motor since the last power cycle of the drive in percent of continuous motor current (maximum value of occurring in setting 12 since last power cycle) 14 Mains voltage in V 15 Ratio of load inertia and motor inertia (divided by 10) 16 Power stage temperature in degrees Celsius (°C) 17 Resonance frequency in Hz 18 Absolute pulse number relative to encoder 19 Mapping parameter 1: Content of parameter P0-25 (mapping target is specified via parameter P0-35) 20 Mapping parameter 3: Content of parameter P0-27 (mapping target is specified via parameter P0-36) 21 Mapping parameter 4: Content of parameter P0-28 (mapping target is specified via parameter P0-38) 23 Status indication 1: Content of parameter P0-20 (mapping target is specified via parameter P0-38) 23 Status indication 2: Content of parameter P0-10 (the status information to be displayed is specified by parameter P0-17) 24 Status indication 4: Cont	6	Reference value in kilopulses per second (kpps)			
9 Target velocity in rpm 10 Voltage for target torque in V 11 Target torque in percent of continuous motor current 12 Average load of the motor in percent of continuous motor current (The sampling window duration is specified via parameter P4-29) 13 Peak load of the motor since the last power cycle of the drive in percent of continuous motor current (maximum value of occurring in setting 12 since last power cycle) 14 Mains voltage in V 15 Ratio of load inertia and motor inertia (divided by 10) 16 Power stage temperature in degrees Celsius (*C) 17 Resonance frequency in Hz 18 Absolute pulse number relative to encoder 19 Mapping parameter 1: Content of parameter P0-25 (mapping target is specified via parameter P0-35) 20 Mapping parameter 3: Content of parameter P0-26 (mapping target is specified via parameter P0-36) 21 Mapping parameter 3: Content of parameter P0-28 (mapping target is specified via parameter P0-38) 23 Status indication 1: Content of parameter P0-29 (the status information to be displayed is specified by parameter P0-17) 24 Status indication 3: Content of parameter P0-10 (the status information to be displayed is specified by parameter P0-18) 25 Status indication 3: Content of parameter P0-11 (the status information to be displayed	7	Actual velocity in rpm			
10Voltage for target torque in V11Target torque in percent of continuous motor current12Average load of the motor in percent of continuous motor current (The sampling window duration is specified via parameter P4-29)13Peak load of the motor since the last power cycle of the drive in percent of continuous motor current (maximum value of occurring in setting 12 since last power cycle)14Mains voltage in V15Ratio of load inertia and motor inertia (divided by 10)16Power stage temperature in degrees Celsius (°C)17Resonance frequency in Hz18Absolute pulse number relative to encoder19Mapping parameter 1: Content of parameter P0-25 (mapping target is specified via parameter P0-35)20Mapping parameter 2: Content of parameter P0-26 (mapping target is specified via parameter P0-36)21Mapping parameter 3: Content of parameter P0-28 (mapping target is specified via parameter P0-37)22Mapping parameter 4: Content of parameter P0-28 (mapping target is specified via parameter P0-38)23Status indication 1: Content of parameter P0-10 (the status information to be displayed is specified by parameter P0-17)24Status indication 2: Content of parameter P0-10 (the status information to be displayed is specified by parameter P0-19)26Status indication 4: Content of parameter P0-11 (the status information to be displayed is specified by parameter P0-20)27Reserved39Status of digital inputs (content of P4-07)40Status of digital inputs (content of P4-09)41Drive status (content of P0	8	Voltage for target velocity in V			
11Target torque in percent of continuous motor current12Average load of the motor in percent of continuous motor current (The sampling window duration is specified via parameter P4-29)13Peak load of the motor since the last power cycle of the drive in percent of continuous motor current (maximum value of occurring in setting 12 since last power cycle)14Mains voltage in V15Ratio of load inertia and motor inertia (divided by 10)16Power stage temperature in degrees Celsius (°C)17Resonance frequency in Hz18Absolute pulse number relative to encoder19Mapping parameter 1: Content of parameter P0-25 (mapping target is specified via parameter P0-35)20Mapping parameter 2: Content of parameter P0-26 (mapping target is specified via parameter P0-37)21Mapping parameter 3: Content of parameter P0-27 (mapping target is specified via parameter P0-37)22Mapping parameter 4: Content of parameter P0-28 (mapping target is specified via parameter P0-38)23Status indication 1: Content of parameter P0-09 (the status information to be displayed is specified by parameter P0-19)24Status indication 2: Content of parameter P0-10 (the status information to be displayed is specified by parameter P0-19)26Status indication 4: Content of parameter P0-11 (the status information to be displayed is specified by parameter P0-20)27Reserved39Status of digital inputs (content of P4-07)40Status of digital inputs (content of P4-09)41Drive status (content of P4-09)42Operating mode (content of	9	Target velocity in rpm			
12Average load of the motor in percent of continuous motor current (The sampling window duration is specified via parameter P4-29)13Peak load of the motor since the last power cycle of the drive in percent of continuous motor current (maximum value of occurring in setting 12 since last power cycle)14Mains voltage in V15Ratio of load inertia and motor inertia (divided by 10)16Power stage temperature in degrees Celsius (°C)17Resonance frequency in Hz18Absolute pulse number relative to encoder19Mapping parameter 1: Content of parameter P0-25 (mapping target is specified via parameter P0-35)20Mapping parameter 2: Content of parameter P0-26 (mapping target is specified via parameter P0-36)21Mapping parameter 3: Content of parameter P0-27 (mapping target is specified via parameter P0-37)22Mapping parameter 4: Content of parameter P0-28 (mapping target is specified via parameter P0-38)23Status indication 1: Content of parameter P0-09 (the status information to be displayed is specified by parameter P0-17)24Status indication 2: Content of parameter P0-10 (the status information to be displayed is specified by parameter P0-18)25Status indication 3: Content of parameter P0-11 (the status information to be displayed is specified by parameter P0-20)27Reserved39Status of digital inputs (content of P4-07)40Status of digital inputs (content of P4-09)41Drive status (content of P4-09)42Operating mode (content of P1-01)	10	Voltage for target torque in V			
duration is specified via parameter P4-29)13Peak load of the motor since the last power cycle of the drive in percent of continuous motor current (maximum value of occurring in setting 12 since last power cycle)14Mains voltage in V15Ratio of load inertia and motor inertia (divided by 10)16Power stage temperature in degrees Celsius (°C)17Resonance frequency in Hz18Absolute pulse number relative to encoder19Mapping parameter 1: Content of parameter P0-25 (mapping target is specified via parameter P0-35)20Mapping parameter 2: Content of parameter P0-26 (mapping target is specified via parameter P0-36)21Mapping parameter 3: Content of parameter P0-27 (mapping target is specified via parameter P0-37)22Mapping parameter 4: Content of parameter P0-28 (mapping target is specified via parameter P0-38)23Status indication 1: Content of parameter P0-09 (the status information to be displayed is specified by parameter P0-17)24Status indication 2: Content of parameter P0-10 (the status information to be displayed is specified by parameter P0-18)25Status indication 3: Content of parameter P0-11 (the status information to be displayed is specified by parameter P0-19)26Status indication 4: Content of parameter P0-12 (the status information to be displayed is specified by parameter P0-20)27Reserved39Status of digital inputs (content of P4-07)40Status of digital inputs (content of P4-07)41Drive status (content of P0-46)42Operating mode (content of P1-01) <td>11</td> <td>Target torque in percent of continuous motor current</td>	11	Target torque in percent of continuous motor current			
current (maximum value of occurring in setting 12 since last power cycle)14Mains voltage in V15Ratio of load inertia and motor inertia (divided by 10)16Power stage temperature in degrees Celsius (°C)17Resonance frequency in Hz18Absolute pulse number relative to encoder19Mapping parameter 1: Content of parameter P0-25 (mapping target is specified via parameter P0-35)20Mapping parameter 2: Content of parameter P0-26 (mapping target is specified via parameter P0-36)21Mapping parameter 3: Content of parameter P0-27 (mapping target is specified via parameter P0-37)22Mapping parameter 4: Content of parameter P0-28 (mapping target is specified via parameter P0-38)23Status indication 1: Content of parameter P0-09 (the status information to be displayed is specified by parameter P0-17)24Status indication 2: Content of parameter P0-10 (the status information to be displayed is specified by parameter P0-18)25Status indication 3: Content of parameter P0-11 (the status information to be displayed is specified by parameter P0-19)26Status indication 4: Content of parameter P0-12 (the status information to be displayed is specified by parameter P0-20)27Reserved39Status of digital inputs (content of P4-07)40Status of digital outputs (content of P4-09)41Drive status (content of P0-46)42Operating mode (content of P1-01)	12				
15Ratio of load inertia and motor inertia (divided by 10)16Power stage temperature in degrees Celsius (°C)17Resonance frequency in Hz18Absolute pulse number relative to encoder19Mapping parameter 1: Content of parameter P0-25 (mapping target is specified via parameter P0-35)20Mapping parameter 2: Content of parameter P0-26 (mapping target is specified via parameter P0-36)21Mapping parameter 3: Content of parameter P0-27 (mapping target is specified via parameter P0-37)22Mapping parameter 4: Content of parameter P0-28 (mapping target is specified via parameter P0-38)23Status indication 1: Content of parameter P0-09 (the status information to be displayed is specified by parameter P0-17)24Status indication 2: Content of parameter P0-10 (the status information to be displayed is specified by parameter P0-18)25Status indication 3: Content of parameter P0-11 (the status information to be displayed is specified by parameter P0-19)26Status indication 4: Content of parameter P0-12 (the status information to be displayed is specified by parameter P0-20)27Reserved39Status of digital inputs (content of P4-07)40Status (ontent of P4-09)41Drive status (content of P1-01)	13				
16Power stage temperature in degrees Celsius (°C)17Resonance frequency in Hz18Absolute pulse number relative to encoder19Mapping parameter 1: Content of parameter P0-25 (mapping target is specified via parameter P0-35)20Mapping parameter 2: Content of parameter P0-26 (mapping target is specified via parameter P0-36)21Mapping parameter 3: Content of parameter P0-27 (mapping target is specified via parameter P0-37)22Mapping parameter 4: Content of parameter P0-28 (mapping target is specified via parameter P0-38)23Status indication 1: Content of parameter P0-09 (the status information to be displayed is specified by parameter P0-17)24Status indication 2: Content of parameter P0-10 (the status information to be displayed is specified by parameter P0-18)25Status indication 3: Content of parameter P0-11 (the status information to be displayed is specified by parameter P0-19)26Status indication 4: Content of parameter P0-12 (the status information to be displayed is specified by parameter P0-20)27Reserved39Status of digital inputs (content of P4-07)40Status of digital outputs (content of P4-09)41Drive status (content of P0-46)42Operating mode (content of P1-01)	14	Mains voltage in V			
17Resonance frequency in Hz18Absolute pulse number relative to encoder19Mapping parameter 1: Content of parameter P0-25 (mapping target is specified via parameter P0-35)20Mapping parameter 2: Content of parameter P0-26 (mapping target is specified via parameter P0-36)21Mapping parameter 3: Content of parameter P0-27 (mapping target is specified via parameter P0-37)22Mapping parameter 4: Content of parameter P0-28 (mapping target is specified via parameter P0-38)23Status indication 1: Content of parameter P0-09 (the status information to be displayed is specified by parameter P0-17)24Status indication 2: Content of parameter P0-10 (the status information to be displayed is specified by parameter P0-18)25Status indication 3: Content of parameter P0-11 (the status information to be displayed is specified by parameter P0-19)26Status indication 4: Content of parameter P0-12 (the status information to be displayed is specified by parameter P0-20)27Reserved39Status of digital inputs (content of P4-07)40Status of digital outputs (content of P4-09)41Drive status (content of P0-46)42Operating mode (content of P1-01)	15	Ratio of load inertia and motor inertia (divided by 10)			
18Absolute pulse number relative to encoder19Mapping parameter 1: Content of parameter P0-25 (mapping target is specified via parameter P0-35)20Mapping parameter 2: Content of parameter P0-26 (mapping target is specified via parameter P0-36)21Mapping parameter 3: Content of parameter P0-27 (mapping target is specified via parameter P0-37)22Mapping parameter 4: Content of parameter P0-28 (mapping target is specified via parameter P0-38)23Status indication 1: Content of parameter P0-09 (the status information to be displayed is specified by parameter P0-17)24Status indication 2: Content of parameter P0-10 (the status information to be displayed is specified by parameter P0-18)25Status indication 3: Content of parameter P0-11 (the status information to be displayed is specified by parameter P0-19)26Status indication 4: Content of parameter P0-12 (the status information to be displayed is specified by parameter P0-20)27Reserved39Status of digital inputs (content of P4-07)40Status of digital outputs (content of P4-09)41Drive status (content of P0-46)42Operating mode (content of P1-01)	16	Power stage temperature in degrees Celsius (°C)			
19Mapping parameter 1: Content of parameter P0-25 (mapping target is specified via parameter P0-35)20Mapping parameter 2: Content of parameter P0-26 (mapping target is specified via parameter P0-36)21Mapping parameter 3: Content of parameter P0-27 (mapping target is specified via parameter P0-37)22Mapping parameter 4: Content of parameter P0-28 (mapping target is specified via parameter P0-38)23Status indication 1: Content of parameter P0-09 (the status information to be displayed is specified by parameter P0-17)24Status indication 2: Content of parameter P0-10 (the status information to be displayed is specified by parameter P0-18)25Status indication 3: Content of parameter P0-11 (the status information to be displayed is specified by parameter P0-19)26Status indication 4: Content of parameter P0-12 (the status information to be displayed is specified by parameter P0-20)27Reserved39Status of digital inputs (content of P4-07)40Status of digital inputs (content of P4-09)41Drive status (content of P0-46)42Operating mode (content of P1-01)	17	Resonance frequency in Hz			
parameter P0-35)20Mapping parameter 2: Content of parameter P0-26 (mapping target is specified via parameter P0-36)21Mapping parameter 3: Content of parameter P0-27 (mapping target is specified via parameter P0-37)22Mapping parameter 4: Content of parameter P0-28 (mapping target is specified via parameter P0-38)23Status indication 1: Content of parameter P0-09 (the status information to be displayed is specified by parameter P0-17)24Status indication 2: Content of parameter P0-10 (the status information to be displayed is specified by parameter P0-18)25Status indication 3: Content of parameter P0-11 (the status information to be displayed is specified by parameter P0-19)26Status indication 4: Content of parameter P0-12 (the status information to be displayed is specified by parameter P0-20)27Reserved39Status of digital inputs (content of P4-07)40Status of digital outputs (content of P4-09)41Drive status (content of P0-46)42Operating mode (content of P1-01)	18				
parameter P0-36)21Mapping parameter 3: Content of parameter P0-27 (mapping target is specified via parameter P0-37)22Mapping parameter 4: Content of parameter P0-28 (mapping target is specified via parameter P0-38)23Status indication 1: Content of parameter P0-09 (the status information to be displayed is specified by parameter P0-17)24Status indication 2: Content of parameter P0-10 (the status information to be displayed is specified by parameter P0-18)25Status indication 3: Content of parameter P0-11 (the status information to be displayed is specified by parameter P0-19)26Status indication 4: Content of parameter P0-12 (the status information to be displayed is specified by parameter P0-20)27Reserved39Status of digital inputs (content of P4-07)40Status of digital outputs (content of P4-09)41Drive status (content of P0-46)42Operating mode (content of P1-01)	19				
parameter P0-37)22Mapping parameter 4: Content of parameter P0-28 (mapping target is specified via parameter P0-38)23Status indication 1: Content of parameter P0-09 (the status information to be displayed is specified by parameter P0-17)24Status indication 2: Content of parameter P0-10 (the status information to be displayed is specified by parameter P0-18)25Status indication 3: Content of parameter P0-11 (the status information to be displayed is specified by parameter P0-19)26Status indication 4: Content of parameter P0-12 (the status information to be displayed is specified by parameter P0-20)27Reserved39Status of digital inputs (content of P4-07)40Status of digital outputs (content of P4-09)41Drive status (content of P0-46)42Operating mode (content of P1-01)	20				
parameter P0-38)23Status indication 1: Content of parameter P0-09 (the status information to be displayed is specified by parameter P0-17)24Status indication 2: Content of parameter P0-10 (the status information to be displayed is specified by parameter P0-18)25Status indication 3: Content of parameter P0-11 (the status information to be displayed is specified by parameter P0-19)26Status indication 4: Content of parameter P0-12 (the status information to be displayed is specified by parameter P0-20)27Reserved39Status of digital inputs (content of P4-07)40Status of digital outputs (content of P4-09)41Drive status (content of P0-46)42Operating mode (content of P1-01)	21				
specified by parameter P0-17)24Status indication 2: Content of parameter P0-10 (the status information to be displayed is specified by parameter P0-18)25Status indication 3: Content of parameter P0-11 (the status information to be displayed is specified by parameter P0-19)26Status indication 4: Content of parameter P0-12 (the status information to be displayed is specified by parameter P0-20)27Reserved39Status of digital inputs (content of P4-07)40Status of digital outputs (content of P4-09)41Drive status (content of P0-46)42Operating mode (content of P1-01)	22				
specified by parameter P0-18)25Status indication 3: Content of parameter P0-11 (the status information to be displayed is specified by parameter P0-19)26Status indication 4: Content of parameter P0-12 (the status information to be displayed is specified by parameter P0-20)27Reserved39Status of digital inputs (content of P4-07)40Status of digital outputs (content of P4-09)41Drive status (content of P0-46)42Operating mode (content of P1-01)	23				
specified by parameter P0-19)26Status indication 4: Content of parameter P0-12 (the status information to be displayed is specified by parameter P0-20)27Reserved39Status of digital inputs (content of P4-07)40Status of digital outputs (content of P4-09)41Drive status (content of P0-46)42Operating mode (content of P1-01)	24				
specified by parameter P0-20)27Reserved39Status of digital inputs (content of P4-07)40Status of digital outputs (content of P4-09)41Drive status (content of P0-46)42Operating mode (content of P1-01)	25				
39Status of digital inputs (content of P4-07)40Status of digital outputs (content of P4-09)41Drive status (content of P0-46)42Operating mode (content of P1-01)	26	· · · · · ·			
40Status of digital outputs (content of P4-09)41Drive status (content of P0-46)42Operating mode (content of P1-01)	27	Reserved			
41 Drive status (content of P0-46) 42 Operating mode (content of P1-01)	39	Status of digital inputs (content of P4-07)			
42 Operating mode (content of P1-01)	40	Status of digital outputs (content of P4-09)			
	41	Drive status (content of P0-46)			
	42	Operating mode (content of P1-01)			
50 Target velocity in rpm	50	Target velocity in rpm			
53 Target torque in 0.1 percent of the nominal torque	53	Target torque in 0.1 percent of the nominal torque			
54 Actual torque in 0.1 percent of the nominal torque	54	Actual torque in 0.1 percent of the nominal torque			
55 Actual torque in 0.01 A	55	Actual torque in 0.01 A			
96 Firmware version and firmware revision of drive (P0-00 and P5-00)	96	Firmware version and firmware revision of drive (P0-00 and P5-00)			
111 Number of detected errors	111	Number of detected errors			

Chapter 14 Commissioning Procedure

What Is in This Chapter?

This chapter contains the following topics:

Торіс	Page
Commissioning Software	190
Setting the Device Address, Baud Rate and Connection Settings	191
Verifying the Direction of Movement	193
Verifying the Safety Function STO	195

Commissioning Software

The commissioning software LXM28 DTM Library has a graphic user interface and is used for commissioning, diagnostics, and testing settings.

Online Help

The commissioning software offers help functions, which can be accessed via help menu or by pressing the F1 key.

Source of Commissioning Software

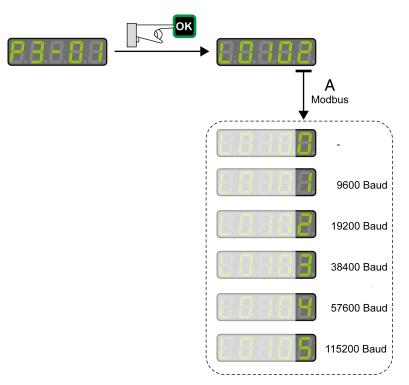
The latest version of the commissioning software LXM28 DTM Library is available for download from the Internet.

https://www.schneider-electric.com

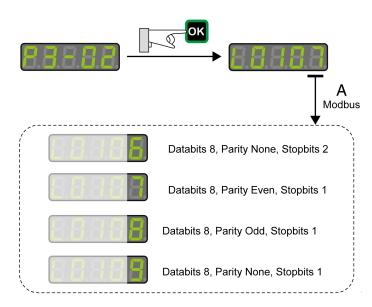
Setting the Device Address, Baud Rate and Connection Settings

Each device is identified by a unique address. Each device must have its own unique node address, which may only be assigned once in the network. The transmission rate (baud rate) must be the same for all devices in the network.

Use the parameter P3-00 to set the Modbus device address.


Use the parameter P3-05 to set the SERCOS III device address.

Use the parameter P3-08 to set the SERCOS III communication protocol.


Use the parameter P3-01 to set the Modbus baud rate.

Use the parameter P3-02 to set the connection settings.

Setting the baud rate:

Modbus Connection Settings

WARNING

UNINTENDED EQUIPMENT OPERATION

- Verify that there is only one master controller configured on the network or remote link.
- Verify that all devices have unique addresses.
- Confirm that the device address is unique before placing the system into service.

Failure to follow these instructions can result in death, serious injury, or equipment damage.

Parameter name	Description	Unit Minimum value Factory setting Maximum value HMI Format	Data type R/W Persistent	Parameter address via fieldbus
P3-00 ADR	Device Address Modbus The device address must be unique. Modified settings become active the next time the product is powered on.	- 1 127 247 Decimal	u16 RW per.	Modbus 400 _h IDN P-0-3003.0.0
P3-01 BRT	Transmission Rate This parameter is used to set the data transmission rate. Modified settings become active the next time the product is powered on.	- 0 _h 102 _h 405 _h Hexadecimal	u16 RW per.	Modbus 402 _h IDN P-0-3003.0.1
P3-02 PTL	Modbus Connection Settings This parameter specifies the Modbus connection settings. Modified settings become active the next time the product is powered on.	- 6 _h 7 _h 9 _h Hexadecimal	u16 RW per.	Modbus 404 _h IDN P-0-3003.0.2
P3-03 FLT	Detected Modbus Communication Errors - Handling This parameter specifies the response of the drive to a detected communication error. Value 0: Detected alert Value 1: Detected error	- 0 _h 0 _h 1 _h Hexadecimal	u16 RW per.	Modbus 406 _h IDN P-0-3003.0.3
P3-04 CWD	Modbus Connection Monitoring This parameter specifies the maximum permissible duration for communication timeout. When this time has elapsed, the communication timeout is treated as a detected error. Setting this parameter to 0 to disables connection monitoring.	ms 0 20000 Decimal	u16 RW per.	Modbus 408 _h IDN P-0-3003.0.4
P3-05 CMM	Device Address SERCOS III This parameter specifies the SERCOS III address of the drive in decimal format. The device address must be unique. Change to this parameter becomes effective only after a restart of the drive. Modified settings become active the next time the product is powered on.	- 0 127 Decimal	u16 RW per.	Modbus 40A _h IDN P-0-3003.0.5
P3-07 CDT	Modbus Response Delay Time This parameter specifies the time delay with which the drive responds to the Modbus master.	0.5 ms 0 0 1000 Decimal	u16 RW per.	Modbus 40E _h IDN P-0-3003.0.7
P3-08 PROTOCOL	Fieldbus protocol This parameter specifies the active communication protocol. Value 2: SERCOS III protocol selected (M262 compatible) Value 4: SERCOS III protocol selected (LMC078 compatible)	- 2 _h 2 _h 4 _h Hexadecimal	u16 RW per.	Modbus 410 _h IDN P-0-3003.0.8

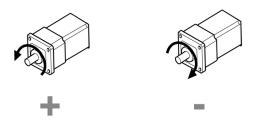
Verifying the Direction of Movement

Direction of Movement

WARNING

UNINTENDED MOVEMENT CAUSED BY INTERCHANGED MOTOR PHASES

Do not interchange the motor phases.


Failure to follow these instructions can result in death, serious injury, or equipment damage.

If your application requires an inversion of the direction of movement, you may parameterize the direction of movement.

Movements are made in positive or in negative directions.

Definition of the direction of movement: Positive direction of movement is when the motor shaft rotates counterclockwise as you look at the end of the protruding motor shaft.

Direction of movement with factory settings

Verifying the Direction of Movement

- Start the operating mode Jog. (HMI: P 4 0 5)
 The HMI displays the velocity in the unit rpm for the operating mode JOG.
- Set a velocity suitable for your application and conform with the OK key. The HMI displays JDC.

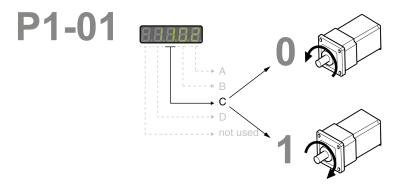
Movement in positive direction:

• Press the **Up Arrow** key. A movement is made in positive direction.

Movement in negative direction:

• Press the **Down Arrow** key. A movement is made in negative direction.

Press the M key to terminate the operating mode Jog.


Changing the Direction of Movement

If the expected direction of movement and the actual direction of movement are not identical, you can invert the direction of movement.

- Inversion of direction of movement is not activated: Movements are made in positive direction with positive target values.
- Inversion of direction of movement is activated: Movements are made in positive direction with negative target values.

The parameter P1-01 C = 1 allows you to invert the direction of movement.

Changing the direction of movement

Verifying the Safety Function STO

The safety function STO must be tested at least once per year.

Procedure:

- Operate the system with the nominal voltage at the STO inputs as described in the chapter Inputs / Outputs Characteristics (see page 47).
- Enable the power stage (operating state 6 Operation Enabled).
- Trigger the safety function STO by switching off the voltage (for example, via an emergency stop pushbutton).
- The power stage is disabled and the error message AL501 is displayed.
- Verify that drive is in the operating state Fault.
- Check whether the drive can be set to the operating state 6 Operation Enabled. The drive remains in the operating state Fault.
- Restore the STO voltage at the signal inputs of the safety function STO and trigger a Fault Reset.
- Verify that the drive can be set to the operating state 6 Operation Enabled.
 - The drive is set to the operating state 6 Operation Enabled. Movements are possible again.

Chapter 15 Tuning the Control Loops

What Is in This Chapter?

This chapter contains the following topics:

Торіс	Page
Tuning the Control Loops	198
Easy Tuning	199
Comfort Tuning	200
Manual Tuning	206

Tuning the Control Loops

Autotuning and manual tuning move the motor in order to tune the control loops. Incorrect parameters may cause unintended movements or the loss of monitoring functions.

A WARNING

UNINTENDED MOVEMENT

- Only start the system if there are no persons or obstructions in the zone of operation.
- Verify that the values for the parameters P9-26 and P9-27 do not exceed the available movement range.
- Verify that the parameterized movement ranges are available.
- In determining the available movement range, consider the additional distance for the deceleration ramp in the case of an EMERGENCY STOP.
- Verify that the parameter settings for a Quick Stop are correct.
- Verify correct operation of the limit switches.
- Verify that a functioning emergency stop push-button is within reach of all persons involved in the operation.

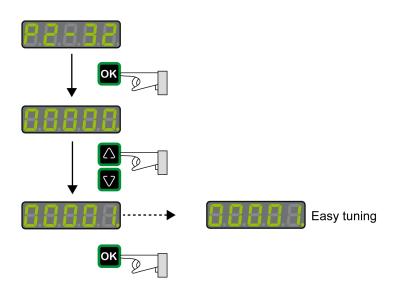
Failure to follow these instructions can result in death, serious injury, or equipment damage.

Autotuning adapts the control performance of the drive to the mechanical system used and optimizes the control loop settings appropriately. External factors such as a load at the motor are considered. The control loop settings can also be optimized by using manual tuning.

Two autotuning methods and manual tuning are provided for control loop optimization:

- Easy Tuning: This type of autotuning is performed without user intervention. For most applications, Easy Tuning yields good, highly dynamic results.
- Comfort Tuning: This type of autotuning is performed with user intervention. You can select optimization criteria and set parameters for movement, direction, and velocity.
- Manual Tuning: This type of tuning allows you to perform test movements and optimize the control loop settings using the Scope function.

Easy Tuning


Easy Tuning is started via the HMI or the commissioning software LXM28 DTM Library.

Easy Tuning requires an available movement range of 5 revolutions. During Easy Tuning, movements of 2.5 revolutions are performed in positive direction of movement and 2.5 revolutions in negative direction of movement. If this movement range is not available, you must use Comfort Tuning.

Easy Tuning can be used for a ratio of motor inertia to load inertia of up to 1:50.

Performing Easy Tuning

Set the parameter P2-32 to 1 to perform Easy Tuning.

After you have started Easy Tuning via P2-32, the display of the HMI shows the progress as a percentage from tn000 to tn100.

Press the M button of the HMI to cancel autotuning.

If autotuning completes successfully, the display of the HMI shows the message done.

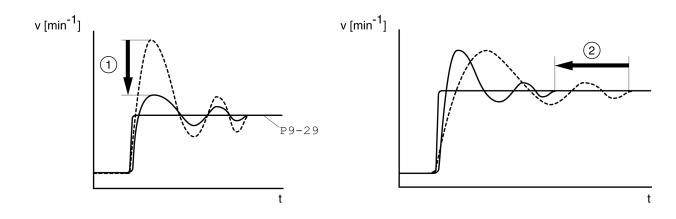
Press the **OK** key of the HMI to save the control loop parameters. The display of the HMI briefly shows the message saved.

Press the M key of the HMI to discard the autotuning results.

If autotuning does not complete successfully, the display of the HMI shows the message ERROR. The cause can be read with the parameter P9-30.

The parameter P9-37 provides additional information on the last event that occurred during autotuning.

Comfort Tuning


Comfort Tuning allows you to select optimization criteria and set values for the movement.

Optimization Criteria for Comfort Tuning

Comfort Tuning allows you to select an optimization criterion for autotuning. The following optimization criteria are available:

- Optimization of the control loop parameters for minimum settling time with vibration suppression
- Optimization of the control loop parameters for minimum overshoot with vibration suppression
- Optimization of the control loop parameters for minimum settling time without vibration suppression
- Optimization of the control loop parameters for minimum overshoot without vibration suppression

The illustration below shows optimization for minimum overshoot and optimization for minimum settling time.

Item	Description
1	Optimization for minimum overshoot
2	Optimization for minimum settling time

Vibration suppression compensates resonance frequencies of the mechanical system. The option Vibration Suppression is available for both optimization criteria.

Parameters for the Movement for Comfort Tuning

The following settings must be made for Comfort Tuning:

- Direction of movement
- Velocity
- Acceleration and deceleration
- Movement range
- Smoothing

These values must be as close as possible to the values used in the actual application. If you enter implausible values, Comfort Tuning is canceled.

Setting the Direction of Movement

Set the direction of movement via the parameter P9-20.

Parameter name	Description	Unit Minimum value Factory setting Maximum value HMI Format	Data type R/W Persistent	Parameter address via fieldbus
P9-20 LTNCYCLE	Autotuning - Direction of Movement This parameter sets the direction of movement for autotuning. Value 0: Both directions of movement Value 2: One direction of movement	- 0 0 3 Decimal	s16 RW -	Modbus A28 _h P-0-3009.0.20

Setting the Velocity

Set the velocity via the parameter P9-29.

The velocity must be between 10 ... 100 % of the nominal velocity $n_{N}^{}.$

Parameter name	Description	Unit Minimum value Factory setting Maximum value HMI Format	Data type R/W Persistent	Parameter address via fieldbus
P9-29 LTNVCRUISE	Autotuning - Velocity Bits 0 15: Velocity for positive direction of movement Bits 16 31: Velocity for negative direction of movement	0.1rpm 0.1rpm - - - Decimal	u32 RW -	Modbus A3A _h P-0-3009.0.29

Setting Acceleration and Deceleration

Set the acceleration and the deceleration with the P9-31 parameter.

The value for the acceleration and the value for the deceleration must be between t_{min} and t_{max} :

$$t_{min} = \frac{100}{90} 20\pi \frac{J_{M} + J_{load}}{M_{max}} \qquad t_{max} = \frac{100}{33} 20\pi \frac{J_{M} + J_{load}}{M_{N}}$$

 J_M = Moment of inertia of the motor in kg cm²

 J_{load} = Moment of inertia of the load in kg cm²

M_{max} = Peak torque in Nm

 M_N = Nominal torque in Nm

Parameter name	Description	Unit Minimum value Factory setting Maximum value HMI Format	Data type R/W Persistent	Parameter address via fieldbus
P9-31 PTACCDEC	Autotuning - Acceleration and Deceleration Bits 0 15: Acceleration for Autotuning Bits 16 31: Deceleration for Autotuning	ms ms 6 6 6000 6000 65500 65500 Decimal	u32 RW -	Modbus A3E _h P-0-3009.0.31

Setting the Movement Range

Set the movement range via parameters P9-26 and P9-27.

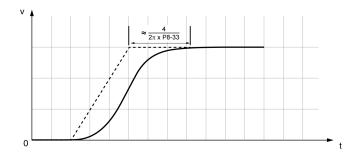
The movement range must be sufficiently large to allow for a constant movement at the set speed in addition to the acceleration phase and the deceleration phase.

Parameter name	Description	Unit Minimum value Factory setting Maximum value HMI Format	Data type R/W Persistent	Parameter address via fieldbus
P9-26 PTPOS	Autotuning - Movement Range in Direction 1 This parameter specifies the movement range for autotuning in direction of movement 1. The sign of the value determines the direction of movement: Positive value: Positive direction of movement as set via parameter P1-01 Negative value: Negative direction of movement as set via parameter P1-01 See parameter P9-20 to select one direction of movement or both directions of movement for Comfort Tuning.	PUU -2147483647 0 2147483647 Decimal	s32 RW -	Modbus A34 _h P-0-3009.0.26
P9-27 PTNEG	Autotuning - Movement Range in Direction 2 This parameter specifies the movement range for autotuning in direction of movement 2. The sign of the value determines the direction of movement: Positive value: Positive direction of movement as set via parameter P1-01 Negative value: Negative direction of movement as set via parameter P1-01 See parameter P9-20 for Comfort Tuning in a single or in both directions of movement. See parameter P9-20 to select one direction of movement or both directions of movement for Comfort Tuning.	PUU -2147483647 0 2147483647 Decimal	s32 RW -	Modbus A36 _h P-0-3009.0.27

Setting Smoothing

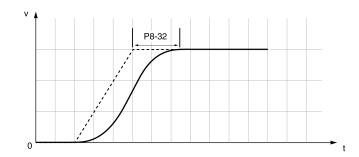
Comfort Tuning uses S-curve smoothing by default. The value for smoothing via the S-curve is optimized during Comfort Tunings.

The parameter P9-23 allows you to change from automatic smoothing to manual smoothing.


The following options are available for manual smoothing:

- No smoothing
- Smoothing via low-pass filter with a fixed value
- Smoothing via S-curve with a fixed value

Parameter name	Description	Unit Minimum value Factory setting Maximum value HMI Format	Data type R/W Persistent	Parameter address via fieldbus
P9-23 LTNSTIFF	Defines which values are used for the position command filters. Value 0: Automatic smoothing via S-curve optimization of the value Value 1: Manual smoothing	- 0 0 1 Decimal	u16 RW -	Modbus A2E _h P-0-3009.0.23
P8-34 MOVESMOOTHM ODE	Smoothing Filter for Value 0: No smoothing Value 1: LPF smoothing Value 2: S-curve smoothing Setting can only be modified if power stage is disabled.	- 0 2 2 Decimal	u16 RW per.	Modbus 944 _h P-0-4008.0.34


The illustration below shows the movement during Comfort Tuning if smoothing via the low-pass filter is used:

Comfort Tuning with smoothing via low-pass filter

Parameter name	Description	Unit Minimum value Factory setting Maximum value HMI Format	Data type R/W Persistent	Parameter address via fieldbus
₽8-33 MOVESMOOTHL PFHZ	Low Pass Filter Setting	Hz 1 5000 500000 Decimal	u32 RW per.	Modbus 942 _h P-0-4008.0.33

The illustration below shows the movement during Comfort Tuning if smoothing via an S-curve is used: Comfort Tuning with smoothing via S-curve

Parameter name	Description	Unit Minimum value Factory setting Maximum value HMI Format	Data type R/W Persistent	Parameter address via fieldbus
P8-32 MOVESMOOTHA VG	S-Curve Setting Setting can only be modified if power stage is disabled. The maximum value is reduced to 12800 if P8-35 CONTROLMODE (high byte) is set to 5.	0.01 ms 25 400 25600 Decimal	u32 RW per.	Modbus 940 _h P-0-4008.0.32

Performing Comfort Tuning

Start Comfort Tuning by selecting the required method via the parameter P2-32.

Parameter name	Description	Unit Minimum value Factory setting Maximum value HMI Format	Data type R/W Persistent	Parameter address via fieldbus
P2-32 ATMODE	Autotuning This parameter is used to start autotuning with the selected autotuning method. Value 0: Stop Autotuning Value 1: Easy Tuning Value 2: Comfort Tuning [minimum settling time, vibration suppression] Value 3: Comfort Tuning [minimum overshoot, vibration suppression] Value 52: Comfort Tuning [minimum settling time, no vibration suppression] Value 53: Comfort Tuning [minimum overshoot, no vibration suppression]	- 0 56 Decimal	u16 RW -	Modbus 340 _h P-0-4002.0.32

If you want Comfort Tuning in both directions, set parameter P9-20 to 0. Then set the parameters P9-26 and P9-27 to the same values, but with different signs (for example, P9-26 = -20000 and P9-27 = +20000). The value determines the movement range in both directions.

If you want Comfort Tuning in a single direction, set parameter P9-20 to 2. Then set the parameters P9-26 and P9-27 to the same values. The sign of the value determines the direction for Comfort Tuning. For example, if you set P9-26 = -20000 and P9-27 = -20000, Comfort Tuning is performed in negative direction of movement with a movement range of 20000 PUU.

NOTE: If you do not enter consistent values for parameters P9-26 and P9-27, the autotuning is unsuccessful. Parameter P9-30 contains the information on the unsuccessful autotuning attempt.

After you have started the required Comfort Tuning method via P2-32, the display of the HMI shows the progress as a percentage from $L n \square \square \square$ to $L n \square \square \square$.

Press the M button of the HMI to cancel autotuning.

If autotuning completes successfully, the display of the HMI shows the message d an E.

Press the OK key of the HMI to save the control loop parameters. The display of the HMI briefly shows the message 5 R V E d.

Press the M key of the HMI to discard the autotuning results.

If autotuning does not complete successfully, the display of the HMI shows the message *E r r b r*. The cause can be read with the parameter P9-30.

The parameter P9-37 provides additional information on the last event that occurred during autotuning.

Manual Tuning

Manual tuning is performed in the operating mode Internal Profile. Manual tuning allows you to perform test movements and optimize the control loop settings using the Scope function.

NOTE: Manual tuning should only be attempted by trained persons who are familiar with and understand the contents of this manual and all other pertinent product documentation. These persons must have sufficient technical training, knowledge, and experience and be able to foresee and detect potential hazards and issues that may be caused by manual tuning, by changing the settings and by the mechanical, electrical, and electronic equipment of the entire system in which the product is used. No responsibility is assumed by Schneider Electric for any consequences arising out of the use of manual tuning.

In addition to the low-pass filter, electronic gear filter function can be used in the following cases:

- Pulse and direction command has a low resolution
- Low rigidity of the coupling between motor and load
- Movement is too short
- Motor is noisy after tuning
- Current is unstable during tuning
- Motor temperature is unusually high

Procedure for Manual Tuning

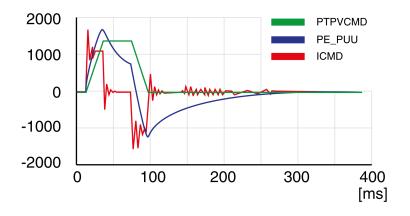
The control loop parameters are tuned in the following sequence:

Step	Item	Parameters
1	Derivative gain <i>(see page 207)</i>	P8-00 (LTND)
2	Low-pass filter <i>(see page 209)</i>	P8-14 (NLFILTDAMPING) P8-15 (NLFILTT1)
3	Retuning of the derivative gain (see page 211)	P8-00 (LTND)
4	Proportional gain (see page 212)	P8-03 (LTNP)
5	Derivative-integral gain (see page 215)	P8-02 (LTNIV)
6	Integral gain (see page 217)	P8-01 (LTNI)
7	Compensation of the flexibility of the mechanical system <i>(see page 218)</i>	P8-05 (NLAFFLPFHZ) P8-20 (NLPEAFF)

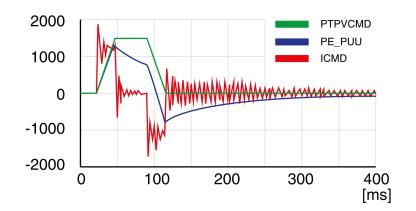
Step 1: Setting the Derivative Gain

The objective of tuning the derivative gain is to achieve a current ripple that is as low as possible. The optimum value primarily depends on the load.

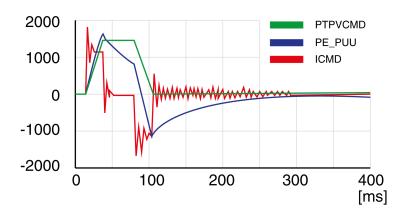
Criteria for a well-tuned derivative gain include:

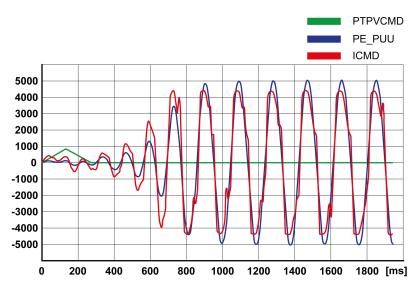

- For loads less than twice the rotor inertia: 5 % of the nominal current may be acceptable
- For greater loads: 10 % of the nominal current may be acceptable

The derivative gain is set via parameter P8-00 (LTND).


Procedure:

- Set the value of parameter P8-03 (LTNP) to 150 (corresponds to 15 Hz).
- Set the value of parameter P8-01 (LTNI) to 0.
- Set the value of parameter P8-02 (LTNIV) to 0.
- Progressively increase the value of parameter P8-00 (LTND) until the oscilloscope shows oscillation of the reference current, P11-11 (TCMD).


Example P8-00 (LTND) set to 1340 (134 Hz)


Example P8-00 (LTND) set too high at 2000 (200 Hz)

Example P8-00 (LTND) OK at 1500 (150 Hz)

Example P8-00 (LTND) set too low at 100 (10 Hz)

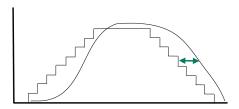
NOTE: The process of tuning requires trials of successive approximations. Values that are too high or too low relative to the other relevant values might cause instability. If it is necessary to have a low or high value of the parameter in the preceding example, you may need to adjust the values of the other relevant parameters to compensate and achieve a stable system.

Step 2: Setting the Low-Pass Filter

Setting the low-pass filter is an optional step in manual tuning of the control loop parameters. The low-pass filter parameters are optimized after you have tuned the derivative gain. The objective of tuning the low-pass filter parameters is to suppress high-frequency resonance and reduce the response time of the control loops to a minimum.

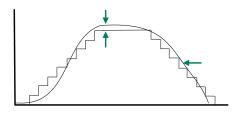
The low-pass filter is set via parameters P8-14 (NLFILTDAMPING) and P8-15 (NLFILTT1).

The parameter P8-14 (NLFILTDAMPING) maintains the bandwidth of the low-pass filter up to the cutoff frequency. The parameter value is expressed as a percentage. The parameter P8-15 (NLFILTT1) sets the inverse frequency of the cutoff frequency. The parameter P8-14 (NLFILTDAMPING) can also be used independently to allow for a certain degree of compensation of system-related bandwidth limits.


Criteria for a well-tuned low-pass filter include:

- The value of parameter P8-14 (NLFILTDAMPING) is as high as possible.
- The value of parameter P8-15 (NLFILTT1) is as low as possible.

When P8-35 (CONTROLMODE) (high byte) is set to 5, the following table presents the values for 10 % overshoot. Set the filter parameter values P8-14 (NLFILTDAMPING) and P8-15 (NLFILTT1) accordingly:


Frequency (Hz)	P8-14 (NLFILTDAMPING) (%)	₽8-15 (NLFILTT1) (ms)
100	98.27	122.86
200	29.3	96.5
300	14.3	95
400	7.9	93.32
500	5.05	91.677
600	3.5	90.03
700	2.566	88.4
800	2	86.934
900	1.6056	85.457
1000	1.31	83.98
1100	1.09	82.45
1200	0.928694	81.1
1300	0.815	79.9
1400	0.7	78.4
1500	0.62	77
1600	0.555	75.97
1700	0.496	74.6
1800	0.439	73
1900	0.406	72.19
2000	0.365	70.5

Electronic gear filter example 1:

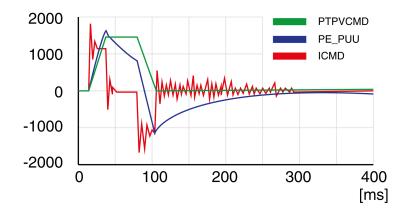
Increasing P8-27 (GEARFILTT1) smooths the input command, but adds a delay.

Electronic gear filter example 2:

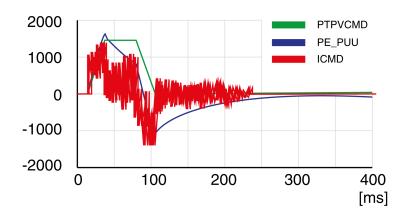
Increasing P8-28 (GEARFILTT2) and P8-29 (GEARFILTVELFF) compensate the delay, but adds overshoots.

If P8-29 (GEARFILTVELFF) has the same value as P8-28 (GEARFILTT2), there is no delay.

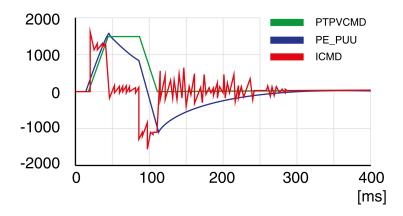
Usual values:


- P8-27 (GEARFILTT1) is usually around 2 times the input step width
- P8-28 (GEARFILTT2) is usually 2 times P8-27 (GEARFILTT1)

NOTE: When a system has multiple axes, gear filter values must be the same for all axes.


Procedure:

- Progressively increase the value of parameter P8-14 (NLFILTDAMPING) until the oscilloscope shows noise and/or oscillation of the reference current, P11-11 (TCMD).
- Progressively decrease the value of parameter P8-15 (NLFILTT1) until the oscilloscope shows noise and/or oscillation of the reference current P11-11 (TCMD).
- Increase the value of parameter $\tt P8-15$ (NLFILTT1) by 20 %, however, by at least 0.05 ms.


Example P8-14 (NLFILTDAMPING) OK (75 %)

Example P8-15 (NLFILTT1) too low (0.5 ms)

Example P8-15 (NLFILTT1) OK (1.2 ms)

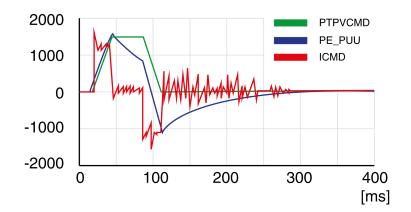
Step 3: Re-Tuning of the Derivative Gain

If you have modified the low-pass filter values in parameters P8-14 (NLFILTDAMPING) and P8-15 (NLFILTT1), the derivative gain can be set to a greater value via parameter P8-00 (LTND). Follow the procedure described in step 1.

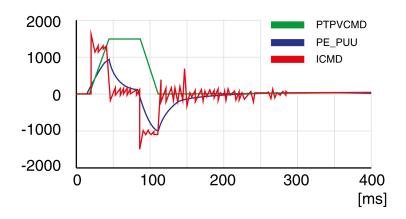
The objective of tuning the proportional gain is to get a constant and low position deviation in the acceleration phase, the constant velocity phase, and the deceleration phase and to have no oscillations during the transitions between these phases. In the oscilloscope, this is indicated by a shape that is as square and as flat as possible.

Criteria for a well-tuned proportional gain include:

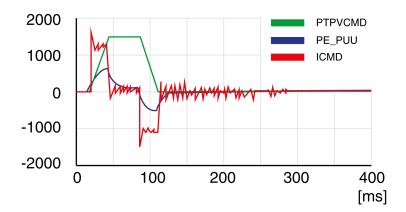
- No or minimum overshoot of position deviation
- No or minimum current ripple
- No or minimum oscillations at standstill

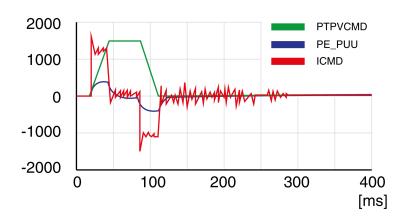

Step 4: Setting the Proportional Gain

The proportional gain is set via parameter P8-03 (LTNP).

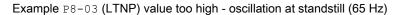

Procedure:

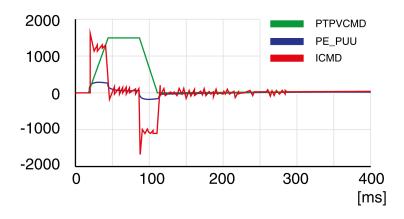
• Progressively increase the value of parameter P8-03 (LTNP) to find the optimum value. The figures below show examples of the plot as the value approaches the optimum value.

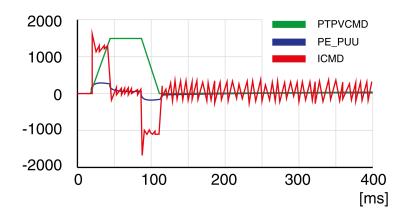

Example P8-03 (LTNP) starting value (13 Hz)



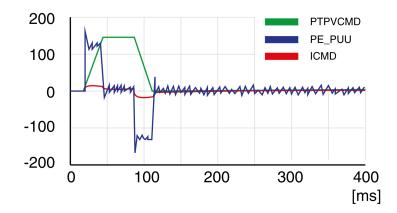
Example P8-03 (LTNP) position deviation decreased (25 Hz)

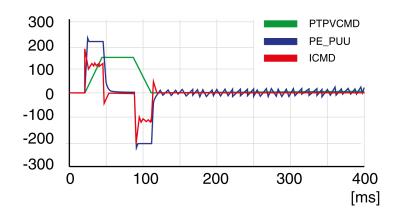



Example P8-03 (LTNP) position deviation further decreased (35 Hz)



Example P8-03 (LTNP) position deviation further decreased (45 Hz)




Example P8-03 (LTNP) value too high - oscillation at standstill (75 Hz)

Example P8-03 (LTNP) value too high - oscillation at standstill, overshoot of position deviation (100 Hz)

Example P8-03 (LTNP) OK (65 Hz)

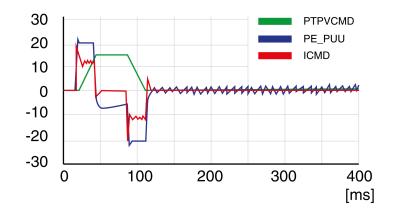
Step 5: Setting the Derivative-Integral Gain

The objective of tuning the derivative-integral gain is to reduce the position deviation. As a general rule, the value for the derivative-integral gain (P8-02LTNIV) is within the following range:

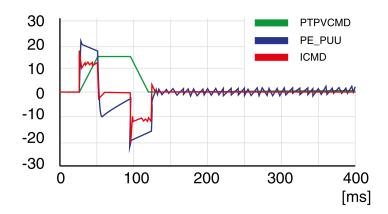
P8-03 (LTNP) / 2 < P8-02 (LTNIV) < 2 x P8-03 (LTNP)

Progressively increasing the value of the derivative-integral gain progressively decreases the position deviation during the acceleration phase, the constant velocity phase, and the deceleration phase.

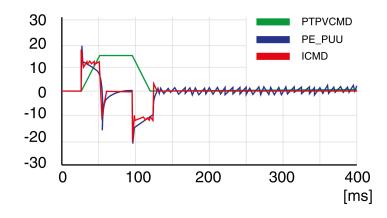
Criteria for a well-tuned derivative-integral gain include:

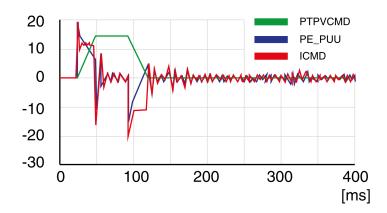

- · Position deviation decreases rapidly after each transition of the movement phases (jerk)
- No or minimum overshoot of position deviation
- No or minimum oscillations during transitions between the movement phases
- Oscillations at standstill as low as possible (+/- 1 encoder increment)

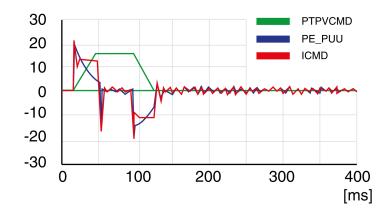
The derivative-integral gain is set via parameter P8-02 (LTNIV).


Procedure:

• Progressively increase the value of parameter P8-02 (LTNIV) to find the optimum value. The figures below show examples of the plot as the value approaches the optimum value.


Example P8-02 (LTNIV) starting value (30 Hz)


Example P8-02 (LTNIV) position deviation decreased (60 Hz)


Example P8-02 (LTNIV) position deviation decreases rapidly when target velocity is reached (90 Hz)

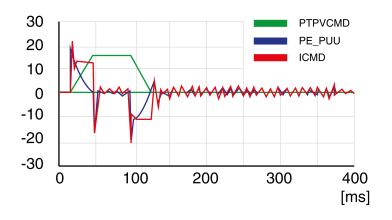
Example P8-02 (LTNIV) value too high - oscillation at standstill, overshoot of position deviation (120 Hz)

Example P8-02 (LTNIV) OK (90 Hz)

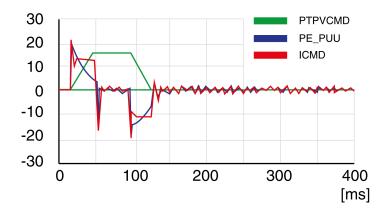
Step 6: Setting the Integral Gain

The objective of tuning the integral gain is to reduce the position deviation during movements and at standstill.

Criteria for a well-tuned integral gain include:


- Position deviation further reduced
- No or minimum overshoot of position deviation at the end of the deceleration phase
- Oscillations at standstill as low as possible (+/- 1 encoder increment)

The integral gain is set via parameter P8-01 (LTNI).


Procedure:

• Progressively increase the value of parameter P8-01 (LTNI) until the oscilloscope shows overshoot or oscillations. The figures below show examples of the plot as the value approaches the optimum value.

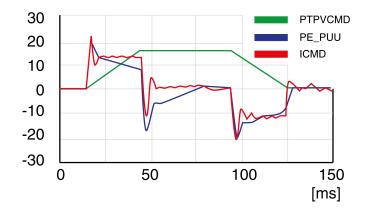
Example P8-01 (LTNI) value too high - oscillation at standstill, overshoot of position deviation (50 Hz)

Example P8-01 (LTNI) OK (25 Hz)

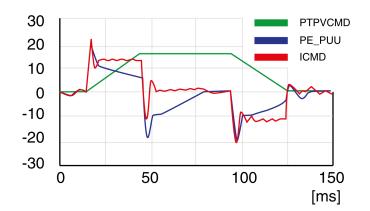
Step 7: Compensation of the Flexibility of the Mechanical System

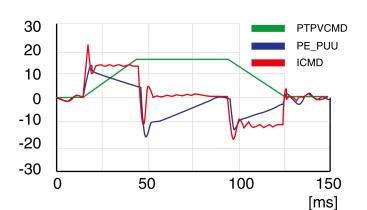
The parameters for compensation of the system flexibility reduce the vibrations caused by abrupt changes in the acceleration (jerk). The parameters can also be used to further minimize overshoot or settling time.

The value of parameter P8-20 (NLPEAFF) reflects the oscillation frequency of the mechanical system, i.e. the coupling between the motor and the load. The coupling can be very rigid (for example, a direct drive or a low-backlash coupling) and less rigid (for example, a belt drive or an elastic coupling). Systems with a high rigidity require a high value. Systems with high load inertia and less rigid couplings require lower values. The less rigid the coupling, the lower this frequency. Depending on the application, the typical value range is 400 ... 30 Hz.

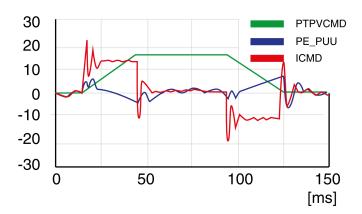

The parameter P8-05 (NLAFFLPFHZ) sets a low-pass filter for the acceleration profile. If the target value has a relatively low resolution, the calculated acceleration may be subject to noise. The low-pass filter set via this parameter can be used to smooth the acceleration profile. The parameter can be used if the flexibility compensation set via parameter P8-20 (NLPEAFF) results in noise.

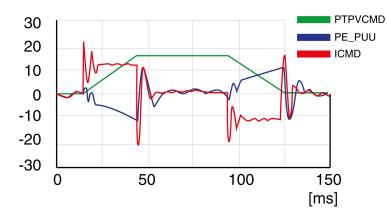
The compensation of the flexibility of the mechanical system is set via parameters P8-05 (NLAFFLPFHZ) and P8-20 (NLPEAFF).


Procedure:


- Set the value of parameter P8-05 (NLAFFLPFHZ) to a value three times as high as that of parameter P8-20 (NLPEAFF). With this value, the bandwidth of this low-pass filter is sufficiently higher than the response time of the system.
- Progressively decrease the value of parameter P8-20 (NLPEAFF) to find the optimum value. The optimum value depends on your optimization criterion: either short settling time or low position deviation. Start with a high frequency of 400 Hz. Decrease the value and compare the amplitudes for the position deviation and the settling time. Select the most suitable value according to your optimization criterion. The figures below show examples of the plot as the value approaches the optimum value.

Example P8-20 (NLPEAFF) without compensation of the flexibility (5000 Hz)


Example P8-20 (NLPEAFF) maximum position deviation decreased (300 Hz)



Example P8-20 (NLPEAFF) maximum position deviation further decreased (220 Hz)

Example P8-20 (NLPEAFF) minimum position deviation, short settling time, oscillation at standstill (120 Hz)

Example P8-20 (NLPEAFF) negative position deviation during acceleration phase (100 Hz)

Part VI Parameters

What Is in This Chapter?

This chapter contains the following topics:

Торіс	Page
Representation of the Parameters	224
P0 - Status Parameters	225
P1 - Basic Parameters	230
P2 - Extended Parameters	238
P3 - Communication Parameters	244
P4 - Diagnostics Parameters	246
P5 - Motion Settings	249
P8 - Control Loops	253
P9 - DTM Data	262

Representation of the Parameters

This chapter provides an overview of the parameters which can be used for operating the product.

Unsuitable settings or unsuitable data may trigger unintended movements, trigger signals, damage parts and disable monitoring functions. Some parameters and other operational data do not become active until after a restart.

WARNING

UNINTENDED EQUIPMENT OPERATION

- Only start the system if there are no persons or obstructions in the zone of operation.
- Do not operate the drive system with undetermined parameter values.
- Never modify a parameter value unless you fully understand the parameter and all effects of the modification.
- Restart the drive and verify the saved operational data and/or parameter values after modification.
- Carefully run tests for all operating states and potential error situations when commissioning, upgrading or otherwise modifying the operation of the drive.
- Verify the functions after replacing the product and also after making modifications to the parameter values and/or other operational data.

Failure to follow these instructions can result in death, serious injury, or equipment damage.

NOTE: Possible values of a parameter that are not described are considered as reserved and must not be used.

Parameter Name

The parameter name uniquely identifies a parameter.

Unit

The unit of the value.

P0 - Status Parameters

P0 - Status Parameters

Parameter name	Description	Unit Minimum value Factory setting Maximum value HMI Format	Data type R/W Persistent	Parameter address via fieldbus
P0-00 VER	Firmware Version	- 0 _h 0 _h FFFF _h Hexadecimal	u16 RO -	Modbus 100 _h IDN P-0-3000.0.0
P0-01 ALE	Error code of detected error This parameter contains the error number of the most recently detected error. For a list of the detected error codes, refer to Error Codes <i>(see page 310)</i> .	- 0 _h 0 _h FFFF _h Hexadecimal	u16 RW -	Modbus 102 _h IDN P-0-3000.0.1
P0-02 STS	Drive Status Displayed by HMI This parameter selects the type of status information to be displayed on the HMI. Example: If the setting is 7, the HMI displays the speed of rotation of the motor. For further information, refer to chapter Status Information via the HMI <i>(see page 187)</i> .	- 0 123 Decimal	u16 RW per.	Modbus 104 _h IDN P-0-3000.0.2
P0-04 FPGAVER	FPGA Version	- 0 _h ⁻ h 0000FFFF _h Hexadecimal	u16 RO -	Modbus 108 _h IDN P-0-3000.0.4
P0-08 TSON	Operating Hour Meter in Seconds	s 0 - 4294967295 Decimal	u32 RO -	Modbus 110 _h IDN P-0-3000.0.8
P0-09 CM1	Status Value 1 This parameter is used to provide the value of one of the status indications in P0-02. The value of this parameter is determined via P0-17. Examples: If the status of the drive is read via the HMI and if P0-02 is set to 23, VAR-1 is displayed for approximately two seconds by the HMI, followed by the value of this parameter. If the setting of P0-17 is 3, reading this parameter displays the actual position in pulses. For reading the status via Modbus, read two 16-bit data stored in the addresses of 0012H and 0013H to generate 32-bit data. (0013H : 0012H) = (high byte : low byte)	- -2147483647 - 2147483647 Decimal	s32 RO -	Modbus 112 _h IDN P-0-3000.0.9
P0-10 CM2	Status Value 2 This parameter is used to provide the value of one of the status indications in P0-02. The value of this parameter is determined via P0-18. See P0-09 for details.	- -2147483647 - 2147483647 Decimal	s32 RO -	Modbus 114 _h IDN P-0-3000.0.10

Parameter name	Description	Unit Minimum value Factory setting Maximum value HMI Format	Data type R/W Persistent	Parameter address via fieldbus
P0-11 CM3	Status Value 3 This parameter is used to provide the value of one of the status indications in P0-02. The value of this parameter is determined via P0-19. See P0-09 for details.	- -2147483647 - 2147483647 Decimal	s32 RO -	Modbus 116 _h IDN P-0-3000.0.11
P0-12 CM4	Status Value 4 This parameter is used to provide the value of one of the status indications in P0-02. The value of this parameter is determined via P0-20. See P0-09 for details.	- -2147483647 - 2147483647 Decimal	s32 RO -	Modbus 118 _h IDN P-0-3000.0.12
P0-13 CM5	Status Value 5 This parameter is used to provide the value of one of the status indications in P0-02. The value of this parameter is determined via P0-21. See P0-09 for details.	- -2147483647 - 2147483647 Decimal	s32 RO -	Modbus 11A _h IDN P-0-3000.0.13
P0-17 CMA1	Indicate status value 1 This parameter is used to select a drive status provided in P0-02. The selected status is indicated via P0-09. Example: If the setting of P0-17 is 7, reading P0-09 returns the speed of rotation of the motor in rpm.	- 0 123 Decimal	u16 RW per.	Modbus 122 _h IDN P-0-3000.0.17
P0-18 CMA2	Indicate status value 2 This parameter is used to select a drive status provided in P0-02. The selected status is indicated via P0-10. See P0-17 for details.	- 0 0 123 Decimal	u16 RW per.	Modbus 124 _h IDN P-0-3000.0.18
P0-19 CMA3	Indicate status value 3 This parameter is used to select a drive status provided in P0-02. The selected status is indicated via P0-11. See P0-17 for details.	- 0 0 123 Decimal	u16 RW per.	Modbus 126 _h IDN P-0-3000.0.19
P0-20 CMA4	Indicate status value 4 This parameter is used to select a drive status provided in P0-02. The selected status is indicated via P0-12. See P0-17 for details.	- 0 0 123 Decimal	u16 RW per.	Modbus 128 _h IDN P-0-3000.0.20
P0-21 CMA5	Indicate status value 5 This parameter is used to select a drive status provided in P0-02. The selected status is indicated via P0-13. See P0-17 for details.	- 0 0 123 Decimal	u16 RW per.	Modbus 12A _h IDN P-0-3000.0.21
P0-25 MAP1	Parameter Mapping 1 The parameters from P0-25 P0-32 are used to read and write the values of parameters with non-consecutive communication addresses. You can set P0-35 P0-42 as the required read and write mapping parameter numbers. When P0-25 P0-32 are read, the read or write values are equivalent to the values of the parameters specified via P0-35 P0-42, and vice versa. See P0-35 for details.	- 0 _h 0 _h FFFFFFF _h Hexadecimal	u32 RW -	Modbus 132 _h IDN P-0-3000.0.25

Parameter name	Description	Unit Minimum value Factory setting Maximum value HMI Format	Data type R/W Persistent	Parameter address via fieldbus
P0-26 MAP2	Parameter Mapping 2 See P0-25 and P0-36 for details.	- 0 _h FFFFFFF _h Hexadecimal	u32 RW -	Modbus 134 _h IDN P-0-3000.0.26
P0-27 MAP3	Parameter Mapping 3 See P0-25 and P0-37 for details.	- 0 _h FFFFFFF _h Hexadecimal	u32 RW -	Modbus 136 _h IDN P-0-3000.0.27
P0-28 MAP4	Parameter Mapping 4 See P0-25 and P0-38 for details.	- 0 _h 0 _h FFFFFFF _h Hexadecimal	u32 RW -	Modbus 138 _h IDN P-0-3000.0.28
P0-29 MAP5	Parameter Mapping 5 See P0-25 and P0-39 for details.	- 0 _h 0 _h FFFFFFF _h Hexadecimal	u32 RW -	Modbus 13A _h IDN P-0-3000.0.29
P0-30 MAP6	Parameter Mapping 6 See P0-25 and P0-40 for details.	- 0 _h 0 _h FFFFFFF _h Hexadecimal	u32 RW -	Modbus 13C _h IDN P-0-3000.0.30
P0-31 MAP7	Parameter Mapping 7 See P0-25 and P0-41 for details.	- 0 _h 0 _h FFFFFFF _h Hexadecimal	u32 RW -	Modbus 13E _h IDN P-0-3000.0.31
P0-32 MAP8	Parameter Mapping 8 See P0-25 and P0-42 for details.	- 0 _h 0 _h FFFFFFF _h Hexadecimal	u32 RW -	Modbus 140 _h IDN P-0-3000.0.32

Parameter name	Description	Unit Minimum value Factory setting Maximum value HMI Format	Data type R/W Persistent	Parameter address via fieldbus
P0-35 MAPA1	Block Data Read/Write P0-35P0-42 1 The parameters P0-35 P0-42 specify the required read and write parameter numbers for P0-25 P0-32. They read and write the values of the parameters whose communication addresses are not consecutive. The read/write parameter can be a single 32-bit parameter or two 16-bit parameters. C5528 A: Parameter group code in hexadecimal format B: Parameter number in hexadecimal format Example: If you want to read and write the value of P1-44 (32-bit parameter) via P0-25, set P0- 35 to 012C012C _h . If you want to read and write the values of P2-02 (16-bit parameter) and P2-04 (16-bit parameter) via P0-25, set P0-35 to 02040202 _h .	- 0 _h 0 _h FFFFFFF _h Hexadecimal	u32 RW per.	Modbus 146 _h IDN P-0-3000.0.35
P0-36 MAPA2	Block Data Read/Write P0-35P0-42 2 See P0-35 for details.	- 0 _h 0 _h FFFFFFF _h Hexadecimal	u32 RW per.	Modbus 148 _h IDN P-0-3000.0.36
P0-37 MAPA3	Block Data Read/Write P0-35…P0-42 3 See P0-35 for details.	- 0 _h 0 _h FFFFFFF _h Hexadecimal	u32 RW per.	Modbus 14A _h IDN P-0-3000.0.37
P0-38 MAPA4	Block Data Read/Write P0-35P0-42 4 See P0-35 for details.	- 0 _h 0 _h FFFFFFF _h Hexadecimal	u32 RW per.	Modbus 14C _h IDN P-0-3000.0.38
P0-39 MAPA5	Block Data Read/Write P0-35P0-42 5 See P0-35 for details.	- 0 _h 0 _h FFFFFFF _h Hexadecimal	u32 RW per.	Modbus 14E _h IDN P-0-3000.0.39
P0-40 MAPA6	Block Data Read/Write P0-35P0-42 6 See P0-35 for details.	- 0 _h 0 _h FFFFFFF _h Hexadecimal	u32 RW per.	Modbus 150 _h IDN P-0-3000.0.40
P0-41 MAPA7	Block Data Read/Write P0-35P0-42 7 See P0-35 for details.	- 0 _h 0 _h FFFFFFF _h Hexadecimal	u32 RW per.	Modbus 152 _h IDN P-0-3000.0.41

Parameter name	Description	Unit Minimum value Factory setting Maximum value HMI Format	Data type R/W Persistent	Parameter address via fieldbus
P0-42 MAPA8	Block Data Read/Write P0-35…P0-42 8 See P0-35 for details.	- 0 _h 0 _h FFFFFFF _h Hexadecimal	u32 RW per.	Modbus 154 _h IDN P-0-3000.0.42
P0-46 SVSTS	State of Signal Output Functions This parameter is used to indicate the state of the signal output function of the drive in hexadecimal format. If the function is assigned to a digital output, it would represent the state of the output given no forcing on the output. Bit 0: SRDY (Servo ready) Bit 1: SON (Servo On) Bit 2: ZSPD (Zero speed) Bit 3: TSPD (Speed reached) Bit 4: TPOS (Movement completed) Bit 5: TQL (Torque Limit Reached) Bit 6: ERR (Error Detected) Bit 7: BRKR (Holding brake control) Bit 8: HOMED_OK (Homing completed) Bit 9: OLW (Motor Overload Alert) Bit 10: WARN (indicates that one of the following conditions has been detected: Hardware limit switch triggered, undervoltage, Nodeguard alert, Operational Stop (OPST)) Bits 11 15: Reserved The parameter can also be read via the fieldbus.	- 0 _h 0 _h FFFF _h Hexadecimal	u16 RO -	Modbus 15C _h IDN P-0-3000.0.46
P0-47 LAST_WRN	Number of Last Alert This parameter contains the number of the last detected alert. After a Fault Reset, the number is cleared.	- 0 _h 0 _F FFFF _h Hexadecimal	u16 RO -	Modbus 15E _h IDN P-0-3000.0.47

P1 - Basic Parameters

P1 - Basic Parameters

Parameter name	Description	Unit Minimum value Factory setting Maximum value HMI Format	Data type R/W Persistent	Parameter address via fieldbus
P1-01 CTL	Operating Mode and Direction of Rotation	- 30 _h 30 _h 1150 _h Hexadecimal	u16 RW per.	Modbus 202 _h IDN P-0-4001.0.1
	 B: Operating mode This indicates which SERCOS III protocol is selected by P3-08 <i>(see page 244).</i> Value 3: Sercos III selected (M262 compatible) Value 5: Sercos III selected (LMC078 compatible) 			
	C: Direction of movement Refer to chapter Verifying the Direction of Movement <i>(see page 193).</i> D: Signal input functions and signal output functions after operating mode switching Value 0: The assignments of the signal input functions and the signal output functions (P2-10 P2-21) remain identical for the new operating mode. Value 1: The assignments of the signal input functions and the signal output functions (P2-10 P2-21)) are set to the default presets of the new operating mode. Refer to chapters Default Presets of the Signal Inputs <i>(see page 274)</i> and Default Presets of the Signal Outputs <i>(see page 276).</i> Modified settings become active the next time the product is powered on.			
P1-02 PSTL	Velocity and Torque Limitations Activation/Deactivation This parameter activates/deactivates velocity limitation and torque limitation.	- 0 _h 0 _h 11 _h Hexadecimal	u16 RW per.	Modbus 204 _h IDN P-0-4001.0.2
	A: Velocity limitation 0: Deactivate 1: Activate (in operating mode SERCOS III T (refer to P1-82)) B: Torque limitation 0: Deactivate 1: Activate (operating modes SERCOS III V (refer to P1-85))			

Parameter name	Description	Unit Minimum value Factory setting Maximum value HMI Format	Data type R/W Persistent	Parameter address via fieldbus
P1-03 AOUT	Polarity of Pulse Outputs	- 0 _h 0 _h 10 _h Hexadecimal	u16 RW per.	Modbus 206 _h IDN P-0-4001.0.3
P1-06 DCOMopmod	SERCOS III Opmode	% -32768 0 32767 Decimal	s16 RO -	Modbus 20C _h IDN P-0-4001.0.6
P1-07 ReactLimSw	Limit Switch Fault Reaction Fault Reaction selection after a limit switch is at active state while the power stage is disabled (Servo On) 1: The drive does not trigger an error 0: The drive triggers an error	- 0 1 1 Decimal	u16 RW per.	Modbus 20E _h IDN P-0-4001.0.7
P1-09 SP1	Velocity Limitation 1	0.1rpm -60000 10000 60000 Decimal	s32 RW per.	Modbus 212 _h IDN P-0-4001.0.9
P1-10 SP2	Velocity Limitation 2	0.1rpm -60000 20000 60000 Decimal	s32 RW per.	Modbus 214 _h IDN P-0-4001.0.10
P1-11 SP3	Velocity Limitation 3	0.1rpm -60000 30000 60000 Decimal	s32 RW per.	Modbus 216 _h IDN P-0-4001.0.11
P1-12 TQ1	Torque Limitation 1 The signal output function TQL is activated if the torque reaches the torque limitations set via the parameters P1-12 P1-14.	% -300 100 300 Decimal	s16 RW per.	Modbus 218 _h IDN P-0-4001.0.12
P1-13 TQ2	Torque Limitation 2 The signal output function TQL is activated if the torque reaches the torque limitations set via the parameters P1-12 P1-14.	% -300 100 300 Decimal	s16 RW per.	Modbus 21A _h IDN P-0-4001.0.13
P1-14 TQ3	Torque Limitation 3 The signal output function TQL is activated if the torque reaches the torque limitations set via the parameters P1-12 P1-14.	% -300 100 300 Decimal	s16 RW per.	Modbus 21C _h IDN P-0-4001.0.14

Parameter name	Description	Unit Minimum value Factory setting Maximum value HMI Format	Data type R/W Persistent	Parameter address via fieldbus
P1-15 LINELOSSMODE	Mains Phase Monitoring - Response to Missing Mains Phase This parameter specifies the response of the drive if the mains phase monitoring function detects an error. Value 0: Detected error if power stage is enabled or disabled Value 1: Detected error if power stage is enabled, alert if power stage is disabled Value 2: Alert if power stage is enabled or disabled	- 0 2 Decimal	u16 RW per.	Modbus 21E _h IDN P-0-4001.0.15
P1-16 LINELOSSRECO VER	Mains Phase Monitoring - Fault Reset This parameter specifies the type of Fault Reset after a detected mains phase error has been removed. Value 0: No automatic Fault Reset Value 1: Automatic Fault Reset	- 0 0 1 Decimal	u16 RW per.	Modbus 220 _h IDN P-0-3001.0.16
P1-17 LINELOSSTYPE	Mains Phase Monitoring - Type This parameter specifies the type of mains phase monitoring Value 0: No mains phase monitoring Value 1: Mains phase monitoring single- phase connection Value 2: Mains phase monitoring three- phase connection	- 0 2 Decimal	u16 RW per.	Modbus 222 _h IDN P-0-3001.0.17
P1-19 DISTIME	Active Disable - Delay Time Power Stage This parameter specifies the delay time between standstill of the motor and disabling the power stage.	ms 0 0 6500 Decimal	u16 RW per.	Modbus 226 _h IDN P-0-4001.0.19
P1-20 ESTOPILIM	Current Limit During Quick Stop This parameter specifies the maximum current during a Quick Stop (expressed as factor of P1-78).	0.001 1 1000 1000 Decimal	s16 RW per.	Modbus 228 _h IDN P-0-4001.0.20
P1-21 FOLD	Status of Foldback Current Drive This parameter indicates whether the foldback current limit is greater than or less than the maximum current of the drive (see P1-78). Value 0: Foldback current limit greater than P1-78 Value 1: Foldback current limit is less than P1-78	- 0 - 1 Decimal	u16 RO -	Modbus 22A _h IDN P-0-4001.0.21
P1-22 IFOLD	Foldback Current Limit - Drive Drive foldback current limit	0.01A 0 - 30000 Decimal	u32 RO -	Modbus 22C _h IDN P-0-4001.0.22
P1-23 IFOLDFTHRESH	Current Monitoring Drive - Detected Error Threshold Foldback Current This parameter specifies the threshold value used by the drive current monitoring function to detect a drive foldback current error.	0.01A 0 - 30000 Decimal	u32 RW per.	Modbus 22E _h IDN P-0-4001.0.23
P1-24 IFOLDWTHRESH	Current Monitoring Drive - Alert Threshold Foldback Current This parameter specifies the threshold value used by the drive current monitoring function to trigger a drive foldback current alert.	0.01A 0 - 30000 Decimal	u32 RW per.	Modbus 230 _h IDN P-0-4001.0.24
P1-25	Reserved	-	-	-

Parameter name	Description	Unit Minimum value Factory setting Maximum value HMI Format	Data type R/W Persistent	Parameter address via fieldbus
P1-26 MIFOLD	Foldback Current Limit - Motor Motor foldback current limit	0.01A 0 - 30000	u32 RO -	Modbus 234 _h IDN P-0-4001.0.26
P1-27 MIFOLDFTHRES H	Motor Current Monitoring - Detected Error Threshold Foldback Current This parameter specifies the threshold value used by the motor current monitoring function to detect a motor foldback current error.	Decimal 0.01A 0 - 30000 Decimal	u32 RW per.	Modbus 236 _h IDN P-0-3001.0.27
P1-28 MIFOLDWTHRES H	Motor Current Monitoring - Alert Threshold Foldback Current This parameter specifies the threshold value used by the motor current monitoring function to trigger a motor foldback current alert.	0.01A 0 - 30000 Decimal	u32 RW per.	Modbus 238 _h IDN P-0-4001.0.28
P1-29 OVTHRESH	DC Bus Overvoltage Monitoring - Threshold This parameter specifies the threshold value used by the DC bus overvoltage monitoring function.	V - - Decimal	u16 RO -	Modbus 23A _h IDN P-0-4001.0.29
P1-30 COMMERRMAXC NT	Commutation Monitoring - Maximum Counter Value	ms 0 0 0 Decimal	u16 RW -	Modbus 23C _h IDN P-0-4001.0.30
P1-32 LSTP	Stop Method This parameter specifies how the motor is stopped if the power stage is to be disabled (includes signal input function OPST) or if an error is detected. Value 0 _h : Deceleration ramp Value 20 _h : Deceleration ramp to velocity P1-38, then coast to stop (actual velocity must be less than the value of P1-38 of 50 ms before coasting to stop starts) Depending on the event that triggered the stop, the following deceleration ramps are used: - Transmission error detected: P5-21 - Position overflow: P5-22 - Triggering of negative software limit switch: P5-23 - Triggering of positive software limit switch: P5-24 - Triggering of positive hardware limit switch: P5-25 - Triggering of positive hardware limit switch: P5-26 - Any other event: P1-68 The delay time between standstill of the motor and disabling the power stage is set via P1-19.	- 0 _h 20 _h Hexadecimal	u16 RW per.	Modbus 240 _h IDN P-0-4001.0.32
P1-34 TACC	Acceleration Period The acceleration period is the time in milliseconds required to accelerate from motor standstill to 6000 rpm.	ms 6 30 65500 Decimal	u16 RW per.	Modbus 244 _h IDN P-0-4001.0.34

Parameter name	Description	Unit Minimum value Factory setting Maximum value HMI Format	Data type R/W Persistent	Parameter address via fieldbus
P1-35 TDEC	Deceleration Period The deceleration period is the time in milliseconds required to decelerate from 6000 rpm to motor standstill.	ms 6 30 65500 Decimal	u16 RW per.	Modbus 246 _h IDN P-0-4001.0.35
P1-37 LMJR	Ratio of Load Inertia to Motor Inertia This parameter specifies the ratio of load inertia to motor inertia (J_load / J_motor). J_load: Total moment of inertia of external mechanical load J_motor: Moment of inertia of motor	0.1 0 10 20000 Decimal	u32 RW per.	Modbus 24A _h IDN P-0-4001.0.37
P1-38 ZSPD	Signal Output Function ZSPD This parameter specifies the velocity for the signal output function ZSPD. The signal output function ZSPD indicates that the velocity of the motor is less than the velocity value set via this parameter.	0.1rpm 0 100 2000 Decimal	s32 RW per.	Modbus 24C _h IDN P-0-3006.0.27
P1-39 SSPD	Signal Output Function TSPD - Velocity This parameter specifies the velocity for the signal output function TSPD. The signal output function TSPD indicates that the velocity of the motor is greater than the velocity value set via this parameter.	rpm 0 3000 5000 Decimal	u32 RW per.	Modbus 24E _h IDN P-0-4001.0.39
P1-42 MBT1	ON Delay Time of Holding Brake This parameter specifies the time between enabling the power stage and starting a movement (opening time for the holding brake).	ms 0 0 1000 Decimal	u16 RW per.	Modbus 254 _h IDN P-0-3005.0.7
P1-44 GR1	Electronic Gear Ratio - Numerator 1 This parameter is used to set the numerator of the gear ratio. The denominator of the gear ratio is set via P1- 45.	- 1 536870911 Decimal	u32 RW per.	Modbus 258 _h IDN P-0-4001.0.44
P1-45 GR2	Electronic Gear Ratio - Denominator This parameter is used to set the denominator of the gear ratio. The numerator of the gear ratio is set via P1-44. Setting can only be modified if power stage is disabled.	- 1 2147483647 Decimal	u32 RW per.	Modbus 25A _h IDN P-0-4001.0.45
P1-46 ENCOUTRES	Number of encoder simulation increments (AB signal) per revolution The calculation of the range of this parameter depends on the value of P1-55. Setting can only be modified if power stage is disabled.	LPR - 2048 - Decimal	s32 RW per.	Modbus 25C _h IDN P-0-4001.0.46
P1-52 REGENRES	Braking Resistor - Resistance This parameter is used to set the resistance of the braking resistor. Value -1: No braking resistor	Ohm -1 - 32767 Decimal	s16 RW per.	Modbus 268 _h IDN P-0-3001.0.52
P1-53 REGENPOW	Braking Resistor - Power This parameter is used to set the power of the braking resistor. Value -1: No braking resistor	W -1 - 32767 Decimal	s16 RW per.	Modbus 26A _h IDN P-0-3001.0.53
P1-54 PER	Signal Output Function TPOS - Trigger Value This parameter specifies the position deviation value used to activate the signal output function TPOS.	PUU 0 1311 1280000 Decimal	u32 RW per.	Modbus 26C _h IDN P-0-3001.0.54

Parameter name	Description	Unit Minimum value Factory setting Maximum value HMI Format	Data type R/W Persistent	Parameter address via fieldbus
P1-55 VLIM	Maximum Velocity - User-Defined This parameter specifies the maximum velocity. Factory setting: maximum motor speed. Setting can only be modified if power stage is disabled.	rpm 10 - 6000 Decimal	u32 RW per.	Modbus 26E _h IDN P-0-3017.0.16
P1-57 CRSHA	Torque Monitoring - Torque Value This parameter is used to configure the torque monitoring function. The torque monitoring function detects an error (AL030) if the torque value set via this parameter is exceeded for a period of time set via P1-58.	% 0 300 Decimal	u16 RW per.	Modbus 272 _h IDN P-0-3001.0.57
P1-58 CRSHT	Torque Monitoring - Time Value This parameter is used to configure the torque monitoring function. The torque monitoring function detects an error (AL030) if the torque value set via P1-57 is exceeded for a period of time set via this parameter.	ms 1 1 1000 Decimal	u16 RW per.	Modbus 274 _h IDN P-0-3001.0.58
P1-59 VELCMDMOVEA VG	S Curve Filter for Operating Mode Velocity This parameter specifies the moving average time in [us] for the S curve filter in the operating mode Velocity. The value of this parameter must be a multiple of 125. This filter changes a linear acceleration into an S curve. Setting can only be modified if power stage is disabled.	us 0 255875 Decimal	u32 RW per.	Modbus 276 _h IDN P-0-3001.0.59
P1-60 COMMERRTTHR ESH	Commutation Monitoring - Time Threshold	ms 0 0 3000 Decimal	u16 RW per.	Modbus 278 _h IDN P-0-3001.0.60
P1-61 COMMERRVTHR ESH	Commutation Monitoring - Velocity Threshold	0.1rpm 0 600 60000 Decimal	u32 RW per.	Modbus 27A _h IDN P-0-3001.0.61
P1-62 THERMODE	Motor Overtemperature Monitoring - Response This parameter specifies the response of the drive if the temperature monitoring function detects motor overtemperature. Value 0: Disable power stage immediately Value 3: Ignore overtemperature Value 4: Alert Value 5: Alert first, then detected error if condition persists after P1-63	- 0 5 Decimal	u16 RW per.	Modbus 27C _h IDN P-0-3001.0.62
P1-63 THERMTIME	Motor Overtemperature Monitoring - Delay Time This parameter specifies the delay time between the detection of motor overtemperature and the transition to the operating state Fault (see P1-62).	s 0 30 300 Decimal	u16 RW per.	Modbus 27E _h IDN P-0-3001.0.63

Parameter name	Description	Unit Minimum value Factory setting Maximum value HMI Format	Data type R/W Persistent	Parameter address via fieldbus
P1-64 UVMODE	Undervoltage Monitoring - Response This parameter specifies the response of the drive if the undervoltage monitoring function detects undervoltage. Value 0: Detected error Value 1: Alert (if power stage is enabled) Value 2: Alert first, then detected error if condition persists after P1-67 (if power stage is enabled) Value 3: Detected error (if power stage is enabled)	- 0 3 Decimal	u16 RW per.	Modbus 280 _h IDN P-0-3001.0.64
P1-66 MFOLD	Status of Foldback Current Motor This parameter indicates whether the foldback current limit is greater than or less than the maximum current of the motor (see P1-78). Value 0: Foldback current limit greater than P1-78 Value 1: Foldback current limit is less than P1-78	- 0 - 1 Decimal	u16 RO -	Modbus 284 _h IDN P-0-3001.0.66
P1-67 UVTIME	Undervoltage Monitoring - Delay Time This parameter specifies the delay time between the detection of an undervoltage condition (displayed as "u")and the response of the drive to this condition as specified in P1-64.	s 0 30 300 Decimal	u16 RW per.	Modbus 286 _h IDN P-0-3001.0.67
P1-68 DECSTOP	Active Disable - Deceleration Ramp This parameter specifies the deceleration ramp for a power stage Disable request, see P1-32.	ms 6 30 65500 Decimal	u16 RW per.	Modbus 288 _h IDN P-0-3001.0.68
P1-69 DECSTOPTIME	Disable - Deceleration Time This parameter specifies the deceleration ramp for a power stage Disable request, see P1-32. If the value of this parameter is not 0, this parameter overrides P1-68. Setting can only be modified if power stage is disabled.	ms 0 0 6500 Decimal	u16 RW per.	Modbus 28A _h IDN P-0-3001.0.69
P1-71 REGENMAXONTI ME	Braking Resistor - Maximum Time in Braking This parameter specifies the maximum time in braking for the braking resistor. The maximum time in braking is the maximum period of time during which the braking resistor may be activated.	ms 10 40 100 Decimal	u16 RW per.	Modbus 28E _h IDN P-0-3001.0.71
P1-72 REGENFLTMODE	Braking Resistor Overload Monitoring - Response This parameter specifies the response of the drive if the braking resistor overload monitoring function detects braking resistor overload. Value 0: Alert Value 1: Detected error	- 0 1 Decimal	u16 RW per.	Modbus 290 _h IDN P-0-3001.0.72
P1-78 ILIM	User-Defined Maximum Current This parameter is specifies a user-defined maximum current for the drive. The maximum value of this parameter is the value of P1-79.	0.01A - - - Decimal	u32 RW per.	Modbus 29C _h IDN P-0-4001.0.78

Parameter name	Description	Unit Minimum value Factory setting Maximum value HMI Format	Data type R/W Persistent	Parameter address via fieldbus
P1-79 IMAX	Maximum Current This parameter indicates the maximum current for a drive / motor combination.	0.01A - - - Decimal	u32 RO -	Modbus 29E _h IDN P-0-3017.0.12
P1-80 DIPEAK	Maximum Peak Current This parameter indicates the maximum peak current of the drive.	0.01A - - - Decimal	u32 RO -	Modbus 2A0 _h IDN P-0-3001.0.80
P1-81 DICONT	Nominal Current This parameter indicates the nominal current of the drive.	0.01A - - - Decimal	u32 RO -	Modbus 2A2 _h IDN P-0-3001.0.81
P1-82 FIELDBUS_VEL_L IMIT	Velocity limitation for operating mode Profile Torque The limitation is effective only if P1-02 is set to 0x0001. Value 0: Value 1: Limitation via P1-09 Value 2: Limitation via P1-10 Value 3: Limitation via P1-11	- 0 3 Decimal	u16 RW per.	Modbus 2A4 _h IDN P-0-3001.0.82
P1-84 CFG_MOTOR	Configured motor type	- 0 - 2147483647 Decimal	u32 RW per.	Modbus 2A8 _h IDN P-0-3001.0.84
P1-85 FIELDBUS_TRQ_ LIMIT	Torque Limit For Modes The limitation is effective only if P1-02 is set to 0x0010. Value 0: Value 1: Limitation via P1-12 Value 2: Limitation via P1-13 Value 3: Limitation via P1-14	- 0 3 Decimal	u16 RW per.	Modbus 2AA _h IDN P-0-3001.0.85
P1-87 I_MAX_QUICK_ST OP	Quick Stop - Maximum Current This parameter is specifies the maximum current at Quick Stop for modes. The limitation is effective only if P3-31 is set to -2 or 7.	0.01A - P1-79 0 Decimal	u32 RW per.	Modbus 2AE _h IDN P-0-3017.0.13

P2 - Extended Parameters

P2 - Extended Parameters

Parameter name	Description	Unit Minimum value Factory setting Maximum value HMI Format	Data type R/W Persistent	Parameter address via fieldbus
P2-01 PPR	Gain Switching - Rate for Position Loop This parameter specifies the gain switching rate for the position loop. The gain switching function is configured via this parameter and parameters P2-05, P2-27 and P2-29.	% 10 100 500 Decimal	u16 RW per.	Modbus 302 _h IDN P-0-4002.0.1
P2-05 SPR	Gain Switching - Rate for Velocity Loop This parameter specifies the gain switching rate for the velocity loop. The gain switching function is configured via this parameter and parameters P2-01, P2-27 and P2-29.	% 10 100 500 Decimal	u16 RW per.	Modbus 30A _h IDN P-0-4002.0.5
P2-08 PCTL	Factory Reset / Save Parameters This parameter provides the following functions: - Reset the parameters to the factory settings - Save the current parameter values The factory settings do not become effective until after you have powered the drive off and on again. Value 10: Reset the parameter values to the factory settings Value 11: Save the parameter values Value 11: Save the parameter values Value 400: Normal digital output control operation mode Value 406: Force output control operation mode NOTE: Value 999 is displayed when the parameter values are successfully saved. Setting can only be modified if power stage is disabled.	- 0 406 Decimal	u16 RW -	Modbus 310 _h IDN P-0-3002.0.8
P2-09 DRT	Debounce Time - Inputs This parameter specifies the debounce time for the digital inputs DI1 DI5 and DI8. See P2-24 for the debounce time for the fast digital inputs DI6 and DI7.	ms 0 2 20 Decimal	u16 RW per.	Modbus 312 _h IDN P-0-3002.0.9

Parameter name	Description	Unit Minimum value Factory setting Maximum value HMI Format	Data type R/W Persistent	Parameter address via fieldbus
P2-10 DITF1	Signal Input Function for DI1 The parameters P2-10 P2-17 are used to assign signal input functions to the digital inputs DI1 DI8 and to configure the type of digital input (normally closed, normally open). A: Signal input functions: For the values, refer to chapter Setting the Digital Signal Inputs <i>(see page 274)</i> . B: Type: 0: Normally closed (contact b) 1: Normally open (contact a) Example: If the setting of P2-10 is 101, the signal input function assigned to digital input 1 is SON (0x01) and the type of contact is a normally open contact. The drive must be restarted after the parameters have been modified. Forcing of digital inputs is configured via P3-06 and activated via P4-07. Setting can only be modified if power stage is disabled.	- 0 _h 146 _h Hexadecimal	u16 RW per.	Modbus 314 _h IDN P-0-3007.0.1
P2-11 DITF2	Signal Input Function for DI2 See P2-10 for details. Setting can only be modified if power stage is disabled.	- 0 _h 100 _h 146 _h Hexadecimal	u16 RW per.	Modbus 316 _h IDN P-0-3007.0.2
P2-12 DITF3	Signal Input Function for DI3 See P2-10 for details. Setting can only be modified if power stage is disabled.	- 0 _h 100 _h 146 _h Hexadecimal	u16 RW per.	Modbus 318 _h IDN P-0-3007.0.3
P2-13 DITF4	Signal Input Function for DI4 See P2-10 for details. Setting can only be modified if power stage is disabled.	- 0 _h 100 _h 146 _h Hexadecimal	u16 RW per.	Modbus 31A _h IDN P-0-3007.0.4
P2-14 DITF5	Signal Input Function for DI5 See P2-10 for details. Setting can only be modified if power stage is disabled.	- 0 _h 24 _h 146 _h Hexadecimal	u16 RW per.	Modbus 31C _h IDN P-0-3007.0.5
P2-15 DITF6	Signal Input Function for DI6 See P2-10 for details. Setting can only be modified if power stage is disabled.	- 0 _h 22 _h 146 _h Hexadecimal	u16 RW per.	Modbus 31E _h IDN P-0-3007.0.6
P2-16 DITF7	Signal Input Function for DI7 See P2-10 for details. Setting can only be modified if power stage is disabled.	- 0 _h 23 _h 146 _h Hexadecimal	u16 RW per.	Modbus 320 _h IDN P-0-3007.0.7
P2-17 DITF8	Signal Input Function for DI8 See P2-10 for details. Setting can only be modified if power stage is disabled.	- 0 _h 21 _h 146 _h Hexadecimal	u16 RW per.	Modbus 322 _h IDN P-0-3007.0.8

Parameter name	Description	Unit Minimum value Factory setting Maximum value HMI Format	Data type R/W Persistent	Parameter address via fieldbus
P2-18 DOTF1	Signal Output Function for DO1 The parameters P2-18 P2-21 are used to assign signal output functions to the digital outputs DO1 DO4 and to configure the type of digital output (normally closed, normally open).	- 0 _h 101 _h 137 _h Hexadecimal	u16 RW per.	Modbus 324 _h IDN P-0-3007.0.9
	$\begin{array}{c c} & & \\ & &$			
	A: Signal output functions: For the values, refer to chapter Setting the Digital Signal Outputs <i>(see page 276).</i> B: Type: 0: Normally closed (contact b) 1: Normally open (contact a) Example: If the setting of P2-18 is 101, the signal output function assigned to digital output 1 is SRDY (0x01) and the type of contact is a normally open contact.			
P2-19 DOTF2	Signal Output Function for DO2 See P2-18 for details.	- 0 _h 100 _h 137 _h Hexadecimal	u16 RW per.	Modbus 326 _h IDN P-0-3002.0.19
P2-20 DOTF3	Signal Output Function for DO3 See P2-18 for details.	- 0 _h 137 _h Hexadecimal	u16 RW per.	Modbus 328 _h IDN P-0-3007.0.10
P2-21 DOTF4	Signal Output Function for DO4 See P2-18 for details.	- 0 _h 100 _h 137 _h Hexadecimal	u16 RW per.	Modbus 32A _h IDN P-0-3007.0.11
P2-23 DOTF6	Signal Output Function for OCZ Only the signal output function ESIM can be assigned to the digital output OCZ. Value 0: Encoder simulation function disabled Value 40 _(h) : Encoder simulation function enabled Use P2-18 for assigning other signal output functions to the other digital outputs DO1 See P2-18 for details.	- 0 _h 40 _h 137 _h Hexadecimal	u16 RO per.	Modbus 32E _h IDN P-0-3007.0.14
P2-24 FDRT	Debounce Time - Fast Inputs This parameter specifies the debounce time for the digital inputs DI6 and DI7. See P2-09 for the debounce time for the digital inputs DI1 DI5 and DI8.	us 0 50 100 Decimal	u16 RW per.	Modbus 330 _h IDN P-0-4002.0.24

Parameter name	Description	Unit Minimum value Factory setting Maximum value HMI Format	Data type R/W Persistent	Parameter address via fieldbus
P2-27 GCC	Gain Switching - Conditions and Type This parameter specifies the conditions for and the type of gain switching. The gain switching function is configured via this parameter and parameters P2-01, P2-05 and P2-29. A: Conditions for gain switching: 0: Disabled 1: Signal input function GAINUP is active 2: In operating modes Profile Position, the position deviation is greater than the value of P2-29	- 0 _h 0 _h 18 _h Hexadecimal	u16 RW per.	Modbus 336 _h IDN P-0-4002.0.27
	 3: Pulse frequency is greater than the value of P2-29 4: Velocity is greater than the value of P2-29 5: Signal input function GAINUP is not active 6: In operating modes Profile Position, the position deviation is less than the value of P2-29 7: Pulse frequency is less than the value of P2-29 8: Velocity is less than the value of P2-29 			
P2-29 GPE	Gain Switching - Comparison Value This parameter specifies the comparison value used for the conditions for gain switching. Depending on the selected condition, the value entered represents the number of pulses (position deviation), the pulse frequency or the velocity. The gain switching function is configured via this parameter and parameters P2-01, P2-05 and P2-27.	- 0 _h 138800 _h 3A9800 _h Hexadecimal	u32 RW per.	Modbus 33A _h IDN P-0-4002.0.29
Р2-30 INH	Auxiliary Functions Value 0: Disabled Value 1: Enable the power stage	- -8 0 8 Decimal	s16 RW -	Modbus 33C _h IDN P-0-4002.0.30
P2-31 LTNEFFORT	Autotuning Optimization Value Threshold This parameter is used to modify the gain.	0.001 100 1000 10000 Decimal	u32 RW -	Modbus 33E _h IDN P-0-4002.0.31

Parameter name	Description	Unit Minimum value Factory setting Maximum value HMI Format	Data type R/W Persistent	Parameter address via fieldbus
P2-32 ATMODE	Autotuning This parameter is used to start autotuning with the selected autotuning method. Value 0: Stop Autotuning Value 1: Easy Tuning Value 2: Comfort Tuning [minimum settling time, vibration suppression] Value 3: Comfort Tuning [minimum overshoot, vibration suppression] Value 52: Comfort Tuning [minimum settling time, no vibration suppression] Value 53: Comfort Tuning [minimum overshoot, no vibration suppression]	- 0 56 Decimal	u16 RW -	Modbus 340 _h IDN P-0-4002.0.32
P2-34 VEMAX	Velocity Monitoring - Threshold Value This parameter specifies the velocity threshold for the velocity monitoring function. If this value is exceeded, error AL555 is detected.	0.1rpm 0 50000 60000 Decimal	u32 RW per.	Modbus 344 _h IDN P-0-4002.0.34
P2-35 PDEV	Position Deviation Monitoring - Threshold Value This parameter specifies the position deviation threshold for the position deviation monitoring function. If this value is exceeded, error AL009 is detected.	10*pulse 1 384000 12800000 Decimal	u32 RW per.	Modbus 346 _h IDN P-0-3006.0.62
P2-50 DCLR	Signal Input Function CLRPOS - Trigger This function is only supported in linear control mode (P8-35=0x4001) This parameter specifies how the signal input function CLRPOSDEV is triggered. The signal input function CLRPOSDEV resets the position deviation to zero. Value 0: Rising edge Value 1: Level	- 0 _h 0 _h 1 _h Hexadecimal	u16 RW per.	Modbus 364 _h IDN P-0-3002.0.50
P2-65 GBIT	Special Function 1 Bits 0 5: Reserved (must be set to 0). Bit 6: Reference pulse monitoring • 0: Function activated • 1: Function deactivated Bit 7: Pulse signal monitoring • 0: Function activated (AL534) • 1: Function deactivated Bit 8: Motor overload monitoring	- 0 _h 200 _h FFC0 _h Hexadecimal	u16 RW per.	Modbus 382 _h IDN P-0-3002.0.65
	 0: Function activated (AL006) 1: Function deactivated Bit 9: Motor phase monitoring 0: Function deactivated 1: Function activated 			

Parameter name	Description	Unit Minimum value Factory setting Maximum value HMI Format	Data type R/W Persistent	Parameter address via fieldbus
P2-65(continued)	 Bit 11: NL(CWL)/PL(CCWL) pulse input inhibit function 0: Function activated 1: Function deactivated If P8-31 is set to 1 or 3 and if a hardware limit switch is triggered, a Fault Reset clears the missing master pulses. Only use the pulse inhibit function with settings 1 or 3 of P8-31 if you do not need a Fault Reset after a detected hardware limit switch error. To achieve this, set the Automatic Fault Reset function of P2-68 to 1. Bit 12: Mains phase monitoring 0: Function activated (AL022) 1: Function deactivated Bit 13: Encoder simulation output monitoring 0: Function activated (AL018) 1: Function deactivated Bit 14: Unit of P8-33 0: P8-33 is in Hz 1: P8-33 is in 0.01Hz Bit 15: Reserved (must be set to 0). 			
P2-66 GBIT2	Special Function 2 Bits 0 1: Reserved (must be set to 0). Bit 2: This bit specifies the type of Fault Reset after a detected undervoltage error has been removed. 0: No automatic Fault Reset 1: Automatic Fault Reset Bits 3 7: Reserved (must be set to 0).	- 0 4 Decimal	u16 RW per.	Modbus 384 _h IDN P-0-3002.0.66
P2-68 AEAL	Auto-Enable and Automatic Hardware Limit Switch Fault Reset X: Reserved Y: Reserved Z: Repeated attempt to overtravel limit switch 0: No detected error 1: Detected error, Fault Reset required Modified settings become active the next time the product is powered on.	- 0 _h 100 _h 111 _h Hexadecimal	u16 RW per.	Modbus 388 _h IDN P-0-3002.0.68

P3 - Communication Parameters

P3 - Communication Parameters

Parameter name	Description	Unit Minimum value Factory setting Maximum value HMI Format	Data type R/W Persistent	Parameter address via fieldbus
P3-00 ADR	Device Address Modbus The device address must be unique. Modified settings become active the next time the product is powered on.	- 1 127 247 Decimal	u16 RW per.	Modbus 400 _h IDN P-0-3003.0.0
P3-01 BRT	Transmission Rate This parameter is used to set the data transmission rate. For further information, refer to chapter Setting the Device Address, Baud Rate and Connection Settings <i>(see page 191).</i> Modified settings become active the next time the product is powered on.	- 0 _h Hexadecimal	u16 RW per.	Modbus 402 _h IDN P-0-3003.0.1
P3-02 PTL	Modbus Connection Settings This parameter specifies the Modbus connection settings. For further information, refer to chapter Setting the Device Address, Baud Rate and Connection Settings <i>(see page 191).</i> Modified settings become active the next time the product is powered on.	- 6 _h 7 _h 9 _h Hexadecimal	u16 RW per.	Modbus 404 _h IDN P-0-3003.0.2
P3-03 FLT	Detected Modbus Communication Errors - Handling This parameter specifies the response of the drive to a detected communication error. Value 0: Detected alert Value 1: Detected error	- 0 _h 0 _h 1 _h Hexadecimal	u16 RW per.	Modbus 406 _h IDN P-0-3003.0.3
P3-04 CWD	Modbus Connection Monitoring This parameter specifies the maximum permissible duration for communication timeout. When this time has elapsed, the communication timeout is treated as a detected error. Setting this parameter to 0 to disables connection monitoring.	ms 0 20000 Decimal	u16 RW per.	Modbus 408 _h IDN P-0-3003.0.4
P3-05 CMM	Device Address This parameter specifies the address of the drive in decimal format. The device address must be unique. Modified settings become active the next time the product is powered on.	- 0 0 127 Decimal	u16 RW per.	Modbus 40A _h IDN P-0-3003.0.5
P3-06 SDI	Digital Inputs - Forcing Settings This parameter determines whether or not a digital input can be forced. Bits 0 7: Digital input DI1 digital input DI8 Bit settings: Value 0: Digital input cannot be forced Value 1: Digital input can be forced To actually start forcing, you must write P4- 07. See P2-10 P2-17 for the assignment of signal input functions to the digital inputs.	- 0 _h 7FF _h Hexadecimal	u16 RW -	Modbus 40C _h IDN P-0-3003.0.6

Parameter name	Description	Unit Minimum value Factory setting Maximum value HMI Format	Data type R/W Persistent	Parameter address via fieldbus
P3-07 CDT	Modbus Response Delay Time This parameter specifies the time delay with which the drive responds to the Modbus master.	0.5ms 0 0 1000 Decimal	u16 RW per.	Modbus 40E _h IDN P-0-3003.0.7
P3-08 PROTOCOL	Fieldbus protocol This parameter specifies the active communication protocol. 2: SERCOS III protocol selected (M262 compatible). 4: SERCOS III protocol selected (LMC078 compatible).	- 2 _h 2 _h 4 _h Hexadecimal	u16 RW per.	Modbus 410 _h IDN P-0-3003.0.8
P3-30 INTRN_LIM_SRC	Internal Limit for Bit 11 Status Word S-0- 0135 This parameter assigns a status information to bit 11 (internal limit active) of the parameter Status Word S-0-0135. Value 0: None: Not used (reserved) Value 1: Current Below Threshold: Current threshold value Value 2: Velocity Below Threshold: Velocity threshold value Value 3: In Position Deviation Window: Position deviation window Value 4: In Velocity Deviation Window: Velocity deviation window Value 9: Hardware Limit Switch: Hardware limit switch Value 11: Position Window: Position window	- 0 11 Decimal	u16 RW per.	Modbus 43C _h IDN P-0-3003.0.30
P3-31 QSOC	Settings for operating state Quick Stop Value -2: Slow down on torque ramp and switch to Operating State Fault Value -1: Slow down on Quick Stop ramp and switch to Operating State Fault Value 6: Slow down on Quick Stop ramp and stay in Quick stop Active Value 7: Slow down on current limit and stay in Quick stop Active	- -2 6 7 Decimal	s16 RW per.	Modbus 43E _h IDN P-0-3003.0.31
P3-32 SOD2RTSO	Automatic operating state transition from Switch On Disabled to Ready To Switch On Value 0: Automatic transition Value 1: Transition according to value of SERCOS III control word	- 0 _h 0 _h 1 _h Hexadecimal	u16 RW per.	Modbus 440 _h IDN P-0-3003.0.32
P3-33 FBCOMSTATUS	Fieldbus Communication Status Value 0: CP0 Value 1: CP1 Value 2: CP2 Value 3: CP3 Value 4: CP4 Value 5: NRT Value 6: HOTPLUG	- 0 - 6 Decimal	S16 RO -	Modbus 442 _h IDN P-0-3003.0.33

P4 - Diagnostics Parameters

P4 - Diagnostics Parameters

Parameter name	Description	Unit Minimum value Factory setting Maximum value HMI Format	Data type R/W Persistent	Parameter address via fieldbus
₽4-00 ASH1	Error History - Error Code of Most Recent Detected Error n This parameter indicates the error code of the most recent detected error. Writing 0 to this parameter clears the error history.	- 0 _h 0 _h FFFF _h Hexadecimal	u16 RW -	Modbus 500 _h IDN P-0-3004.0.0
P4-01 ASH2	Error History - Error Code of Most Recent Detected Error n - 1 This parameter indicates the error code of the detected error n-1, n being the most recent detected error.	- 0 _h 0 _h FFFF _h Hexadecimal	u16 RO -	Modbus 502 _h IDN P-0-3004.1.1
P4-02 ASH3	Error History - Error Code of Most Recent Detected Error n - 2 This parameter indicates the error code of the detected error n-2, n being the most recent detected error.	- 0 _h 0 _h FFFF _h Hexadecimal	u16 RO -	Modbus 504 _h IDN P-0-4004.0.2
P4-03 ASH4	Error History - Error Code of Most Recent Detected Error n - 3 This parameter indicates the error code of the detected error n-3, n being the most recent detected error.	- 0 _h 0 _h FFFF _h Hexadecimal	u16 RO -	Modbus 506 _h IDN P-0-4004.0.3
P4-04 ASH5	Error History - Error Code of Most Recent Detected Error n - 4 This parameter indicates the error code of the detected error n-4, n being the most recent detected error.	- 0 _h 0 _h FFFF _h Hexadecimal	u16 RO -	Modbus 508 _h IDN P-0-4004.0.4
P4-05 JOG	Jog Velocity For further information, refer to chapter Jog Operation <i>(see page 296)</i> .	rpm 0 20 5000 Decimal	u32 RW per.	Modbus 50A _h IDN P-0-4004.0.5
P4-06 FOT	Forcing Matrix of Digital Outputs This parameter lets you set those signal outputs whose signal output functions have been set to SDO_0 SDO_3. Bit 0 = 1 sets those signal outputs whose signal output function has been set to SDO_0. Bit 1 = 1 sets those signal outputs whose signal output function has been set to SDO_1. Bit 2 = 1 sets those signal outputs whose signal output function has been set to SDO_2. Bit 3 = 1 sets those signal outputs whose signal output function has been set to SDO_2. Bit 3 = 1 sets those signal outputs whose signal output function has been set to SDO_3. See P2-18 P2-21 for assigning the functions to the digital outputs.	- 0 _h FF _h Hexadecimal	u16 RW -	Modbus 50C _h IDN P-0-3004.0.6

Parameter name	Description	Unit Minimum value Factory setting Maximum value HMI Format	Data type R/W Persistent	Parameter address via fieldbus
P4-07 ITST	State of Digital Inputs / Activate Forcing A read access to this parameter indicates the state of the digital inputs in the form of a bit pattern. Example: Read value 0x0011: Digital inputs 1 and 5 are logical 1 By writing this parameter, you can modify the state of the inputs provided that the setting for the corresponding input in P3-06 allows for forcing (value 1 for the bit corresponding to the input). Example: Write value 0x0011: Digital inputs 1 and 5 are set to logical 1, regardless of the previous state See P3-06 for permitting forcing of individual digital inputs. See P2-10 P2-17 for the assignment of signal input functions to the digital inputs.	- 0 _h FF _h Hexadecimal	u16 RW -	Modbus 50E _h IDN P-0-3008.0.15
P4-08 PKEY	Status of HMI Keypad This parameter is used to verify proper operation of the keys on the HMI keypad of the drive As a bitwise: • "1" - key is pressed, • "0" - key is released. When: • S key is indicated by bit0 • M key is indicated by bit1 • UP key is indicated by bit2 • DOWN key is indicated by bit3 • ENT key is indicated by bit4	- 0 _h 0 _h FF _h Hexadecimal	u16 RO -	Modbus 510 _h IDN P-0-4004.0.8
P4-09 MOT	State of Digital Outputs This parameter indicates the state of the digital outputs DO1DO6. Bit 0 = 1: DO1 is activated Bit 1 = 1: DO2 is activated Bit 2 = 1: DO3 is activated Bit 3 = 1: DO4 is activated Bit 4 = 1: Reserved Bit 5 = 1: OCZ is activated	- 0 _h 0 _h 3F _h Hexadecimal	u16 RO -	Modbus 512 _h IDN P-0-3008.0.16
P4-10 FLTHISTCLR	Clear Error History Writing 0 to this parameter clears the error history.	- 0 0 0 Decimal	u16 RW -	Modbus 514 _h IDN P-0-4004.0.10
P4-24 LVL	Undervoltage Monitoring - Threshold Value This parameter specifies the threshold value for DC bus undervoltage monitoring. If the DC Bus voltage is less than the value of P4-24 x $\sqrt{2}$, the error AL003 is detected.	V 140 160 190 Decimal	u16 RW per.	Modbus 530 _h IDN P-0-3004.0.24
P4-25 STO	Safety Function STO - Status This parameter indicates the status of the safety function STO. Bit 0 = 0: Safety function STO triggered Bit 0 = 1: Safety function STO not triggered or deactivated via jumper at CN9	- 0 - 1 Decimal	u16 RO -	Modbus 532 _h IDN P-0-3004.0.25

Parameter name	Description	Unit Minimum value Factory setting Maximum value HMI Format	Data type R/W Persistent	Parameter address via fieldbus
P4-26 DO_FORCEABLE	Forceable digital outputs This parameter shows whether or not a digital output can be forced. Bits 0 3: Digital output DO1 digital output DO4 Bit settings: Value 0: Digital output cannot be forced Value 1: Digital output can be forced	- F _h F _h Hexadecimal	u16 RO -	Modbus 534 _h IDN P-0-3004.0.26
P4-27 DO_FORCE_MAS K	Digital output force mask This parameter contains a mask that determines whether or not a digital output can be forced. Bits 0 3: Digital output DO1 digital output DO4 Bit settings: Value 0: Digital output cannot be forced Value 1: Digital output can be forced To actually start forcing, you must write P4- 28. See P2-18 P2-21 for the assignment of signal output functions to the digital outputs.	- 0 _h F _h Hexadecimal	u16 RW -	Modbus 536 _h IDN P-0-3004.0.27
P4-28 DO_FORCE_VAL UE	Digital output force value A read access to this parameter indicates the state of the digital outputs in the form of a bit pattern. Example: Read value 0x0011: Digital output 1 is logical 1 By writing this parameter, you can modify the state of the outputs provided that the setting for the corresponding output in P4- 27 allows for forcing (value 1 for the bit corresponding to the output). Example: Write value 0x0011: Digital output 1 is set to logical 1, regardless of the previous state See P4-27 for permitting forcing of individual digital outputs. See P2-18 P2-21 for the assignment of signal output functions to the digital outputs.	- 0 _h F _h Hexadecimal	u16 RW -	Modbus 538 _h IDN P-0-3004.0.28
P4-29 LOAD_PERIOD_T IME	Motor Load Period Time This parameter specifies the time period in which the average load will be calculated. Modified settings become active the next time the product is powered on.	ms 1 5000 100000 Decimal	u32 RW per.	Modbus 53A _h IDN P-0-3004.0.29

P5 - Motion Settings

P5- Motion Settings

Parameter name	Description	Unit Minimum value Factory setting Maximum value HMI Format	Data type R/W Persistent	Parameter address via fieldbus
P5-00 REV	Firmware Revision This parameter contains the revision number of the firmware.	- 0 _h 0 _h FFFF _h Hexadecimal	u16 RO -	Modbus 600 _h IDN P-0-3005.0.0
P5-04 HMOV	Homing - Homing Method Selection This parameter is used to select the homing method and configure the behavior of the index pulse and the limit switches. For further information, refer to chapter Operating Mode <i>(see page 289)</i> . Setting can only be modified if power stage is disabled.	- 1 _h 18 _h 35 _h Decimal	u16 RW per.	Modbus 608 _h IDN P-0-3027.0.12
P5-05 HOMESPEED1	Homing - Fast Velocity for Reference Movement	0.1rpm 10 1000 60000 Decimal	u32 RW per.	Modbus 60A _h IDN P-0-3040.0.4
P5-06 HOMESPEED2	Homing - Slow Velocity for Reference Movement	0.1rpm 10 200 60000 Decimal	u32 RW per.	Modbus 60C _h IDN P-0-3040.0.5
P5-08 POSLIMPOS	Positive Software Limit Switch - Position Prerequisite: Software limit switches only work with a valid zero point. Setting can only be modified if power stage is disabled.	PUU -2147483647 134217727 2147483647 Decimal	s32 RW per.	Modbus 610 _h IDN P-0-4005.0.8
P5-09 POSLIMNEG	Negative Software Limit Switch - Position Prerequisite: Software limit switches only work with a valid zero point. Setting can only be modified if power stage is disabled.	PUU -2147483647 -134217727 2147483647 Decimal	s32 RW per.	Modbus 612 _h IDN P-0-4005.0.9
P5-11 POSLIMHYST	Software Limit Switches - Hysteresis Value This parameter specifies a hysteresis value for the software limit switches. Setting can only be modified if power stage is disabled.	PULSE 0 3556 35555 Decimal	u16 RW per.	Modbus 616 _h IDN P-0-3005.2.11
P5-12 PROBE_1_LVL_P RD	Touch Probe Input 1 - Stable Level Duration This parameter specifies the period of time for which the level at Touch Probe input 1 must be stable.	31.25 μs 2 5 32 Decimal	u16 RW per.	Modbus 618 _h IDN P-0-4005.0.12

Parameter name	Description	Unit Minimum value Factory setting Maximum value HMI Format	Data type R/W Persistent	Parameter address via fieldbus
P5-13 POSLIMMODE	 Position Limiting Mode This parameter activates/deactivates the software limit switches and the homing transient limits. Value 0: Deactivate software limit switches. Activate homing transient limits. Value 1: Activate software limit switches. Activate homing transient limits. Value 2: Deactivate software limit switches. Deactivate homing transient limits. Value 2: Deactivate software limit switches. Deactivate software limit switches. Deactivate homing transient limits. Value 3: Activate homing transient limits. 	- 0 2 3 Decimal	u16 RW per.	Modbus 61A _h IDN P-0-4005.0.13
P5-14 ICMDSLOPE	NOTE: Software limit switches only work with a valid zero point. Motion Profile for Torque - Slope This parameter specifies the slope of the motion profile for torque.	mA/s 1 100000 3000000 Decimal	u32 RW per.	Modbus 61C _h IDN P-0-3006.0.42
P5-15 ICMDSLOPEEN	Motion Profile for Torque - Activation This parameter activates the motion profile for torque. Value 0: Deactivate Value 1: Activate Setting can only be modified if power stage is disabled.	- 0 0 1 Decimal	u16 RW per.	Modbus 61E _h IDN P-0-3006.0.44
P5-16 AXEN	Encoder Increments in PUU Setting can only be modified if power stage is disabled. This parameter specifies an offset to the encoder position.	PUU -2147483647 0 2147483647 Decimal	s32 RW -	Modbus 620 _h IDN P-0-4005.0.16
P5-18 AXPC	External Encoder (Pulses) This parameter contains the cumulated pluses counted at the PTI input multiplied by 16 since the drive has been switched on.	- -2147483648 - 2147483647 Decimal	s32 RO -	Modbus 624 _h IDN P-0-4005.0.18
P5-21 CTO	Deceleration Ramp - Detected Transmission Error This parameter specifies the deceleration ramp for a stop triggered if a transmission error is detected. The deceleration period is the time in milliseconds required to decelerate from 6000 rpm to motor standstill. It is used to set the deceleration ramp.	ms 6 50 65500 Decimal	u16 RW per.	Modbus 62A _h IDN P-0-3005.0.21
P5-22 OVF	Deceleration Ramp - Position Overflow This parameter specifies the deceleration ramp for a stop triggered if a position overflow is detected. The deceleration period is the time in milliseconds required to decelerate from 6000 rpm to motor standstill. It is used to set the deceleration ramp.	ms 6 30 65500 Decimal	u16 RW per.	Modbus 62C _h IDN P-0-4005.0.22

Parameter name	Description	Unit Minimum value Factory setting Maximum value HMI Format	Data type R/W Persistent	Parameter address via fieldbus
P5-23 SNL	Deceleration Ramp - Triggering of Negative Software Limit Switch This parameter specifies the deceleration ramp for a stop triggered if the negative software limit switch is activated. The deceleration period is the time in milliseconds required to decelerate from 6000 rpm to motor standstill. It is used to set the deceleration ramp.	ms 6 50 65500 Decimal	u16 RW per.	Modbus 62E _h IDN P-0-3005.0.23
₽5-24 SPL	Deceleration Ramp - Triggering of Positive Software Limit Switch This parameter specifies the deceleration ramp for a stop triggered if the positive software limit switch is activated. The deceleration period is the time in milliseconds required to decelerate from 6000 rpm to motor standstill. It is used to set the deceleration ramp.	ms 6 50 65500 Decimal	u16 RW per.	Modbus 630 _h IDN P-0-3005.0.24
₽5-25 NL	Deceleration Ramp - Triggering of Negative Hardware Limit Switch This parameter specifies the deceleration ramp for a stop triggered if the negative hardware limit switch is activated. The deceleration period is the time in milliseconds required to decelerate from 6000 rpm to motor standstill. It is used to set the deceleration ramp.	ms 6 30 65500 Decimal	u16 RW per.	Modbus 632 _h IDN P-0-4005.0.25
P5-26 PL	Deceleration Ramp - Triggering of Positive Hardware Limit Switch This parameter specifies the deceleration ramp for a stop triggered if the positive hardware limit switch is activated. The deceleration period is the time in milliseconds required to decelerate from 6000 rpm to motor standstill. It is used to set the deceleration ramp.	ms 6 30 65500 Decimal	u16 RW per.	Modbus 634 _h IDN P-0-4005.0.26
P5-35 PROBES_POLARI TY	Touch Probes Polarity This parameter specifies the touch probes polarity.	- 0 - 3 Decimal	u16 RO per.	Modbus 646 _h IDN P-0-4005.0.35
P5-36 CAAX_FIELDBUS	Touch Probe Input 1 - Captured Position SERCOS III Units This parameter contains the position captured at Touch Probe input 1.	Fieldbus PU -2147483647 - 2147483647 Decimal	s32 RO per.	Modbus 648 _h IDN P-0-4005.0.36
P5-37 CAAX	Touch Probe Input 1 - Captured Position This parameter contains the position captured at Touch Probe input 1.	PUU -2147483647 0 2147483647 Decimal	s32 RO -	Modbus 64A _h IDN P-0-4005.0.37
P5-38 PROBE1_CNTR	Touch Probe Input 1 - Event Counter The value is increased by 1 each time a position has been captured at Touch Probe input 1.	- 0 0 65535 Decimal	u16 RO -	Modbus 64C _h IDN P-0-4005.0.38

Parameter name	Description	Unit Minimum value Factory setting Maximum value HMI Format	Data type R/W Persistent	Parameter address via fieldbus
P5-39 CACT	Touch Probe Input 1 - Configuration X: Activate/deactivate position capture 0: Deactivate 1: Activate (is reset to 0 when the counter in P5-38 is incremented) Y: Reserved U: Reserved Z: Polarity of Touch Probe input 0: Normally open 1: Normally closed Where X is the least significant half-byte and U is the most significant half-byte of the X/Y/U/Z Integer.	- 0 _h 101 _h Hexadecimal	u16 RW -	Modbus 64E _h IDN P-0-4005.0.39
P5-56 CAAX2_FIELDBU S	Touch Probe Input 2 - Captured Position SERCOS III Units This parameter contains the position captured at Touch Probe input 2.	Fieldbus PU -2147483647 - 2147483647 Decimal	s32 RO per.	Modbus 670 _h IDN P-0-3005.0.56
P5-57 CAAX2	Touch Probe Input 2 - Captured Position This parameter contains the position captured at Touch Probe input 2.	PUU -2147483647 0 2147483647 Decimal	s32 RO -	Modbus 672 _h IDN P-0-3005.0.57
P5-58 PROBE2_CNTR	Touch Probe Input 2 - Event Counter The value is increased by 1 each time a position has been captured at Touch Probe input 2.	- 0 0 65535 Decimal	u16 RO -	Modbus 674 _h IDN P-0-3005.0.58
P5-59 CACT2	Touch Probe Input 2 - Configuration X: Activate/deactivate position capture 0: Deactivate 1: Activate (is reset to 0 when the counter in P5-58 is incremented) Y: Reserved Z: Polarity of Touch Probe input 0: Normally open 1: Normally closed U: Reserved	- 0 _h 0 _h 101 _h Hexadecimal	u16 RW -	Modbus 676 _h IDN P-0-3005.0.59
P5-76 HOME_OFFSET_ MOVE	Move Home Offset When Homing This parameter activate/deactivate a movement to a configured home offset position when the homing position is reached.	- 0 0 1 Decimal	u16 RW per.	Modbus 698 _h IDN P-0-3005.0.76
P5-77 PROBE_2_LVL_P RD	Touch Probe Input 2 - Stable Level Duration This parameter specifies the period of time for which the level at Touch Probe input 2 must be stable.	31.25 μs 2 5 32 Decimal	u16 RW per.	Modbus 69A _h IDN P-0-3005.0.77

P8 - Control Loops

P8 - Control Loops

Parameter name	Description	Unit Minimum value Factory setting Maximum value HMI Format	Data type R/W Persistent	Parameter address via fieldbus
P8-00 LTND	Derivative Gain0.1This parameter is used to adjust the derivative gain. Refer to chapter Manual Tuning <i>(see page 206).</i> 800 200 200		u32 RW per.	Modbus 900 _h IDN P-0-3008.0.0
P8-01 LTNI	Integral Gain This parameter is used to adjust the integral gain. Refer to chapter Manual Tuning <i>(see page 206)</i> .	This parameter is used to adjust the0integral gain. Refer to chapter Manual100		Modbus 902 _h IDN P-0-3008.1.1
P8-02 LTNIV	Derivative-Integral Gain This parameter is used to adjust the derivative-integral gain. Refer to chapter Manual Tuning <i>(see page 206)</i> .	0.1Hz 0 400 4000 Decimal	u32 RW per.	Modbus 904 _h IDN P-0-3008.0.2
P8-03 LTNP	Proportional Gain This parameter is used to adjust the proportional gain. Refer to chapter Manual Tuning <i>(see page 206)</i> .	0.1Hz 0 300 4000 Decimal	u32 RW per.	Modbus 906 _h IDN P-0-3008.0.3
P8-04 LTNUSERGAIN	Global Gain	0.001 100 500 3000 Decimal	u32 RW per.	Modbus 908 _h IDN P-0-3008.0.4
P8-05 NLAFFLPFHZ	LTN Spring Filter This parameter is used to set a low-pass filter for the acceleration profile during tuning. Refer to chapter Manual Tuning <i>(see page 206).</i>	Hz 10 7000 7000 Decimal	u16 RW per.	Modbus 90A _h IDN P-0-3008.0.5
P8-06 NLANTIVIBGAIN	Anti-Vibration Gain	Rad*10-3/N 0 0 10000 Decimal	u32 RW per.	Modbus 90C _h IDN P-0-3008.0.6
P8-07 NLANTIVIBGAIN2	Pe filter This parameter is used to set the gain of the Pe filter.	0.001 0 99000 Decimal	u32 RW per.	Modbus 90E _h IDN P-0-3008.0.7
P8-08 NLANTIVIBHZ	Anti-Vibration Filter This parameter is used to set the frequency to remove while using the anti-vibration filter.	0.1Hz 50 4000 4000 Decimal	u32 RW per.	Modbus 910 _h IDN P-0-3008.0.8
P8-09 NLANTIVIBHZ2	Pe filter This parameter is used to set the frequency to remove with the Pe filter.	0.1Hz 50 4000 8000 Decimal	u32 RW per.	Modbus 912 _h IDN P-0-3008.0.9
P8-10 NLANTIVIBLMJR	Ratio of Load Inertia to Motor Inertia for Anti-Vibration Expert parameter for the internal control loop.	0.1 0 0 6000 Decimal	u32 RW per.	Modbus 914 _h IDN P-0-4008.0.10

Parameter name	Description	Unit Minimum value Factory setting Maximum value HMI Format	Data type R/W Persistent	Parameter address via fieldbus	
P8-11 NLANTIVIBN	NL Anti-Resonance Filter Divider Expert parameter for the internal control loop.	0.01 1 200 10000 Decimal	u32 RW per.	Modbus 916 _h IDN P-0-4008.0.11	
P8-12 NLANTIVIBSHAR P	Anti-Resonance Sharpness Expert parameter for the internal control loop.	0.001 10 500 10000 Decimal	u16 RW per.	Modbus 918 _h IDN P-0-4008.0.12	
P8-13 NLANTIVIBSHAR P2	Pe Sharpness This parameter is used to optimize the Pe filter action.	0.001 10 500 10000 Decimal	u16 RW per.	Modbus 91A _h IDN P-0-4008.0.13	
P8-14 NLFILTDAMPING	Current Filter Damping For further details, refer to Manual Tuning <i>(see page 206).</i>	% 0 0 100 Decimal	u16 RW per.	Modbus 91C _h IDN P-0-3008.0.14	
P8-15 NLFILTT1	Current Filter Low Pass Filter Rise Time For further details, refer to Manual Tuning <i>(see page 206).</i>	0.01ms 0 300 3000 Decimal	u16 RW per.	Modbus 91E _h IDN P-0-3008.1.15	
P8-16 NLNOTCH2BW	Current Filter - Second Notch Filter Bandwidth	Hz 0 0 500 Decimal	u16 RW per.	Modbus 920 _h IDN P-0-3008.1.16	
P8-17 NLNOTCH2CENT ER	Current Filter - Second Notch Filter Center	Hz 5 100 1800 Decimal	u16 RW per.	Modbus 922 _h IDN P-0-3008.1.17	
P8-18 NLNOTCHBW	Current Filter - Notch Filter Bandwidth	Hz 0 0 500 Decimal	u16 RW per.	Modbus 924 _h IDN P-0-4008.0.18	
P8-19 NLNOTCHCENTE R	Current Filter - Notch Filter Center For further details, refer to Manual Tuning <i>(see page 206).</i>	Hz 5 100 1800 Decimal	u16 RW per.	Modbus 926 _h IDN P-0-4008.0.19	
P8-20 NLPEAFF	Elasticity Compensation This parameter is used in the compensation of the elasticity of the mechanical system. For further details, refer to Manual Tuning <i>(see page 206).</i>	0.1Hz 0 50000 50000 Decimal	u32 RW per.	Modbus 928 _h IDN P-0-3008.0.20	
P8-21 NLPEDFFRATIO	Spring Deceleration Ratio This parameter is used in the compensation of the elasticity of the mechanical system. For further details, refer to Manual Tuning <i>(see page 206)</i> .	0.001 0 1000 2000 Decimal	u16 RW per.	Modbus 92A _h IDN P-0-3008.0.21	

Parameter name	Description	Unit Minimum value Factory setting Maximum value HMI Format	Data type R/W Persistent	Parameter address via fieldbus
P8-32 MOVESMOOTHA VG	S-Curve Setting Setting can only be modified if power stage is disabled. The maximum value is reduced to 12800 if P8-35 CONTROLMODE (high byte) is set to 5.	0.01ms 25 400 25600 Decimal	u32 RW per.	Modbus 940 _h IDN P-0-4008.0.32
P8-33 MOVESMOOTHL PFHZ	Low Pass Filter Setting for Profile Position The unit is modified to 0.01Hz if P2-65 GBIT Bit 14 is set to 1.	Hz 1 5000 500000 Decimal	u32 RW per.	Modbus 942 _h IDN P-0-4008.0.33
P8-34 MOVESMOOTHM ODE	Smoothing Filter for Profile Position Value 0: No smoothing Value 1: LPF smoothing Value 2: S-curve smoothing Setting can only be modified if power stage is disabled.	- 0 2 2 Decimal	u16 RW per.	Modbus 944 _h IDN P-0-4008.0.34
P8-35 CONTROLMODE	 Type of Velocity Control Type of Position Control This parameter specifies: the position control mode (high byte) value 2: Position control mode 2 (Sample rate 4 kHz) value 5: Position control mode 5 (Sample rate 8 kHz) value 40: Linear position control 	- 5 _h 207 _h 4001 _h Hexadecimal	u16 RW per.	Modbus 946 _h IDN P-0-4008.0.35
	 the type of velocity (low byte) value 1: Linear velocity control value 5: Velocity control with integral gain (P8-01, P8-02) value 6: Velocity control without integral gain value 7: Velocity control with P8-00 = P8-01, P8-02 = 0, P8-03 = 0 			
	Setting can only be modified if power stage is disabled.			
P8-36 NLANTIVIBGAIN3	Pe filter 3 This parameter is used to set the gain of the Pe filter 3	0.001 0 0 6000 Decimal	u32 RW per.	Modbus 948 _h IDN P-0-4008.0.36
P8-37 NLANTIVIBHZ3	Pe filter 3 This parameter is used to set the frequency to remove with the Pe filter 3.	0.1Hz 50 4000 8000 Decimal	u32 RW per.	Modbus 94A _h IDN P-0-4008.0.37
P8-38 NLANTIVIBQ3	Pe filter 3 This parameter is used to set the zero-pole alignment with the Pe filter 3.	0.001 200 1000 10000 Decimal	u32 RW per.	Modbus 94C _h IDN P-0-4008.0.38
P8-39 IGRAV	Gravity Compensation This parameter is used to set the gravity compensation current for unbalanced systems.	0.01A - 0 - Decimal	s16 RW per.	Modbus 94E _h IDN P-0-3008.0.39
P8-40 LTNAFRC	LTN AFF This parameter is used to set the feed- forward term for the current command.	- 0 0 200 Decimal	u16 RW per.	Modbus 950 _h IDN P-0-3008.0.40

Parameter name	Description	Unit Minimum value Factory setting Maximum value HMI Format	Data type R/W Persistent	Parameter address via fieldbus
P8-41 NLANTIVIBSHAR P3	Pe Sharpness This parameter is used to optimize the Pe filter 3 action.	- 10 200 10000 Decimal	u16 RW per.	Modbus 952 _h IDN P-0-3008.0.41
P8-42 HOME_FAILURE_ IND	Homing Error Information This parameter provides information in case of the homing is not successful.	- 0 - FFFFFFF _h Hexadecimal	u32 RO -	Modbus 954 _h IDN P-0-3008.0.42
P8-43 ZSPDLPFHZ	ZSPD Low Pass Filter Value This parameter sets the low pass filter value for ZSPD output in order to reduce jitters when the motor speed is around the Zero speed Threshold (P1-38) value.	Hz 10 1000 1000 Decimal	u16 RW per.	Modbus 956 _h IDN P-0-3008.0.43
P8-44 MT_COMMANDS	Send commands to multi turn encoder Value 0: No command to send. Value 1:Clear the battery detected error on the encoder. Value 2: Reset the number of accumulated revolutions of the encoder to zero.	- 0 - 2 Decimal	u16 RW -	Modbus 958 _h IDN P-0-3008.0.44
P8-45 FEEDBACKTYPE	Feedback type Value 0: No feedback connected or undetermined feedback connected. Value 1: Single turn encoder. Value 2: Multi turn encoder.	- 0 - 2 Decimal	u16 RO -	Modbus 95A _h IDN P-0-3008.0.45
P8-46 SRVSNS_TEMPE RATURE	Encoder temperature	Deg. - - - Decimal	s16 RO -	Modbus 95C _h IDN P-0-3008.0.46
P8-47 SRVSNS_VER	 Encoder firmware and hardware versions The format is: ZZaabbcc aa.bb.cc: firmware version. ZZ: hardware version. 	- - - 4294967295 Decimal	u32 RO -	Modbus 95E _h IDN P-0-3008.0.47
P8-48 SRVSNS_FLTS	 Encoder errors Bit 0: The returned position values are no longer considered as reliable. Bit 1: The device temperature is too high. Bit 2: The device temperature is too low. Bit 3: The device is not calibrated or the calibration data is corrupted. The device is not able to decode the position. Bit 4: The device supply voltage has dropped under operational value. Bit 5: The multi turn encoder battery voltage has dropped under 3 Vdc. Bit 6: The multi turn encoder requires an explicit configuration command. Bit 7: Internal position synchronization error detected between the multi turn and the single turn modules. Bit 8:Generic error code of the multi turn module is detected. Bit 1623: Internal Error detected. Bit 24: The encoder firmware cannot operate on the provided hardware. Bit 2531: Reserved. 	- - 4294967295 Hexadecimal	u32 RO -	Modbus 960 _h IDN P-0-3008.0.48

Parameter name	Description	Unit Minimum value Factory setting Maximum value HMI Format	Data type R/W Persistent	Parameter address via fieldbus
P8-49 SRVSNS_WRNS	 Encoder alerts Bit 0: The device temperature is too high. Bit 1: The device temperature is too low. Bit 2: Over speed. Bit 3: Over acceleration. Bit 4: Invalid checksum value detected on non-volatile memory initialization. Bit 5: non-volatile memory is empty. Bit 6: Internal Parameters area detected as invalid, default values are used. Bit 7: Invalid decoding sequence detected. Bit 8: Encoder internal flash error detected. Bit 9: The device has detected unusual high shaft displacement. Position error might be greater than usual. Bit 10: The multi turn encoder battery voltage is in the range 3000 3150 mVdc. Bit 11: Reserved. Bit 12: The multi turn encoder counter exceeded the range of signed 16 bit value (-32767 32768). The warning remains active until MT_COMMANDS (P8-44) is set to 2. The multi turn encoder count in the range 0 65535. Bit 1331: Reserved. 	- - 4294967295 Hexadecimal	u32 RO -	Modbus 962 _h IDN P-0-3008.0.49
P8-51 SPDOBSRVRMO DE	Speed Observer Mode Value 0: Speed feedback value is computed by the drive. Value 3:Speed feedback value is measured by the encoder.	- 0 3 Decimal	u16 RW per.	Modbus 966 _h IDN P-0-3008.0.51
P8-53 KPP	Position Linear Controller Proportional Gain This parameter sets the value of the proportional gain for the linear position controller. NOTE: After motor connection, the drive automatically sets the optimized value (<i>see page 261</i>).	0.1 rps/rev 0 300 12000 Decimal	u16 RW per.	Modbus 96A _h IDN P-0-3008.0.53
P8-54 KPVFR	Position Velocity Feedforward This parameter sets the value of the position velocity feedforward to velocity command gain for the linear position controller. This is used to reduce the position following error at constant speed. NOTE: Value of 1000 is the nominal design for zero position following error.	0.001 -2000 500 2000 Decimal	s32 RW per.	Modbus 96C _h IDN P-0-3008.0.54
P8-55 KPAFVRV	Position Acceleration Feedforward This parameter sets the value of the position acceleration feedforward to velocity command gain for the linear position controller. This is used to reduce the position following error at constant acceleration. NOTE: Value of 1000 is the nominal design for zero position following error.	0.001 -20000 0 20000 Decimal	s32 RW per.	Modbus 96E _h IDN P-0-3008.0.55

Parameter name	ame Description Unit Minimum value Factory setting Maximum value HMI Format		Minimum valu Factory settir Maximum val		Data type R/W Persistent	Parameter address via fieldbus
P8-56 KPAFRC	Position Acceleration Feedforward to Current Loop This parameter sets the value of the position acceleration feedforward to current command gain for the linear position controller. This is used to reduce the position following error at constant acceleration.	0.001 -20000 0 20000 Decimal	s32 RW per.	Modbus 970 _h IDN P-0-3008.0.56		
	NOTE: Value of 100 is the nominal design for zero position following error. P1-37 value must be correctly set.					
P8-57 KVP	Velocity Proportional Gain This parameter sets the value of the proportional gain for the linear velocity controller.	0.001 0 100 1000000000 Decimal	u32 RW per.	Modbus 972 _h IDN P-0-3008.0.57		
	NOTE: After motor connection, the drive automatically sets the optimized value <i>(see page 261).</i>					
₽8-58 KVI	Velocity Integral Gain This parameter sets the value of the integral gain for the linear velocity controller.	0.001 0 30000 200000000	u32 RW per.	Modbus 974 _h IDN P-0-3008.0.58		
	NOTE: After motor connection, the drive automatically sets the optimized value <i>(see page 261).</i>	Decimal				
P8-59 KVFR	Velocity Feedforward Ratio This parameter sets the value of the feedforward ratio for the linear velocity controller.	0.001 0 900 1000	u16 RW per.	Modbus 976 _h IDN P-0-3008.0.59		
	NOTE: Value of 1000 makes the control close to a PI control. Higher values reduces the following error but introduces an overshoot.	Decimal				
P8-60 FILTMODE	Velocity Loop Output Filter Mode This parameter sets the value of the velocity loop output filter for the linear velocity controller. Value 0: No filtering. Value 1: First order low pass filter; sets P8- 61 as corner frequency. Value 2: Double first order low pass filter (sets P8-61 and P8-62 as corner frequencies). Value 3: Notch filter (sets P8-62 as notch center frequency and P8-61 as notch frequency width).	- 0 2 3 Decimal	u16 RW per.	Modbus 978 _h IDN P-0-3008.0.60		
	NOTE: After motor connection, the drive automatically sets the optimized value <i>(see page 261)</i> .					
P8-61 FILTHZ1	Velocity Loop Output Filter Parameter 1 The function of this parameter depends on the velocity loop output filter mode (see P8- 60).	- 1 500 10000 Decimal	u16 RW per.	Modbus 97A _h IDN P-0-3008.0.61		
	NOTE: After motor connection, the drive automatically sets the optimized value <i>(see page 261)</i> .					

Parameter name	Description	Unit Minimum value Factory setting Maximum value HMI Format	Data type R/W Persistent	Parameter address via fieldbus
P8-62 FILTHZ2	Velocity Loop Output Filter Parameter 2 The function of this parameter depends on the velocity loop output filter mode (see P8- 60). NOTE: After motor connection, the drive automatically sets the optimized value (see page 261).	- 1 500 10000 Decimal	u16 RW per.	Modbus 97C _h IDN P-0-3008.0.62
P8-63 VELFILTMODE	(see page 261).Velocity Filter Mode-This parameter sets the value of the type of0filter that is used for extraction of a velocity1signal from the position feedback.2Value 0: No filtering. Use derivative ofDecimalfeedback position.Value 1: First order low pass filter; sets P8-64 as corner frequency.Value 2: Use of the velocity feedbackValue 2: Use of the velocity feedbackprovided by the encoder.Setting can only be modified if power stageis disabled.		u32 RW per.	Modbus 97E _h IDN P-0-3008.0.63
P8-64 VELFILTFRQ	Velocity Filter Pole Frequency This parameter sets the value of the first order filter, which is applied to the velocity feedback signal before applying the velocity controller. NOTE: This parameter value is used only	- 20 440 2000 Decimal	u16 RW per.	Modbus 980 _h IDN P-0-3008.0.64
	if P8-63 is set to 1. Setting can only be modified if power stage is disabled.			
P8-65 IFFLPFHZ	Current Feedforward Low Pass Filter This parameter sets the value of the first order filter of the linear controller which is applied to the current feedforward before it is added to current command.	- 10 1000 1000 Decimal	u16 RW per.	Modbus 982 _h IDN P-0-3008.0.65
P8-66 NLTFDESIGNMO DE	LTN Torque Filter Mode This parameter sets the value of the torque filter mode used in the LTN control loop. Value 0: Manual set of P8-15 and P8-14 values. Value 1: P8-15 and P8-14 values are computed based on P8-67 value.	- 0 0 1 Decimal	u16 RW per.	Modbus 984 _h IDN P-0-3008.0.66
P8-67 NLTFBW	LTN Torque Filter Bandwidth This parameter sets the value of the filter bandwidth used in LTN control loop to define P8-15 and P8-14 values with 10% overshoot.	Hz 50 1000 2000 Decimal	u16 RW per.	Modbus 986 _h IDN P-0-3008.0.67
P8-68 NLNOTCHMODE	Current Filter - Notch Filter Mode This parameter sets the value of the notch filter mode used in the LTN control loop. Value 0: Original notch filter. Value 1: Advanced notch filter.	- 0 0 1 Decimal	u16 RW per.	Modbus 988 _h IDN P-0-3008.0.68

Parameter name	Description Unit Minimum va Factory sett Maximum v HMI Format		Data type R/W Persistent	Parameter address via fieldbus
P8-69 STANDSTILLMOD E	Standstill Mode This parameter sets the value of the standstill mode used for variable gain. The drive latches the variable gain when the motor is at standstill. Value 0: The drive revert to the original gain when the motor is not at standstill. Value 1: The drive revert to the original gain when a new motion command is applied.	- 0 1 Decimal	u16 RW per.	Modbus 98A _h IDN P-0-3008.0.69
	 NOTE: The motor is at standstill when: the velocity command is less than the velocity value set via the parameter P1-38 and the position deviation is within the tolerance sets via the parameter P1-54. 			
P8-70 STANDSTILLGAI N	Standstill Gain This parameter sets the value of the variable gain used for the linear position controller. When the motor is at standstill, the velocity proportional gain (P8-57 KVP) and the position proportional gain (P8-53 KPP) are multiplied by (P8-70/1024).When the motor is not at standstill, the velocity proportional gain and the position proportional gain revert to their original values.	- 128 1024 1024 Decimal	u16 RW per.	Modbus 98C _h IDN P-0-3008.0.70
P8-71 SFILTMODE	Encoder Filter Mode This parameter activates/deactivates the encoder filter. Value 0: Deactivate the encoder filter. Value 1: Activate the encoder filter. The encoder filter helps to reduce the feedback jitter.	- 0 1 Decimal	s16 RW per.	Modbus 98E _h IDN P-0-3008.0.71
P8-99 LTNUSERVCMDG AIN	Adaptive Velocity Reference Value Gain	0.001 0 1000 3000 Decimal	u32 RW per.	Modbus 9C6 _h IDN P-0-3008.0.99

Linear Default Gains Values

The following table displays the optimized values set according to the connected motor:

Motor references	P8-53 KPP	P8-57 KVP	P8-58 KVI	P8-60 FILTMODE	P8-61 FILTHZ1	P8-62 FILTHZ2
BCH2MBA53+++5C	55	0.4	50	0	0	0
BCH2MB013 ••• 5C	25	0.25	50	1	500	0
BCH2LD023····5C	35	0.5	30	1	800	0
BCH2MM031 ···· 6C	19	4.5	20	2	400	500
BCH2LD043 ••• 5C	30	1.1	25	1	1000	0
BCH2LF043····5C	35	2	50	1	700	0
BCH2MM052 ··· 6C	18	8	30	2	500	500
BCH2MM061 ••• 6C	20	5	30	1	400	0
BCH2HF073 ••• 5C	25	4	30	1	400	0
BCH2LF073····5C	30	3	50	1	500	0
BCH2MM081 ••• 6C	23	12	35	2	400	400
BCH2MM091 ···· 6C	25	7	35	1	300	0
BCH2MM102 ··· 6C	16	8.5	50	1	200	0
BCH2HM102 ··· 6C	16	8.5	50	1	200	0
BCH2LH103•••6C	23	7	40	1	700	0
BCH2MM152•••6C	25	8	50	2	500	500
BCH2MM202•••6C	17	11	15	2	400	400
BCH2MR202•••6C	13	21	25	1	200	0
BCH2HR202+++6C	13	21	25	1	200	0
BCH2LH203•••6C	21	9	40	1	700	0
BCH2MR301 ••• 6C	20	30	25	2	400	400
BCH2MR302•••6C	15	33	30	2	300	300
BCH2MR352+++6C	22	50	30	1	300	0
BCH2MR451 ···· 6C	22	35	30	2	300	400

P9 - DTM Data

P9 - DTM Data

Parameter name	Description	Unit Minimum value Factory setting Maximum value HMI Format	Data type R/W Persistent	Parameter address via fieldbus
₽9-00 PRGNR	Lexium program number Reads the program number	- 0 _h 0 _h FFFFFFF _h Hexadecimal	u32 RO -	Modbus A00 _h IDN P-0-3009.0.0
P9-01 DATE	Firmware Version Date This parameter contains the date of the firmware version.	- 0 _h 0 _h FFFFFFF _h Hexadecimal	u32 RO -	Modbus A02 _h IDN P-0-3009.0.1
P9-02 MTP_ID	MTP Identification Code	- 0 _h - FFFFFFF _h Hexadecimal	u16 RO -	Modbus A04 _h IDN P-0-3009.0.2
P9-06 UNAME1	User-Defined Application Name 1 This parameter is provided for a user- defined application name.	- 0 _h 0 _h FFFFFFF _h Hexadecimal	u32 RW per.	Modbus A0C _h IDN P-0-3009.0.6
P9-07 UNAME2	User-Defined Application Name 2 This parameter is provided for a user- defined application name.	- 0 _h 0 _h FFFFFFF _h Hexadecimal	u32 RW per.	Modbus A0E _h IDN P-0-3009.0.7
P9-08 UNAME3	User-Defined Application Name 3 This parameter is provided for a user- defined application name.	- 0 _h 0 _h FFFFFFF _h Hexadecimal	u32 RW per.	Modbus A10 _h IDN P-0-3009.0.8
P9-09 UNAME4	User-Defined Application Name 4 This parameter is provided for a user- defined application name.	- 0 _h 0 _h FFFFFFF _h Hexadecimal	u32 RW per.	Modbus A12 _h IDN P-0-3009.0.9
P9-10 MBWORD	Modbus Word Order This parameter sets the word order for Modbus. Value 0: Order of the bytes: 0 1 2 3 Value 1: Order of the bytes: 2 3 0 1	- 0 0 1 Decimal	u16 RW per.	Modbus A14 _h IDN P-0-3009.0.10
P9-11 SERNUM1	Serial Number Part 1	- 0 _h 0 _h FFFFFFF _h Hexadecimal	u32 RO -	Modbus A16 _h IDN P-0-3009.0.11
P9-12 SERNUM2	Serial Number Part 2	- 0 _h 0 _h FFFFFFF _h Hexadecimal	u32 RO -	Modbus A18 _h IDN P-0-3009.0.12

Parameter name	Description	Unit Minimum value Factory setting Maximum value HMI Format	Data type R/W Persistent	Parameter address via fieldbus
P9-13 SERNUM3	Serial Number Part 3	- 0 _h 0 _h FFFFFFF _h Hexadecimal	u32 RO -	Modbus A1A _h IDN P-0-3009.0.13
P9-14 SERNUM4	Serial Number Part 4	- 0 _h 0 _h FFFFFFF _h Hexadecimal	u32 RO -	Modbus A1C _h IDN P-0-3009.0.14
P9-15 LTN	Autotuning Method	- 0 0 6 Decimal	u16 RW -	Modbus A1E _h IDN P-0-3009.0.15
P9-16 LTNREFERENCE	Autotuning Motion Profile - Type	- 0 0 2 Decimal	u16 RW -	Modbus A20 _h IDN P-0-3009.0.16
P9-17 LTNAVMODE	Anti-vibration tuning mode.	- 0 0 6 Decimal	u16 RW -	Modbus A22 _h IDN P-0-3009.0.17
P9-18 LTNSAVEMODE	Autotuning Results - Save/Discard	- 0 0 3 Decimal	u16 RW -	Modbus A24 _h IDN P-0-3009.0.18
P9-19 LTNNLPEAFF	Autotuning - Elasticity Compensation Filters	- 0 1 1 Decimal	s16 RW -	Modbus A26 _h IDN P-0-3009.0.19
P9-20 LTNCYCLE	Autotuning - Direction of Movement This parameter sets the direction of movement for autotuning. Value 0: Both directions of movement Value 2: One direction of movement	- 0 0 3 Decimal	s16 RW -	Modbus A28 _h IDN P-0-3009.0.20
P9-21 LTNDWELLTIME	Minimum Dwell Time for Detection of Movement Cycle	- 100 200 1000 Decimal	u16 RW -	Modbus A2A _h IDN P-0-3009.0.21
P9-22 LTNLMJR	Autotuning - Automatic Estimation of Ratio of Load Inertia and Motor Inertia	- 0 0 1 Decimal	u16 RW -	Modbus A2C _h IDN P-0-3009.0.22
P9-23 LTNSTIFF	Defines which values will be used for the position command filters. Value 0: Automatic smoothing via S-curve optimization of the value Value 1: Manual smoothing	- 0 0 1 Decimal	u16 RW -	Modbus A2E _h IDN P-0-3009.0.23
P9-25 LTNREFEN	Autotuning Motion Profile - Activation	- 0 0 1 Decimal	u16 RW -	Modbus A32 _h IDN P-0-3009.0.25

Parameter name	Description	Unit Minimum value Factory setting Maximum value HMI Format	Data type R/W Persistent	Parameter address via fieldbus
P9-26 PTPOS	Autotuning - Movement Range in Direction 1 This parameter specifies the movement range for autotuning in direction of movement 1. The sign of the value determines the direction of movement: Positive value: Positive direction of movement as set via parameter P1-01 Negative value: Negative direction of movement as set via parameter P1-01 See parameter P9-20 to select one direction of movement or both directions of movement for Comfort Tuning.	PUU -2147483647 0 2147483647 Decimal	s32 RW -	Modbus A34 _h IDN P-0-3009.0.26
P9-27 PTNEG	Autotuning - Movement Range in Direction 2 This parameter specifies the movement range for autotuning in direction of movement 2. The sign of the value determines the direction of movement: Positive value: Positive direction of movement as set via parameter P1-01 Negative value: Negative direction of movement as set via parameter P1-01 See parameter P9-20 to select one direction of movement or both directions of movement for Comfort Tuning.	PUU -2147483647 0 2147483647 Decimal	s32 RW -	Modbus A36 _h IDN P-0-3009.0.27
P9-28 LTNACTIVE	Autotuning Active This parameter indicates whether autotuning is active. Value 0: Autotuning inactive Value 1: Autotuning active	- 0 - 1 Decimal	s16 RO -	Modbus A38 _h IDN P-0-3009.0.28
P9-29 LTNVCRUISE	Autotuning - Velocity Bits 0 15: Velocity for positive direction of movement Bits 16 31: Velocity for negative direction of movement	0.1rpm 0.1rpm - - - Decimal	u32 RW -	Modbus A3A _h IDN P-0-3009.0.29

Parameter name	Description	Unit Minimum value Factory setting Maximum value HMI Format	Data type R/W Persistent	Parameter address via fieldbus
P9-30 L TNST	Autotuning - Status Value 0: Inactive	- 0	u32 RO	Modbus A3C _h IDN P-0-3009.0.30
	Value 1: Active Value 2: Successfully completed Values 3 9: Reserved Value 10: Impossible to set P9-15 Value 11: Impossible to set P9-16 Value 12: Impossible to set P9-17 Value 13: Impossible to set P9-18 Value 14: Impossible to set P9-21 Value 15: Impossible to set P9-22 Value 16: Impossible to set P9-22 Value 17: Impossible to set P9-23 Value 18: Impossible to set P9-24 Value 19: Impossible to set P9-25 Value 20: Impossible to set P9-32 Value 21: Impossible to set P9-32 Value 22: Hold is active Value 23: Undetermined motor Values 24 26: Reserved Value 27: Impossible to activate autotuning Value 28: Autotuning did not run successfully Value 29: Reserved Value 30: Low Effort Value 31: AVG Zero Init Value Value 33: Pos tune user gain modified Value 34: Motor Was Not Recognized Value 35: LTNP Step Updated Value 36: Movement too small Value 37: ICMD Sat. Value 39: Insufficient acceleration/deceleration (less than 33 % of nominal acc/dec) Value 40: Excessive	- 65535 Decimal		

Parameter name	Description	Unit Minimum value Factory setting Maximum value HMI Format	Data type R/W Persistent	Parameter address via fieldbus
P9-30 Continued	Value 41: Need for gravity compensation (see P9-35) Value 42: Insufficient velocity (less than 10 % of nominal velocity) Value 43: Insufficient deceleration (less than deceleration ramp DECSTOP) Value 44: Autotuning timeout Value 45: Invalid default values Value 45: Invalid default values Value 50: P9-15 set to 0 Value 51: Power stage disabled during autotuning Value 52: Current saturation Value 53: Reserved Value 54: Insufficient excitation for autotuning (poor motion profile: short distance, low acceleration/deceleration, etc.) Value 55: Insufficient tuning effort Value 56: Halt during autotuning Value 57: Undetermined motor Value 58: Motion profile exceeds limits Value 59: Invalid gains during autotuning Value 60: Insufficient movement Value 61: Current limitation during autotuning Value 62: Detected alert during autotuning Value 63 69: Reserved Value 70: Positive distance and negative distance are not equal Value 71: Velocity is too low Value 72: Motion profile is not trapezoidal Value 73: Same sign used for positive and negative movement in bidirectional mode Value 74: Different signs used for positive and negative movement in unidirectional mode Values 75 89: Reserved			
P9-31 PTACCDEC	Autotuning - Acceleration and Deceleration Bits 0 15: Acceleration for Autotuning Bits 16 31: Deceleration for Autotuning	ms ms 6 6 6000 6000 65500 65500 Decimal	u32 RW -	Modbus A3E _h IDN P-0-3009.0.31
P9-32 LTNADVMODE	Autotune advance mode.	- 0 1 2 Decimal	u16 RW -	Modbus A40 _h IDN P-0-3009.0.32
P9-33 LTNEFFORTMAX	Maximum Autotuning Optimization Value Setting can only be modified if power stage is disabled.	0.001 0 - 1000 Decimal	u32 RO -	Modbus A42 _h IDN P-0-3009.0.33
P9-34 LTNBAR	Autotuning Progress Bar	- 0 0 100 Decimal	u16 RO -	Modbus A44 _h IDN P-0-3009.0.34
P9-35 LTNIGRAV	Autotuning - Gravity Estimation	- 0 0 1 Decimal	u16 RW -	Modbus A46 _h IDN P-0-3009.0.35

Parameter name	Description	Unit Minimum value Factory setting Maximum value HMI Format	Data type R/W Persistent	Parameter address via fieldbus
₽9-36 LTNLAFRC	Set LTNAFRC in Autotune	- 0 0 2 Decimal	s16 RW -	Modbus A48 _h IDN P-0-3009.0.36
P9-37 LTNWARNING	Autotuning - Last Stored Event	- 0 0 65535 Decimal	u32 RO -	Modbus A4A _h IDN P-0-3009.0.37
P9-38 LTNIMPROVEME NT	Mode 2 AT improvement	- 0 0 100 Decimal	u16 RO -	Modbus A4C _h IDN P-0-3009.0.38
₽9-39 LTNCYCLEIDENT	Cycle Identification status	- 0 0 9 Decimal	u16 RO -	Modbus A4E _h IDN P-0-3009.0.39
P9-40 LTNDEFAULTS	LTN Autotuning Using Defaults	- 0 0 1 Decimal	u16 RW -	Modbus A50 _h IDN P-0-3009.0.40

What Is in This Part?

This part contains the following chapters:

Chapter	Chapter Name	Page
17	Operation	271
18	Operating Modes	289

What Is in This Chapter?

This chapter contains the following topics:

Торіс	Page
Access Channels	272
Operating States	273
Setting the Digital Signal Inputs	274
Setting the Digital Signal Outputs	276
Functions for Target Value Processing	279
Setting a Signal Output Via Parameter	280
Forcing the Digital Signal Inputs and Signal Outputs	281
Position Capture via Signal Input	284

Access Channels

The product can be accessed via different types of access channels. Simultaneous access via multiple access channels or the use of exclusive access may cause unintended equipment operation.

A WARNING

UNINTENDED EQUIPMENT OPERATION

- Verify that simultaneous access via multiple access channels cannot cause unintended triggering or blocking of commands.
- Verify that the use of exclusive access cannot cause unintended triggering or blocking of commands.
- Verify that the required access channels are available.

Failure to follow these instructions can result in death, serious injury, or equipment damage.

The product can be addressed via different access channels.

Access channels are:

- Integrated HMI
- Digital input signals
- Fieldbus
- Commissioning software LXM28 DTM Library

The product allows you to work with exclusive access which limits access to the product via a single access channel.

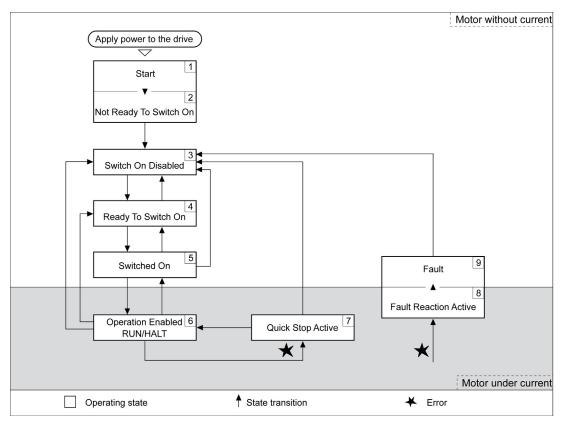
Only one access channel can have exclusive access to the product.

Exclusive access can be provided via different access channels:

- Via the integrated HMI: The operating mode Jog or Autotuning can be started via the HMI.
- Via a fieldbus: Exclusive access is provided to a fieldbus by blocking the other access channels with the parameter AccessLock.
- Via the commissioning software LXM28 DTM Library:
- The commissioning software receives exclusive access via the switch *Exclusive access* in position *On*.

When the product is powered on, there is no exclusive access via an access channel.

The signal inputs of the safety function STO and the signal input functions **SON** (falling edge), **CWL(NL)** and **CCWL(PL)** are always effective during exclusive access.


Operating States

State Diagram

When the product is powered on and when an operating mode is started *(see page 289)*, the product goes through a number of operating states.

The state diagram (state machine) shows the relationships between the operating states and the state transitions.

The operating states are internally monitored and influenced by monitoring functions.

Operating States

Operating state	Description
1 Start	Electronics are initialized
2 Not Ready To Switch On	The power stage is not ready to switch on
3 Switch On Disabled	Impossible to enable the power stage
4 Ready To Switch On	The power stage is ready to switch on.
5 Switched On	Power stage is switched on
6 Operation Enabled	Power stage is enabled Selected operating mode is active
7 Quick Stop Active	Quick Stop is being executed
8 Fault Reaction Active	Error response is active
9 Fault	Error response terminated Power stage is disabled

Resetting an Error Message

After you have removed the cause of the error, you can reset the error message in one of the following ways:

- With a rising edge of the signal input function SON
- By using the Fault Reset button in the SoMove commissioning software.

Setting the Digital Signal Inputs

Various signal functions can be assigned to the digital signal inputs.

The functions of the inputs and outputs depend on the selected operating mode and the settings of the corresponding parameters.

WARNING

UNINTENDED EQUIPMENT OPERATION

- Only start the system if there are no persons or obstructions in the zone of operation.
- Verify that the wiring is appropriate for the settings.
- Carefully run tests for all operating states and potential error situations when commissioning, upgrading or otherwise modifying the operation of the drive.

Failure to follow these instructions can result in death, serious injury, or equipment damage.

Default Presets of the Signal Inputs

The following table shows the default presets of the digital signal inputs:

Setting A for P2-10 P2-17	Short name	Name	Digital inputs preset
03 _h	GAINUP	Increase Gain	-
1C _h	TPROB1	Touch Probe 1	-
1D _h	TPROB2	Touch Probe 2	-
21 _h	OPST	Stop and Disable Power Stage	DI8
22 _h	CWL(NL)	Negative Limit Switch (NL/LIMN)	DI6
23 _h	CCWL(PL)	Positive Limit Switch (PL/LIMP)	DI7
24 _h	ORGP	Reference Switch	DI5

Parameterization of the Signal Input Functions

The signal input functions for the inputs DI1 ... DI8 are configured via parameters P2-10 ... P2-17.

A signal input function can only be assigned to one of the signal inputs.

The following table provides an overview of the possible signal input functions:

Setting A for P2-10 P2-17	Short name	Name	Description
03 _h	GAINUP	Increase Gain	The signal input function GAINUP increases the control gain according to the values and conditions set via parameter $P2-27$.
1C _h	TPROB1	Touch Probe 1	The signal input function TPROB1 is used to trigger the Position Capture function. This input function can only be assigned to the digital input DI7. Refer to parameters P5-37P5-39 for additional information.
1D _h	TPROB2	Touch Probe 2	The signal input function TPROB2 is used to trigger the Position Capture function. This input function can only be assigned to the digital input DI6. Refer to parameters P5-57P5-59 for additional information.
21 _h	OPST	Stop and Disable Power Stage	The signal input function OPST stops the motor with the deceleration ramp set via the parameter $P1-68$ and then disables the power stage.
22 _h	CWL(NL)	Negative Limit Switch (NL/LIMN)	Negative limit switch (NL/LIMN). When the signal input is activated, an alert is triggered. The deceleration ramp is specified via parameter P5-25.
23 _h	CCWL(PL)	Positive Limit Switch (PL/LIMP)	Positive limit switch (PL/LIMP). When the signal input is activated, an alert is triggered. The deceleration ramp is specified via parameter P5-26.
24 _h	ORGP	Reference Switch	The signal input function ORGP is used for the reference switch.

Setting the Digital Signal Outputs

Various signal functions can be assigned to the digital signal outputs.

The functions of the inputs and outputs depend on the selected operating mode and the settings of the corresponding parameters.

WARNING

UNINTENDED EQUIPMENT OPERATION

- Only start the system if there are no persons or obstructions in the zone of operation.
- Verify that the wiring is appropriate for the settings.
- Carefully run tests for all operating states and potential error situations when commissioning, upgrading or otherwise modifying the operation of the drive.

Failure to follow these instructions can result in death, serious injury, or equipment damage.

Default Presets of the Signal Outputs

The following table shows the default presets of the digital signal outputs:

Setting A for P2-18 P2-21	Short name	Name	Digital outputs presets
01 _h	SRDY	Servo Ready	DO1
02 _h	SON	Servo On	-
03 _h	ZSPD	Zero Speed	-
04 _h	TSPD	Speed Reached	-
05 _h	TPOS	Movement Completed	-
06 _h	TQL	Torque Limit Reached	-
07 _h	ERROR	Error Detected	-
08 _h	BRKR	Holding Brake Control	-
09 _h	HOMED_OK	Homing Completed	-
10 _h	OLW	Motor Overload Alert	-
11 _h	WARN	Alert Signal activated	-
12 _h	OVF	Position command overflow	-
13 _h	SCWL(SNL)	Negative Software Limit Switch Reached	-
14 _h	SCCWL(SPL)	Positive Software Limit Switch Reached	-
15 _h	CMD_OK	Internal position command completed	-
16 _h	CAP_1_OK	Capture 1 completed	-
17 _h	-	-	-
18 _h	CAP_2_OK	Capture 2 completed	-
19 _h 2F _h	-	-	-
30 _h	SDO_0	Output the status of bit 0 of P4-06.	-
31 _h	SDO_1	Output the status of bit 1 of P4-06.	-
32 _h	SDO_2	Output the status of bit 2 of P4-06.	-
33 _h	SDO_3	Output the status of bit 3 of P4-06.	-
34 _h 3F _h	-	-	-

Parameterization of the Signal Output Functions

The signal output functions for the outputs DO1 ... DO4 are configured via parameters P2-18 ... P2-21. The following table provides an overview of the possible signal output functions:

Setting A for P2-18 P2-21	Short name	Name	Description
01 _h	SRDY	Servo Ready	The signal output function SRDY indicates that no errors are present, that is, the drive is not in the operating state Fault.
02 _h	SON	Servo On	The signal output function SON indicates that the drive is in the operating state Operation Enabled .
03 _h	ZSPD	Zero Speed	The signal output function ZSPD indicates that the velocity of the motor is less than the velocity value set via parameter $P1-38$.
04 _h	TSPD	Speed Reached	The signal output function TSPD indicates that the velocity of the motor is greater than the velocity value set via parameter $P1-39$.
05 _h	TPOS	Movement Completed	The signal output function TPOS indicates that the position deviation at the target position is within the tolerance set via the parameter $P1-54$.
06 _h	TQL	Torque Limit Reached	The signal output function TQL indicates that the torque of the motor has reached the value set via parameters P1-12P1-14.
07 _h	ERROR	Error Detected	The signal output function ERROR indicates that an error has been detected and that the drive has switched to the operating state Fault.
08 _h	BRKR	Holding Brake Control	The signal output function BRKR is used to control the holding brake with the settings made via parameters $P1-42$ and $P1-19$. The holding brake must be connected to the output to which the signal output function BRKR is assigned.
09 _h	HOMED_O K	Homing Completed	The signal output function HOMED_OK indicates that the homing procedure has been successfully completed. The settings for Homing are specified via parameters P5-04P5-06.
10 _h	OLW	Motor Overload Alert	The signal output function OLW indicates a motor overload condition. A threshold for the signal output function OLW can be set via parameter P1-28.
11 _h	WARN	Alert Signal activated	The signal output function indicates that one of the following conditions has been detected: Hardware limit switch triggered, undervoltage, Nodeguard alert, Operational Stop (OPST).
12 _h	-	-	Reserved
13 _h	SCWL(SNL)	Negative Software Limit Switch Reached	The signal output function SCWL(SNL) indicates that the negative software limit switch set via parameter P5-09 has been reached. When the software limit switch is reached, an alert is triggered. The deceleration ramp is specified via parameter P5-23.
14 _h	SCCWL(SP L)	Positive Software Limit Switch Reached	The signal output function SCCWL(SPL) indicates that the positive software limit switch set via parameter P5-08 has been reached. When the software limit switch is reached, an alert is triggered. The deceleration ramp is specified via parameter P5-24.
15 _h	CMD_OK	Internal position command completed	The signal output function CMD_OK indicates that the Internal position process has been successfully completed.
16 _h	CAP_1_OK	Capture 1 completed	The signal output function CAP_1_OK indicates that a position capture (Touch Probe 1) has been successfully completed. The settings for position capture (Touch Probe 1) are specified via parameters P5-37 P5-39.
17 _h	-	-	Reserved
18 _h	CAP_2_OK	Capture 2 completed	The signal output function CAP_2_OK indicates that a position capture (Touch Probe 2) has been successfully completed. The settings for position capture (Touch Probe 2) are specified via parameters P5-57 P5-59.
19 _h 2F _h	-	-	Reserved

Setting A for P2-18 P2-21	Short name	Name	Description
30 _h	SDO_0	Output the status of bit 0 of P4-06.	The signal output functions SDO_0 SDO_3 provide the bit pattern (bits 0 3) required to determine the setting of the parameter P4-06.
31 _h	SDO_1	Output the status of bit 1 of P4-06.	The signal output functions SDO_0 SDO_3 provide the bit pattern (bits 0 3) required to determine the setting of the parameter P4-06.
32 _h	SDO_2	Output the status of bit 2 of P4-06.	The signal output functions SDO_0 SDO_3 provide the bit pattern (bits 0 3) required to determine the setting of the parameter P4-06.
33 _h	SDO_3	Output the status of bit 3 of P4-06.	The signal output functions SDO_0 SDO_3 provide the bit pattern (bits 0 3) required to determine the setting of the parameter P4-06.
34 _h 3F _h	-	-	Reserved

Functions for Target Value Processing

Stopping a Movement with OPST

With the signal input function OPST (Operational Stop), the ongoing movement is stopped.

In order to stop a movement via a signal input, you must first parameterize the signal input function OPST, refer to Setting the Digital Signal Inputs *(see page 274)*.

The movement is interrupted via a deceleration ramp to the point of the defined standstill. After that, the power stage is disabled once the drive has determined that the motor is at standstill, and if so configured, the holding brake is applied.

WARNING

UNINTENDED EQUIPMENT OPERATION

- During commissioning, trigger all signals and simulate all conditions that cause a power stage disable request in order to verify that all loads come to a secure standstill when the power stage is disabled under maximum load conditions.
- Install a dedicated service brake if removal of power to the motor does not meet the requirements of your application.

Failure to follow these instructions can result in death, serious injury, or equipment damage.

An error, AL013, is detected and presented.

The deceleration ramp is specified via parameter P1-68.

After the OPST function is enabled, you must disable it and re-enable the power stage for continued operation.

Setting a Signal Output Via Parameter

The digital signal outputs can be set via a parameter.

In order to set a digital signal output via the parameter, you must first parameterize the signal output functions SDO_0 ... SDO_3, refer to Setting the Digital Signal Outputs *(see page 276)*.

The parameter ${\tt P4-06}$ lets you set the digital signal outputs.

Parameter name	Description	Unit Minimum value Factory setting Maximum value HMI Format	Data type R/W Persistent	Parameter address via fieldbus
P4-06 FOT	Setting a signal output via parameter This parameter lets you set those signal outputs whose signal output functions have been defined by SDO_0 SDO_3. Bit 0 = 1 sets those signal outputs whose signal output function has been set to SDO_0. Bit 1 = 1 sets those signal outputs whose signal output function has been set to SDO_1. Bit 2 = 1 sets those signal outputs whose signal output function has been set to SDO_2. Bit 3 = 1 sets those signal outputs whose signal output function has been set to SDO_2. Bit 3 = 1 sets those signal outputs whose signal output function has been set to SDO_3. See P2-18 P2-21 for assigning the functions to the digital outputs.	- 0 _h FF _h Hexadecimal	u16 RW -	Modbus 50C _h P-0-3004.0.6

Forcing the Digital Signal Inputs and Signal Outputs

Forcing of signals means that the digital inputs and outputs are set manually. Forcing input and output values can have serious consequences on the operation of a machine or process.

WARNING

UNINTENDED EQUIPMENT OPERATION CAUSED BY FORCING

- Only force I/O if there are no persons or obstructions in the zone of operation.
- Only force I/O if you are fully familiar with the effects of the signals.
- Only force I/O for test purposes, maintenance or other short-term tasks.
- Do not use forcing for regular, long-term or in-service operation.
- Always remove forcing when the task (testing, maintenance or other short-term operation) is completed.

Failure to follow these instructions can result in death, serious injury, or equipment damage.

Forcing the Digital Inputs

Forcing of the digital inputs is set via the parameters P3-06 and P4-07.

The parameter P3-06 lets you specify which digital signal inputs are allowed to be forced.

Parameter name	Description	Unit Minimum value Factory setting Maximum value HMI Format	Data type R/W Persistent	Parameter address via fieldbus
P3-06 SDI	Digital Inputs - Forcing Settings This parameter determines whether a digital input can be forced. Bits 0 7: Digital input DI1 Digital input DI8 Bit settings: Value 0: Digital input cannot be forced Value 1: Digital input can be forced To start forcing, you must write P4-07. See P2-10 P2-17 for the assignment of signal input functions to the digital inputs.	- 0 _h 7FF _h Hexadecimal	u16 RW -	Modbus 40C _h P-0-3003.0.6

Use parameter P4-07 to activate forcing of the digital signal inputs.

Parameter name	Description	Unit Minimum value Factory setting Maximum value HMI Format	Data type R/W Persistent	Parameter address via fieldbus
P4-07 ITST	State of Digital Inputs / Activate Forcing A read access to this parameter indicates the state of the digital inputs in the form of a bit pattern. Example: Read value 0x0011: Digital input 1 is activated By writing this parameter, you can change the state of the inputs provided that the setting for the corresponding input in P3-06 allows for forcing (value 1 for the bit corresponding to the input). Example: Write value 0x0011: Digital input 1 is activated Read value 0x0011: Digital input 1 is activated See P3-06 for permitting forcing of individual digital inputs. See P2-10 P2-17 for the assignment of signal input functions to the digital inputs.	- 0 _h FF _h Hexadecimal	u16 RW -	Modbus 50E _h P-0-3008.0.15

Forcing the Digital Outputs

Forcing of the digital outputs is set via the parameters P4-27 and P4-28.

The parameter P4-27 lets you specify which digital signal outputs are allowed to be forced.

Parameter name	Description	Unit Minimum value Factory setting Maximum value HMI Format	Data type R/W Persistent	Parameter address via fieldbus
P4-27 DO_FORCE_MASK	Digital Outputs - Forcing Settings This parameter determines whether a digital output can be forced. Bits 0 3: Digital output DO1 Digital output DO4 Bit settings: Value 0: Digital output cannot be forced Value 1: Digital output can be forced To start forcing, you must write P4-28. See P2-18 P2-21 for the assignment of signal output functions to the digital outputs.	- 0 _h 1F _h Hexadecimal	u16 RW -	Modbus 536 _h P-0-3004.0.27

Use parameter P4-28 to activate forcing of the digital signal outputs.

Parameter name	Description	Unit Minimum value Factory setting Maximum value HMI Format	Data type R/W Persistent	Parameter address via fieldbus
P4-28 DO_FORCE_VALUE	State of Digital Outputs / Activate Forcing A read access to this parameter indicates the state of the digital outputs in the form of a bit pattern. Example: Read value 0x0011: Digital output 1 is activated By writing this parameter, you can change the state of the outputs provided that the setting for the corresponding output in P4- 27 allows for forcing (value 1 for the bit corresponding to the output). Example: Write value 0x0011: Digital output 1 is activated Read value 0x0011: Digital output 1 is activated See P4-27 for permitting forcing of individual digital outputs. See P2-18 P2-21 for the assignment of signal output functions to the digital outputs.	- 0 _h 1F _h Hexadecimal	u16 RW -	Modbus 538 _h P-0-3004.0.28

Position Capture via Signal Input

Description

The motor position can be captured when a signal is detected at a Capture input.

Number of Capture Inputs

- 2 Capture inputs are available:
- Capture input: DI7/TPROB1
- Capture input: DI6/TPROB2

Selection of the Method

The motor position can be captured in 2 different ways:

- One-time position capture
 One-time capture means that the position is captured at the first edge.
- Continuous motor position capture Continuous capture means that the motor position is captured anew at every edge. The previously captured value is discarded.

The motor position can be captured when the edge at the Capture input rises or falls.

Accuracy

A jitter of 2 µs results in an inaccuracy of the captured position of approximately 13.2 user-defined units at a velocity of 3000 RPM.

 $(3000 \text{ RPM} = (3000*131072)/(60*10^6) = 6.6 \text{ usr_p/}\mu\text{s})$

If the factory settings for scaling are used, 13.2 user-defined units correspond to 0.036 $^\circ$.

The captured motor position is less accurate during the acceleration phase and the deceleration phase.

Real-time Capability

The motor position can be captured via the real-time channel. The functionalities of the real-time channel and the acyclical channel differ. The following table provides an overview:

Function	Real-time channel	Acyclical channel
Starting position capture DI7/TPROB1	Yes	Yes
Starting position capture DI6/TPROB2	Yes	Yes
Status of captured position DI7/TPROB1	Yes	Yes
Status of captured position DI6/TPROB2	Yes	Yes
One-time position capture	Yes	Yes
Continuous motor position capture	No	Yes

Setting the Edge

The following parameters let you set the edge for position capture.

• Set the desired edge with the parameters Cap1Config and Cap2Config.

Parameter name	Description	Unit Minimum value Factory setting Maximum value	Data type RW Persistent Expert	Parameter address via fieldbus
CaplConfig	Capture input 1 configuration 0 / Falling Edge : Position capture at falling edge 1 / Rising Edge : Position capture at rising edge 2 / Both Edges : Position capture at both edges Type: Unsigned decimal - 2 bytes Write access via Sercos: CP2, CP3, CP4 Modified settings become effective immediately.	- 0 0 2	UINT16 RW - -	IDN P-0-3010.0.2
Cap2Config	Capture input 2 configuration 0 / Falling Edge : Position capture at falling edge 1 / Rising Edge : Position capture at rising edge 2 / Both Edges : Position capture at both edges Type: Unsigned decimal - 2 bytes Write access via Sercos: CP2, CP3, CP4 Modified settings become effective immediately.	- 0 0 2	UINT16 RW - -	IDN P-0-3010.0.3

Starting Position Capture

The following parameters let you start position capture.

Real-time channel:

- Set the desired method with the parameter SPDSercos3Control.
- Acyclical channel:
- Set the desired method with the parameters CaplActivate and Cap2Activate.

Parameter name	Description	Unit Minimum value Factory setting Maximum value	Data type RW Persistent Expert	Parameter address via fieldbus
SPDSercos3Control	SPD Sercos control (CAP1 and CAP2) Bit 0 = 0: Cancel capture function Bit 0 = 1: Start one-time capture via input CAP1 Bit 1 = 0: Cancel capture function Bit 1 = 1: Start one-time capture via input CAP2 Bits 2 15: Reserved Type: Unsigned decimal - 2 bytes Write access via Sercos: CP2, CP3, CP4 Modified settings become effective immediately.	-	UINT16 RW - -	IDN P-0-3025.0.80
CaplActivate	Capture input 1 start/stop 0 / Capture Stop : Cancel capture function 1 / Capture Once : Start one-time capture 2 / Capture Continuous : Start continuous capture 3 / Reserved : Reserved 4 / Reserved : Reserved In the case of one-time capture, the function is terminated when the first value is captured. In the case of continuous capture, the function continues to run. Type: Unsigned decimal - 2 bytes Write access via Sercos: CP2, CP3, CP4 Modified settings become effective immediately.	- 0 - 4	UINT16 RW - -	IDN P-0-3010.0.4
Cap2Activate	Capture input 2 start/stop 0 / Capture Stop : Cancel capture function 1 / Capture Once : Start one-time capture 2 / Capture Continuous : Start continuous capture 3 / Reserved : Reserved 4 / Reserved : Reserved In the case of one-time capture, the function is terminated when the first value is captured. In the case of continuous capture, the function continues to run. Type: Unsigned decimal - 2 bytes Write access via Sercos: CP2, CP3, CP4 Modified settings become effective immediately.	- 0 - 4	UINT16 RW - -	IDN P-0-3010.0.5

Status Messages

Real-time channel:

- The parameter SPDSercos3Status indicates the capture status.
- Acyclical channel:
- The parameter Touch Probe Status indicates the capture status.

Parameter name	Description	Unit Minimum value Factory setting Maximum value	Data type RW Persistent Expert	Parameter address via fieldbus
_SPDSercos3Status	SPD Sercos status (CAP1 and CAP2) Bit 0 = 0: No position captured via input CAP1 Bit 0 = 1: Position captured via input CAP1 Bit 1 = 0: No position captured via input CAP2 Bit 1 = 1: Position captured via input CAP2 Bit 2 = 0: Positive limit switch not active Bit 2 = 1: Positive limit switch not active Bit 3 = 0: Negative limit switch not active Bit 3 = 1: Negative limit switch active Bit 4 = 0: Quick Stop: Standstill not yet reached Bit 4 = 1: Quick Stop: Standstill reached Type: Unsigned decimal - 2 bytes Modified settings become effective immediately.	-	UINT16 RO - -	IDN P-0-3025.0.81
Touch Probe Status	Status of the capture inputs Read access: Bit 0: Position captured via input CAP1 Bit 1: Position captured via input CAP2 Type: Unsigned decimal - 2 bytes		UINT16 RO - -	IDN P-0-3010.0.1

Captured Position

The captured positions can be read via the following parameters:

Parameter name	Description	Unit Minimum value Factory setting Maximum value	Data type RW Persistent Expert	Parameter address via fieldbus
_Cap1Pos	Capture input 1 captured position (one-time) Captured position at the time of the "capture signal". The captured position is re-calculated after "Position Setting" or "Reference Movement". Type: Signed decimal - 4 bytes	usr_p -2147483648 0 2147483647	INT32 RO - -	IDN P-0-3010.0.6
_Cap2Pos	Capture input 2 captured position (one-time) Captured position at the time of the "capture signal". The captured position is re-calculated after "Position Setting" or "Reference Movement". Type: Signed decimal - 4 bytes	usr_p -2147483648 0 2147483647	INT32 RO - -	IDN P-0-3010.0.7

What Is in This Chapter?

This chapter contains the following sections:

Section	Торіс	Page
18.1	Setting the Operating Mode	290
18.2	Jog Operation	296
18.3	Cyclic Synchronous Operating Modes	297
18.4	Operating Mode Homing	299

Section 18.1 Setting the Operating Mode

What Is in This Section?

This section contains the following topics:

Торіс	Page
Setting the Operating Mode	291
Indication of the Operating State via Fieldbus	292
Changing the Operating State via Fieldbus	293
Object units	294

Setting the Operating Mode

Unsuitable settings or unsuitable data may trigger unintended movements, trigger signals, damage parts and disable monitoring functions. Some parameters and other operational data do not become active until after a restart.

WARNING

UNINTENDED EQUIPMENT OPERATION

- Only start the system if there are no persons or obstructions in the zone of operation.
- Do not operate the drive system with undetermined parameter values.
- Never modify a parameter value unless you fully understand the parameter and all effects of the modification.
- Restart the drive and verify the saved operational data and/or parameter values after modification.
- Carefully run tests for all operating states and potential error situations when commissioning, upgrading or otherwise modifying the operation of the drive.
- Verify the functions after replacing the product and also after making modifications to the parameter values and/or other operational data.

Failure to follow these instructions can result in death, serious injury, or equipment damage.

The drive has the following operating modes:

- Profile Homing
- Cyclic Synchronous Position
- Cyclic Synchronous Velocity
- Cyclic Synchronous Torque

The settings for the required operating mode must be made in the SERCOS III controller software.

Indication of the Operating State via Fieldbus

Description

With the parameter S-0-0135 you can read the status information of the drive.

Parameter name	Description	Unit Minimum value Factory setting Maximum value	Data type RW Persistent Expert	Parameter address via fieldbus
S-0-0135	Drive Status This parameter contains the status word of the AT. It can be used for diagnostics purposes. Type: Hexadecimal - 2 bytes Write access via Sercos: Read only	- 0 - 65535	RO - -	IDN S-0-0135

Bits	Meaning
0 2	Reserved
3	Value 0: Drive ignores the command values. Value 1: Drive follows the command values.
4	Value 0: Drive Halt is not active. Value 1: Drive Halt is active.
5 7	Reserved
8 10	Value 0: Primary operating mode is set. Value 1: Secondary operating mode 1 is set. Value 2: Secondary operating mode 2 is set. Value >2: Reserved.
11	Reserved
12	Value 0: No error detected with the error class 0. Value 1: Detected error with the error class 0.
13	Value 0: No error detected with the error class 1, 2, 3, or 4. Value 1: Detected error with the error class 1, 2, 3, or 4.
14 15	Value 0: Drive not ready. Value 1: Drive ready for main power on. Value 2: Drive ready and main power applied. Value 3: Drive enabled.

Changing the Operating State via Fieldbus

Description

With the parameter S-0-0134 you can change the operating state of the drive and select the operating mode.

Parameter name	Description	Unit Minimum value Factory setting Maximum value	Data type RW Persistent Expert	Parameter address via fieldbus
S-0-0134	Drive Control This parameter contains the control word. Type: Hexadecimal - 2 bytes Write access via Sercos: CP2, CP3, CP4	- 0 - 65535	RW - -	IDN S-0-0134

Bits	Meaning
0 7	Reserved
8 10	Value 0: Primary operating mode. Value 1: Secondary operating mode 1. Value 2: Secondary operating mode 2. Value >2: Reserved.
11 12	Reserved
13	Value 0: Drive halt Value 1: Drive restart (after Halt)
14	Value 0: Drive disable Value 1: Drive enable
15	Value 0: Drive OFF Value 1: Drive ON

With the parameter S-0-0099 you can reset detected errors (state transition T15).

Parameter name	Description	Unit Minimum value Factory setting Maximum value	Data type RW Persistent Expert	Parameter address via fieldbus
S-0-0099	Reset class 1 diagnostic If this procedure command is received by the drive via the service channel, the detected errors, the error bits and the shut-down mechanism are cleared. Type: Binary - 2 bytes Write access via Sercos: CP2, CP3, CP4 Class name: GDP_Basic	- 0 0 7	RW - -	IDN S-0-0099

Object units

Overview

Two objects are used to set the gear ratio and the feed constant conversion factors, each of which has two subindex.

These objects have four equivalent variables:

Item	Object		Description
Feed constant	P-0- 3020.0.16	Feed Unit conversion numerator	Conversion factors of the user-defined position unit. Used to multiply the motor revolution (rotary motors) or
	P-0- 3020.0.17	Shaft revolutions Unit conversion denominator	the motor pitch (linear motors), according to the configured motor type.
Gear ratio	ratio P-0- Motor revolutions 3020.0.40 Motor shaft scaling for the fieldbus gear ratio		Conversion factor of the motor shaft revolution.
	P-0- 3020.0.39	Shaft revolutions Drive shaft scaling for the fieldbus gear ratio	Conversion factor of the drive shaft revolution.

It is possible to modify the subindex of both objects, but it is usually sufficient to modify only the feed constant value, as shown in the following example:

Resolution = (P-0-3020.0.16 / P-0-3020.0.17) x (P-0-3020.0.40 / P-0-3020.0.39)

Example by unit dimensions:

Unit dimension	Examples
Position units	Assuming: • P-0-3020.0.16 = 360000 • P-0-3020.0.17 = 1 • P-0-3020.0.40 = 1 • P-0-3020.0.39 = 1 • The actual position reading = 720000 Then: 720000 / [(360000 / 1) x (1 / 1)] = 2 revolutions
Velocity units	Assuming: • P-0-3020.0.16 = 360000 • P-0-3020.0.17 = 1 • P-0-3020.0.40 = 1 • P-0-3020.0.39 = 1 • The actual velocity reading = 720000 Then: 720000 / [(360000 / 1) x (1 / 1)] = 2 revolutions per second
Acceleration units	Assuming: • P-0-3020.0.16 = 360000 • P-0-3020.0.17 = 1 • P-0-3020.0.40 = 1 • P-0-3020.0.39 = 1 • The actual acceleration reading = 720000 Then: 720000 / [(360000 / 1) x (1 / 1)] = 2 revolutions per second ²
Current units	The units are derived from object P-0-3020.0.7 (Motor Rated Current) The value of this object is user-defined, in mA. After setting a value for P-0-3020.0.7, all other current objects must receive values defined in 1/1000 (one-thousandth) of P-0-3020.0.7. For example: Assuming P-0-3020.0.7 has a value of 20000 mA, then to set a value of 15000 mA for P-0-3006.0.28 (Maximum Current), write 750 for P-0-3006.0.28. The calculation is: (750 / 1000) × 20000 = 15000 mA

Examples of Rotary Motor with Gear or Rotary to Linear Motion Translation Device

When using a gear or rotary-to-linear motion translation device, set values for the translation ratio of the gear in order to define the unit variables.

Using a ball screw that converts	Object values to set
1 motor revolution to 155 mm	P-0-3020.0.16 = 1550 P-0-3020.0.17 = 1 P-0-3020.0.40 = 1 P-0-3020.0.39 = 1

This units will be as follows:

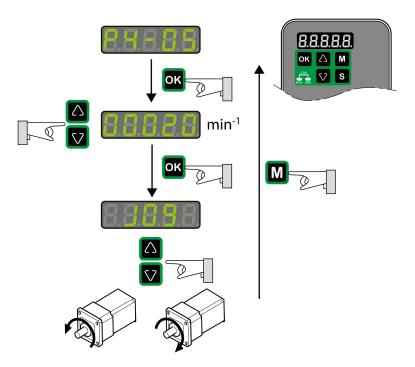
- Position in 0.1 mm
- Velocity in 0.1 mm/sec
- Acceleration in 0.1 mm.sec²

Section 18.2 Jog Operation

Jog Operation

Description

In the Jog operation, a movement is made from the motor position in the specified direction.


The parameter P4-05 is used to set the velocity for the movement in the unit rpm.

The movement can be performed via the arrow keys at the HMI or via the signal input functions JOGP and JOGN.

For further information on the parameterizable signal input functions, refer to Setting the Digital Signal Inputs *(see page 274)*.

Jog Via HMI

If the HMI is used, the movements are performed via the arrow keys. The operating mode is terminated via the ${f M}$ key.

Section 18.3 Cyclic Synchronous Operating Modes

Overview

Description

The following Cyclic Synchronous operating modes are supported:

- Cyclic Synchronous Position
- Cyclic Synchronous Velocity
- Cyclic Synchronous Torque

The motor synchronously follows the target values transmitted on a cyclic basis. The transmitted values are linearly interpolated (internally).

The possible applications for these operating mode are described in the manual of the master controller.

- The operating modes are fixed set in the corresponding SERCOS parameters:
- Parameter S-0-0032 Primary Operation Mode for Cyclic Synchronous Position
- Parameter S-0-0033 Secondary Operation Mode 1 for Cyclic Synchronous Velocity
- Parameter S-0-0034 Secondary Operation Mode 2 for Cyclic Synchronous Torque

Operation Mode Cyclic Synchronous Position

The motor synchronously follows the target values transmitted on a cyclic basis. The transmitted values are linearly interpolated (internally).

The possible applications for these operating mode are described in the manual of the master controller.

Parameter name	Description	Unit Minimum value Factory setting Maximum value	Data type RW Persistent Expert	Parameter address via fieldbus
S-0-0032	Primary Operation Mode This parameter sets the primary operating mode of the drive. The operating mode is started via bits 8, 9 and 10 in the parameter Drive Control (S-0-0134). The active operating mode is indicated by bits 8, 9 and 10 in the status word (S-0-0135). Type: Hexadecimal - 2 bytes Write access via Sercos: CP2, CP3	- 3 3 3	RW - -	IDN S-0-0032

Operation Mode Cyclic Synchronous Velocity

The motor synchronously follows the target values transmitted on a cyclic basis. The transmitted values are linearly interpolated (internally).

The possible applications for these operating mode are described in the manual of the master controller.

Parameter name	Description	Unit Minimum value Factory setting Maximum value	Data type RW Persistent Expert	Parameter address via fieldbus
S-0-0033	Secondary Operation Mode 1 This parameter sets the secondary operating mode 1 of the drive. The operating mode is started via bits 8, 9 and 10 in the parameter Drive Control (S-0- 0134). The active operating mode is indicated by bits 8, 9 and 10 in the status word (S-0-0135). Type: Hexadecimal - 2 bytes Write access via Sercos: CP2, CP3	- 2 2 2	RW - -	IDN S-0-0033

Operation Mode Cyclic Synchronous Torque

The motor synchronously follows the target values transmitted on a cyclic basis. The transmitted values are linearly interpolated (internally).

The possible applications for these operating mode are described in the manual of the master controller.

Parameter name	Description	Unit Minimum value Factory setting Maximum value	Data type RW Persistent Expert	Parameter address via fieldbus
S-0-0034	Secondary Operation Mode 2 This parameter sets the secondary operating mode	-	RW	IDN S-0-0034
	2 of the drive. The operating mode is started via bits	1	-	
	8, 9 and 10 in the parameter Drive Control (S-0-	1		
	0134). The active operating mode is indicated by			
	bits 8, 9 and 10 in the status word (S-0-0135).			
	Type: Hexadecimal - 2 bytes			
	Write access via Sercos: CP2, CP3			

Section 18.4 Operating Mode Homing

Operating Mode Homing

Description

In the operating mode Homing, a reference is generated between a mechanical position and the actual position of the motor.

A reference between a mechanical position and the actual position of the motor is generated by means of a reference movement or by means of position setting.

A successful reference movement or position setting homes the motor and the zero point becomes valid.

The zero point is the point of reference for absolute movements in the operating mode Profile Position.

- A movement can be made using different methods:
- Reference movement to a limit switch

In the case of a reference movement to a limit switch, a movement to the negative limit switch or the positive limit switch is performed. When the limit switch is reached, the motor is stopped and a movement is made back to the switching point of the limit switch. From the switching point of the limit switch, a movement is made to the next index pulse of the motor or to a parameterizable distance from the switching point. The position of the index pulse or the position of the parameterizable distance from the switching point is the reference point.

• Reference movement to the reference switch

In the case of a reference movement to the reference switch, a movement to the reference switch is performed. When the reference switch is reached, the motor is stopped and a movement is made back to the switching point of the reference switch. From the switching point of the reference switch, a movement is made to the next index pulse of the motor or to a parameterizable distance from the switching point. The position of the index pulse or the position of the parameterizable distance from the switching point is the reference point.

- Reference movement to the index pulse
 In the case of a reference movement to the index pulse, a movement is made from the actual position to the next index pulse. The position of the index pulse is the reference point.
- Position setting

In the case of position setting, the actual position of the motor is set to a specified position value.

A reference movement must be terminated without interruption for the new zero point to be valid. If the reference movement is interrupted, it must be started again.

Procedure

- Set Position at reference point P-0-3040.0.11.
- Set Home offset P-0-4020.0.7.
- Set Home method P-0-3027.0.12, the value range is 1 to 35 and specifies the different homing methods.
- Set Home speeds P-0-3040.0.4 to the value for velocity to search for the limit switches (unit = 0.1 rpm).
- Set Home speeds P-0-3040.0.5 to the value for velocity to search for the index pulse (unit = 0.1 rpm).
- Set Home acceleration P-0-3020.0.21 to the value for the acceleration ramp (unit = user-defined position unit/s²).

Starting the Operating Mode

The parameter S-0-0148 is used to start the operating mode Homing.

Terminating the Operating Mode

The operating mode is terminated when the motor is at a standstill and one of the following conditions is met:

- Homing successful
- Stop caused by "Halt" or "Quick Stop"
- Stop caused by a detected error

Part VIII Diagnostics and Troubleshooting

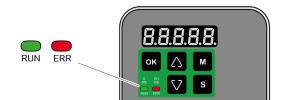
Chapter 19 Diagnostics and Troubleshooting

What Is in This Chapter?

This chapter contains the following topics:

Торіс	Page
SERCOS III Status	304
Diagnostics Via the Integrated HMI	305
Diagnostics Via the Signal Outputs	306
Diagnostics Via the Commissioning Software	306
Status Information on Detected Errors	307
Connection for Fieldbus Mode	309
Alert Codes and Error Codes	310

SERCOS III Status


Overview

The SERCOS III status information is available:

- On the product front panel with 2 dedicated LEDs
- By reading the SERCOS III diagnostic parameters

SERCOS III Status LEDs

Two network diagnostic LEDs are located on the front panel of the drive.

RUN: Network RUN Status

This S LED indicates the SERCOS III state:

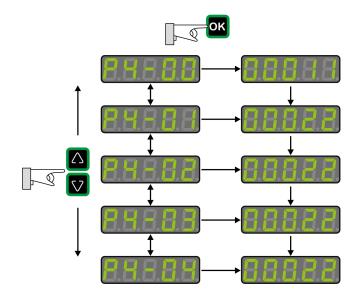
Colors & Status	Priority	Description
	0	No SERCOS III communication
	0	Communication phase 0 active
	0	Communication phase 1 active
	0	Communication phase 2 active
	0	Communication phase 3 active
	0	Communication phase 4 active
	1	Device is in hot-plug phase 0
	1	Device is in hot-plug phase 1
	1	Device is in hot-plug phase 2
	2	Real-time state is "loopback"
	3	Application error
	4	MST transmission error ≥S-0-1003/2
	5	communication error
	6	Identification ("IdentifyDevice")
	7	Application is not running

ERR: Network Error Status

This SD LED indicates the sub-device status:

Color	Priority	Description	
	0	Sub-device is not active	
	0 Sub-device is in state "parametrization level (PL)"		
	0	Sub-device is in state "operating level (OL)"	
	1	Sub-device is in state "application error (C1D)"	

Diagnostics Via the Integrated HMI


Modbus Activity

The left most decimal point in the integrated HMI indicates Modbus activity by flashing.

Error Memory

Parameters P4-00 to P4-04 allow you to read the error memory.

The error memory also contains a history of the last 5 detected errors.

Parameter	Description
P4-00	Error number of the most recently detected error
P4-04	Error number of the oldest detected error

The parameter P0-47 allows you to read the last detected alert.

Diagnostics Via the Signal Outputs

The signal outputs allow you to indicate, among other things, operating states and detected errors. The following list is an excerpt of the parameterizable signal output functions. For additional signal output functions, refer to Setting the Digital Signal Outputs *(see page 276).*

Setting A for P2-18 P2-21	Short name	Name of the output function	Description
1	SRDY	Servo Ready	The signal output function SRDY indicates that no errors are presently detected, i.e. the drive is not in the operating state Fault.
2	SON	Servo On	The signal output function SON indicates that the drive is in the operating state Operation Enabled.
7	ERROR	Error Detected	The signal output function ERROR indicates that an error has been detected and that the drive has switched to the operating state Fault. For further information, refer to Diagnostics and Troubleshooting <i>(see page 303)</i> .
11	WARN	Advisory or Alert Signal activated	The signal output function indicates that one of the following conditions has been detected: Hardware limit switch triggered, undervoltage, Nodeguard alert, Operational Stop (OPST).

Diagnostics Via the Commissioning Software

See the information provided with the commissioning software for details on how to display the device state via the commissioning software LXM28 DTM Library.

Status Information on Detected Errors

Description

Status information on detected errors are provided via the parameter S-0-0135, bits 12 and 13. The status information shows the error class of a detected error.

The parameter S-0-0390 allows you to read the error code of the detected error.

Parameter name	Description	Unit Minimum value Factory setting Maximum value	Data type RW Persistent Expert	Parameter address via fieldbus
S-0-0390	Diagnostic number The operation data of this parameter contains detailed information on the diagnostics event with the highest priority which is currently active in the drive. Type: Hexadecimal - 4 bytes Write access via Sercos: Read only Class name: GDP_Basic	- 0 0 4294967295	RO - -	IDN S-0-0390

Bits	Meaning	
0 15	Value 0: No error detected. Value >0: Error code of the detected error.	
16 19	Value 14: Detected Alert-level error. Value 15: Detected Alarm-level error.	
20 23	Reserved	
24 29	Value 1: SERCOS III FSP IO	
30 31	Value 1: Fully manufacture specific.	

The parameters S-0-0011 and S-0-0012 also provide information on detected errors.

Parameter name	Description	Unit Minimum value Factory setting Maximum value	Data type RW Persistent Expert	Parameter address via fieldbus
S-0-0011	Class 1 diagnostic (C1D) This parameter provides information on detected errors. A class 1 diagnostics error leads to a Quick Stop (with transition to operating state Fault). Type: Hexadecimal - 2 bytes Write access via Sercos: Read only	- 0 0 65535	RO - -	IDN S-0-0011
S-0-0012	Class 2 diagnostic (C2D) This parameter provides information on warnings. Type: Hexadecimal - 2 bytes Write access via Sercos: Read only	- 0 0 65535	RO - -	IDN S-0-0012

C1D and C2D supported Objects

Supported detected errors

Error code	Error number (hex)
AqB Communication interruption	5603
AL575	5600
AL576	3201
AL009	8000
AL539	5600
AL003	3201
AL002	3200
AL001	2300
AL026	8000
AL3E1	8000
5V out of range	8000
AL514	4300
AL016	4100
AL528	4100
AL529	4100
AL508	3300
AL006	3300

Supported alarms

Error code	Error number (hex)
Wn709	B124
Wn702	3201
Wn743	8000
Wn704	4301
Wn703	4101
Wn701	8000
Wn023	8000

Connection for Fieldbus Mode

Description

- If the product cannot be addressed via the fieldbus, check the following connections:
- Power connections to the device.
- Network cable and network wiring.
- Network connection to the device.

Alert Codes and Error Codes

Meaning of an Alert

An alert indicates a potential issue that was detected by a monitoring function. An alert does not trigger a transition of the operating state.

Number	Description	Cause	Remedy
AL014	Negative hardware limit switch triggered	-	-
AL015	Positive hardware limit switch triggered	-	-
AL283	Positive software limit switch triggered	-	-
AL285	Negative software limit switch triggered	-	-
Wn023	Alert threshold reached: Motor overload (foldback)	The foldback current of the motor has dropped below the alert threshold specified via the parameter P1-28.	Verify correct settings of the parameter P1-28 for the foldback current of the motor.
Wn700	Safety function Safe Torque Off (STO) triggered while the power stage was disabled	The safety function STO has been triggered or the signal for the safety function STO is not properly connected. If this condition is detected while the power stage is enabled, the drive detects an error. If this condition is detected while the power stage is disabled, the drive detects an alert.	Check whether the safety function STO was triggered intentionally. If not, verify correct connection of the signal of the safety function STO.
Wn701	Alert threshold reached: Drive overload (foldback)	The foldback current of the drive has dropped below the alert threshold specified via the parameter P1-24.	Verify correct settings of the parameter P1-24 for the foldback current of the drive.
Wn702	The DC bus voltage has dropped below the alert threshold.	Power supply loss, poor power supply.	Verify correct mains supply. Verify that the undervoltage limit is set correctly via the parameter P4-24.
Wn703	Alert threshold reached: Power stage overtemperature	Ambient temperature is too high, fan is inoperative, dust.	Verify correct operation of the fan. Improve the heat dissipation in the control cabinet. Remove pollution and verify that dust cannot get into the control cabinet or into the drive.
Wn704	Alert threshold reached: Motor overtemperature	The motor temperature is excessively high.	Verify correct settings of the parameters for temperature monitoring. Verify proper ventilation and heat dissipation of the motor. Clean off pollutants such as dust. Verify that the motor is evenly mounted to the flange plate. Increase the size of the flange plate to which the motor is mounted to improve heat dissipation. Verify that the motor is properly sized for the application.
Wn707	Alert threshold reached: Drive overtemperature (controller)	Ambient temperature is too high, fan is inoperative, dust.	Verify correct operation of the fan. Improve the heat dissipation in the control cabinet. Remove pollution and verify that dust cannot get into the control cabinet or into the drive.
Wn713	Positive hardware limit switch and negative hardware limit triggered	-	-
Wn716	Positive software limit switch and negative software limit triggered	-	-

Number	Description	Cause	Remedy	
Wn728	Alert: Missing mains supply, undervoltage mains supply	At least one mains phase is missing. Mains voltage is out of range. Mains frequency is out of range.	Verify correct connection of mains supply. Verify that the values of the mains power supply network comply with the technical data.	
Wn729	Modbus: Node Guarding error detected	Incorrect Modbus connection, incorrect data from Modbus master.	Verify correct Modbus connection. Verify correct operation of Modbus master.	
Wn730	Alert threshold reached: Braking resistor overload	The permissible braking resistor power has been exceeded.	Verify correct rating of the braking resistor used. Verify your application.	
Wn731	Encoder error detected	Refer to parameter P8-49 for details.	-	
Wn732	Alert threshold reached: Processing time too long	-	-	
Wn734	Alert threshold reached: Drive overtemperature (IPM)	Ambient temperature is too high, fan is inoperative, dust.	Verify correct operation of the fan. Improve the heat dissipation in the control cabinet. Remove pollution and verify that dust cannot get into the control cabinet or into the drive.	
Wn737	Parameters have been reset to the factory settings, but are not yet saved to the non- volatile memory.	-	Use parameter P2-08 = 11 to save parameters reset to the factory settings to the non-volatile memory and restart the drive.	
Wn739	Temperature value for monitoring function not available	-	-	
Wn742	Motor type has changed	The type of motor connected is different from the previously connected type of motor.	Reset the drive to the factory settings.	
Wn743	Fan circuit warning	The fan circuit is either overloaded or disconnected.	Check for fan short circuit or disconnection.	
Wn744	Excessive electronic noise	-	Check proper grounding and shielding. Use line filter.	
Wn745	Configured feedbacktype and actual connected encoder mismatch	The connected encoder does not correspond to configured feedback type.	Check that configured feedback type and connected encoder match.	
Wn746	Encoder overtemperature	-	-	
Wn747	Encoder internal flash memory error detected	-	-	
Wn748	Encoderfeedback error detected	The device has detected unusually high shaft displacement. The device can still operate correctly; but position error might be higher than usual.	-	
Wn752	Stop filter command cannot be set	SensAR Encoder Filter Mode is not supported on the connected Motor.	Set P8-71 to 0 ignore the warning. OR: Upgrade Motor Hardware version.	

Meaning of an Error

An error is a discrepancy between a computed, measured, or signaled value or condition and the specified or theoretically correct value or condition detected by a monitoring function. An error triggers a transition of the operating state.

Number	Short description	Cause	Remedy
AL001	Power stage overcurrent	An overcurrent has been detected at the power stage which may be caused by a short circuit or by incorrect settings of the current loop parameters. This condition may occur up to three times in succession. After the third time, a time delay of one minute must pass before the power stage can be enabled again.	Verify correct connection of the motor. Verify correct settings of the parameters for the current loop.
AL002	DC bus overvoltage	The DC bus voltage exceeded the maximum value.	Verify your application. Reduce the external load, the motor velocity, or the deceleration. Use an appropriately rated braking resistor, if necessary.
AL003	DC bus undervoltage	Power supply loss, poor power supply.	Verify correct mains supply. Verify that the undervoltage limitation is set correctly via the parameter P4-24.
AL005	Braking resistor overload	The braking resistor has been on for such a long period of time that its overload capability has been exceeded.	Verify your application. Reduce the external load, the motor velocity, or the deceleration. Use a braking resistor with a greater rating, if necessary.
AL006	Motor overload (foldback)	The foldback current of the motor has dropped below the value specified via the parameter P1-27.	Verify correct settings for the parameter P1-27.
AL007	Actual motor velocity too high.	The actual motor velocity exceeded the velocity limitation by more than 20% (P1-55).	Verify that the velocity limitation set via the parameter P1-55 matches the requirements of the application. Verify that the values for the tuning parameters are suitable.
AL008	Frequency of reference value signal is too high	The frequency of the pulse signal (A/B, Pulse/Direction, CW/CCW) exceeds the specified range. Received pulses may be lost.	Adapt the output pulse frequency of the external source to fit the input specification of the drive. Adapt the gear ratios to the application requirements (parameters P1-44, P1-45).
AL009	Position deviation too high (following error)	The position deviation has exceeded the maximum permissible position deviation specified via the parameter P2-35 and the drive has detected a following error.	Verify your application. Reduce the external load. Increase the permissible position deviation via the parameter P2-35. Reduce the motor velocity via the parameters P1-09 P1-11. Increase the torque limitation via the parameters P1-12 P1-14.
AL013	The input to which the signal input function OPST is assigned has been activated.	-	Identify the cause which has triggered the signal input function OPST. Remove the cause. If your application does not require the signal input function OPST, disable this signal input function.
AL016	Power stage overtemperature	Ambient temperature is too high, fan is inoperative, dust.	Verify correct operation of the fan. Improve the heat dissipation in the control cabinet. Remove pollution and verify that dust cannot get into the control cabinet or into the drive.
AL017	Error detected in non-volatile memory	The drive was reset to the factory settings via parameter P2-08.	Use parameter P2-08 = 11 to save parameters reset to the factory settings to the non-volatile memory and restart the drive. Contact technical support.

Number	Short description	Cause	Remedy
AL018	Encoder simulation frequency exceeded 4 MHz	The computed equivalent encoder output frequency exceeds the maximum limit of 4 MHz for this signal.	Reduce the resolution of the encoder simulation via the parameter P1-46 or reduce the maximum velocity.
AL020	Modbus: Node Guarding error detected	Incorrect Modbus connection, incorrect data from Modbus master.	Verify correct Modbus connection. Verify correct operation of Modbus master.
AL022	Missing mains supply, undervoltage mains supply	At least one mains phase is missing. Mains voltage is out of range. Mains frequency is out of range.	Verify correct connection of mains supply. Verify that the values of the mains power supply network comply with the technical data.
AL025	Not possible to read data of electronic motor nameplate	Incorrect or missing motor data. Motor without electronic motor nameplate has been connected.	Verify that the drive and the connected motor are a permissible product combination. Verify correct connection of the encoder. Contact Technical Support or replace the motor.
AL026	Error detected in communication with motor encoder	Communication with the encoder was not initialized correctly.	Verify correct connection of the encoder. Contact Technical Support or replace the motor.
AL030	Motor torque too high for an excessive period of time	The motor torque has exceeded the value specified via the parameter P1-57 for a period of time exceeding the value specified via the parameter P1-58.	Verify your application. Verify that no movements are made up to a mechanical stop (for example, use limit switches). Verify that the values for the parameters P1-57 and P1-58 are suitable.
AL3E1	Drive is not synchronous with master cycle	Operating mode has been activated but drive is not synchronized to external synchronization signal.	Verify correct communication connection.
AL401	Fieldbus: Communication error detected	While the power stage was enabled, a command was received requesting a different communication state.	Verify that the master does not try to change the communication state while the power stage of the drive is enabled.
AL501	Safety function Safe Torque Off (STO) triggered	The safety function STO has been triggered or the signal for the safety function STO is not properly connected. If this condition is detected while the power stage is enabled, the drive detects an error. If this condition is detected while the power stage is disabled, the drive detects an alert.	Check whether the safety function STO was triggered intentionally. If not, verify correct connection of the signal of the safety function STO.
AL502	System error detected (FPGA)	-	Contact technical support.
AL503	System error detected (non- volatile memory)	-	Contact technical support.
AL504	System error detected (non- volatile memory)	-	Contact technical support.
AL505	DC bus voltage measurement	An error was detected in the circuit that measures the DC bus voltage.	Perform a Fault Reset. Restart the drive. If the error persists, contact Technical Support.
AL507	System error detected (NV access)	-	Contact technical support.
AL508	Drive overload (foldback)	The foldback current of the drive has dropped below the value specified via the parameter P1-23.	Verify correct settings for the parameter P1-23.

Number	Short description	Cause	Remedy	
AL514	Motor overtemperature	The motor temperature is excessively high.	Verify correct settings of the parameters P1-62 and P1-63 for temperature monitoring. Verify proper ventilation and heat dissipation of the motor. Clean off pollutants such as dust. Verify that the motor is evenly mounted to the flange plate. Increase the size of the flange plate to which the motor is mounted to improve heat dissipation. Verify that the motor is properly sized for the application.	
AL517	Encoder overvoltage or overcurrent	The current supplied by the drive for the 5 V encoder supply has exceeded the limit. This condition may occur up to three times in succession. After the third time, a time delay of one second must pass before the power stage can be enabled again.	Verify correct connection of the encoder (short circuits). Verify the current consumption of the encoder.	
AL520	Target position rejected	A target position was rejected because it would have caused the motor to exceed the maximum velocity.	Verify that target positions do not lead to excessive motor velocities.	
AL523	System error detected (self-test)	The self-test has detected an error.	Contact technical support.	
AL525	Reserved	-	-	
AL526	Reserved	-	-	
AL527	System error detected (Watchdog)	The Watchdog function has detected a system error.	Restart the drive. If the error persists, contact Technical Support.	
AL528	Drive overtemperature (IPM)	Ambient temperature is too high, fan is inoperative, dust.	Verify correct operation of the fan. Improve the heat dissipation in the control cabinet. Remove pollution and verify that dust cannot get into the control cabinet or into the drive.	
AL529	Drive overtemperature (controller)	Ambient temperature is too high, fan is inoperative, dust.	Verify correct operation of the fan. Improve the heat dissipation in the control cabinet. Remove pollution and verify that dust cannot get into the control cabinet or into the drive.	
AL532	Calculated offsets for current sensors out of range	The calculated offsets for the current sensors are out of range.	Perform a Fault Reset. Restart the drive. If the error persists, contact Technical Support.	
AL533	Reserved	-	-	
AL534	Pulse signal missing	One of the pulse signals is not connected.	Verify correct connection of the pulse inputs.	
AL535	System error detected (FPGA does not match firmware)	The firmware version is not suitable for the drive.	Update the firmware of the drive. Contact technical support.	
AL539	Motor phase missing	One of the motor phases is not connected.	Verify correct connection of the motor phases. Contact technical support.	
AL547	Motor blocked	The motor was blocked mechanically, for example, by a mechanical stop or by the load.	Remove condition causing the mechanical blocking. Verify your application.	
AL555	Velocity deviation too high	The deviation between actual velocity and reference velocity has exceeded the maximum velocity deviation specified via the parameter P2-34.	Verify your application. Verify that the values for the tuning parameters are suitable. Increase the value for the maximum velocity deviation in the parameter P2-34.	
AL557	No target values received via the fieldbus	No target values have been received via the fieldbus three times in succession.	Perform a Fault Reset. Verify that target values are transmitted via the fieldbus.	
AL558	System error detected	-	Contact technical support.	
AL560	Power stage supply off	-	Power on the power stage supply.	
AL561	Temperature sensor inoperative	-	Restart the drive. If the error persists, contact Technical Support.	

Number	Short description	Cause	Remedy	
AL563	Commutation error detected	Motor phases have been interchanged.	Verify correct connection of the motor phases.	
AL567	System error detected (encoder)	Refer to parameter P8-48 for details.	Contact technical support.	
AL568	Braking resistor overload	The permissible braking resistor power has been exceeded.	Verify correct rating of the braking resistor used. Verify your application.	
AL569	Configuration not correctly transferred via Modbus	-	Verify correct connection. Verify that configuration file and drive are compatible.	
AL570	Overcurrent detected at one of the digital outputs	-	Verify correct wiring of the digital outputs. Verify that there are no shor circuits.	
AL572	Position deviation too high (following error)	The position deviation has exceeded the maximum permissible position deviation specified via the parameter P2-35 and the drive has detected a following error.	Verify your application. Reduce the external load. Increase the permissible position deviation via the parameter P2-35. Reduce the motor velocity via the parameters P1-09 P1-11. Increase the torque limitation via the parameters P1-12 P1-14.	
AL573	The returned position values are no longer considered valid	-	-	
AL574	The encoder temperature is too high	-	-	
AL575	The encoder supply voltage has dropped under operational value	-	-	
AL576	The multi turn encoder battery voltage has dropped under 3 Vdc	-	-	
AL577	The multi turn encoder requires an explicit configuration command	-	-	
AL578	Internal position synchronization error detected between the multi turn and the single turn modules	-	-	
AL579	Generic error code of the multi turn module is detected	-	-	
AL580	The encoder firmware cannot operate on the provided hardware	-	-	
AL581	The drive firmware cannot operate with the provided encoder version	-	-	
AL582	The drive firmware cannot operate on the provided hardware	-	-	
AL588	Reserved	-	-	
AL595	Impermissible combination of drive and motor	-	Use an approved drive/motor combination.	
AL596	Unstable current loop	Excessive overshoot in current loop.	Verify correct settings of the parameters for the current loop.	
AL598	Invalid Quick Stop active state	A Quick Stop has been triggered via the fieldbus or by releasing access right. The Quick Stop option code (P3-31) has been set to -1 or -2 which causes the drive to transition to the operating state 9 Fault instead of the operating state 7 Quick Stop Active.	Verify correct setting of the parameter P3-31.	
AL599	DSP Response Timeout Fault	SDO or AT message response took too long.	Reduce the number of AT configuration in User Cyclic data.	

Part IX Service, Maintenance and Disposal

Chapter 20 Service, Maintenance, and Disposal

What Is in This Chapter?

This chapter contains the following topics:

Торіс	Page
General	320
Service Address	321
Maintenance of the Drive	322
Replacement of Drive	323
Maintenance of the Motor	324
Changing the Motor	326
Shipping, Storage, Disposal	327

General

The product may only be repaired by a Schneider Electric customer service center.

The use and application of the information contained herein require expertise in the design and programming of automated control systems.

Only you, the user, machine builder or integrator, can be aware of all the conditions and factors present during installation and setup, operation, repair and maintenance of the machine or process.

You must also consider any applicable standards and/or regulations with respect to grounding of all equipment. Verify compliance with any safety information, different electrical requirements, and normative standards that apply to your machine or process in the use of this equipment.

Many components of the equipment, including the printed circuit board, operate with mains voltage, or present transformed high currents, and/or high voltages.

The motor itself generates voltage when the motor shaft is rotated.

DANGER

ELECTRIC SHOCK, EXPLOSION OR ARC FLASH

- Disconnect all power from all equipment including connected devices prior to removing any covers or doors, or installing or removing any accessories, hardware, cables, or wires.
- Place a "Do Not Turn On" or equivalent hazard label on all power switches and lock them in the nonenergized position.
- Wait 15 minutes to allow the DC bus capacitors to properly discharge.
- Measure the DC bus voltage between the DC bus terminals (PA/+ and PC/-) to verify that DC bus capacitors are properly discharged (voltage less than 42.4 Vdc).
- Do not assume that the DC bus discharged properly when the DC bus LED is off.
- Block the motor shaft to prevent rotation prior to performing any type of work on the drive system.
- Do not create a short-circuit across the DC bus terminals or the DC bus capacitors.
- Replace and secure all covers, accessories, hardware, cables, and wires and confirm that a proper ground connection exists before applying power to the unit.
- Use only the specified voltage when operating this equipment and any associated products.

Failure to follow these instructions will result in death or serious injury.

Service Address

Overview

If you cannot resolve an error yourself, contact your sales office.

- Have the following data available:
- Nameplate (type, identification number, serial number, DOM, ...)
- Type of error (with LED flash code or error code)
- Previous and concomitant circumstances
- Your own assumptions concerning the cause of the error

Also include this information if you return the product for inspection or repair.

If you have any questions, contact your sales office. Your sales office staff will provide you the name of a customer service office in your area.

https://www.schneider-electric.com

Maintenance of the Drive

Overview

Prior to any type of work on the drive system, consult the chapters on Installation and Commissioning for information to be observed.

Repairs cannot be made with the device installed.

Include the following points in the maintenance plan of your machine.

Connections and Fastening

- Check all connection cables and connectors regularly for damage. Replace damaged cables immediately.
- Tighten all mechanical and electrical threaded connections to the specified torque.

Cleaning

Clean dust and dirt off the product at regular intervals. Insufficient heat dissipation to the ambient air may excessively increase the temperature.

Lifetime of the Safety Function STO

The STO safety function is designed for a lifetime of 20 years. After this period, the data of the safety function are no longer valid. The expiry date is determined by adding 20 years to the DOM shown on the nameplate of the product.

- This date must be included in the maintenance plan of the system.
- Do not use the safety function after this date.

Example:

The DOM on the nameplate of the product is shown in the format DD.MM.YY, for example 31.12.08. (31 December 2008). This means: Do not use the safety function after December 31, 2028.

Replacement of Drive

Overview

Unsuitable settings or unsuitable data may trigger unintended movements, trigger signals, damage parts and disable monitoring functions. Some parameters and other operational data do not become active until after a restart.

WARNING

UNINTENDED EQUIPMENT OPERATION

- Only start the system if there are no persons or obstructions in the zone of operation.
- Do not operate the drive system with undetermined parameter values.
- Never modify a parameter value unless you fully understand the parameter and all effects of the modification.
- Restart the drive and verify the saved operational data and/or parameter values after modification.
- Carefully run tests for all operating states and potential error situations when commissioning, upgrading or otherwise modifying the operation of the drive.
- Verify the functions after replacing the product and also after making modifications to the parameter values and/or other operational data.

Failure to follow these instructions can result in death, serious injury, or equipment damage.

Replacement of Drive Procedure

Prepare a list with the parameters required for the functions used.

Observe the following procedure when replacing devices:

Step	Action	
1	Save all parameter settings. Save the data to your PC using the commissioning software, refer to chapter Commissioning Software <i>(see page 190)</i> .	
2	Power off all supply voltages. Verify that no voltages are present.	
3	Label all connections and remove all connection cables (unlock connector locks).	
4	Uninstall the product.	
5	Note the identification number and the serial number shown on the product nameplate for later identification.	
6	Install the new product as per chapter Installation (see page 131).	
7	If the product to be installed has previously been used in a different system or application, you must restore the factory settings before commissioning the product.	
8	Commission the product as per chapter Commissioning (see page 175).	

Maintenance of the Motor

Overview

Prior to any type of work on the drive system, consult the chapters on Installation and Commissioning for information to be observed.

Repairs cannot be made with the device installed.

Include the following points in the maintenance plan of your machine.

Connections and Fastening

- Inspect all connection cables and connectors regularly for damage. Replace damaged cables immediately.
- Verify that all output elements are firmly seated.
- Tighten all mechanical and electrical threaded connections to the specified torque.

Lubricating the Shaft Sealing Ring

In the case of motors with shaft sealing ring, lubricant must be applied to the space between the sealing lip of the shaft sealing ring and the shaft with a suitable non-metallic tool. If the shaft sealing rings are allowed to run dry, the service life of the shaft sealing rings will be significantly reduced.

Cleaning

If the permissible ambient conditions are not respected, external substances from the environment may penetrate the product and cause unintended movement or equipment damage.

A WARNING

UNINTENDED MOVEMENT

- Verify that the ambient conditions are respected.
- Do not allow seals to run dry.
- Keep liquids from getting to the shaft bushing (for example, in mounting position IM V3).
- Do not expose the shaft sealing rings and cable entries of the motor to the direct spray of a pressure washer.

Failure to follow these instructions can result in death, serious injury, or equipment damage.

Clean dust and dirt off the product at regular intervals. Insufficient heat dissipation to the ambient air may excessively increase the temperature.

Motors are not suitable for cleaning with a pressure washer. The high pressure may force water into the motor.

When using solvents or cleaning agents, verify that the cables, cable entry seals, O-rings, and motor paint are not damaged.

Replacing the Rolling Bearing

When the rolling bearing is replaced, the motor is partially demagnetized and loses power.

NOTICE

INOPERABLE EQUIPMENT

Do not replace the rolling bearing.

Failure to follow these instructions can result in equipment damage.

Replacing the Battery for the Multi Turn Encoder

The multi turn counting is preserved through power down by the external battery located in the battery compartment.

- Do not disconnect the encoder cable from the battery compartment or the multi turn information is discarded.
- Replace the battery while the encoder is powered by the drive or the multi turn information is discarded.

The battery has its manufacturing date printing on it in MMYY format. The expiration date for the battery is 3 years after the manufacturing date.

On the following example, the manufacturing date of the battery is June 2016 (0616). The expiration date is June 2019.

The battery voltage is monitored by the encoder at each power on of the drive.

- An alert Wn731 related to P8-49 Bit 10 is triggered when the measured voltage is in the range 3 ... 3.15 Vdc.
- An error AL567 related to P8-48 Bit 5 is triggered when the measured voltage is under 3 Vdc.
 NOTE: After replacing the battery, the error is cleared the next time the drive is powered on (next battery voltage measurement), or when an explicit command is sent to the encoder by setting P8-44 to the value 1.

NOTE: Replace the battery only with the same reference. Refer to the section Encoder Cables and Accessories *(see page 92)*.

Changing the Motor

Overview

Drive systems may perform unintended movements if unapproved combinations of drive and motor are used. Even if motors are similar, different adjustment of the encoder system may be a source of hazards. Even if the connectors for motor connection and encoder connection match mechanically, this does not imply that the motor is approved for use.

UNINTENDED MOVEMENT

Only use approved combinations of drive and motor.

Failure to follow these instructions can result in death, serious injury, or equipment damage.

Compatibility between Drive and Motor is defined in the Drive / Motor combinations table (see page 23).

Changing Motors Procedure

Observe the following procedure when changing motors:

Step	Action
1	Switch off all supply voltages. Verify that no voltages are present.
2	Label all connections and uninstall the product.
3	Note the identification number and the serial number shown on the product nameplate for later identification.
4	Install the new product as per chapter Installation (see page 163).
5	Commission the product as per chapter Commissioning (see page 175).

If the connected motor is replaced by another approved motor, the new motor is automatically recognized by the drive.

Shipping, Storage, Disposal

Shipping

The product must be protected against shocks during transportation. If possible, use the original packaging for shipping.

Storage

The product may only be stored in spaces where the specified permissible ambient conditions are met. Protect the product from dust and dirt.

Disposal

The product consists of various materials that can be recycled. Dispose of the product in accordance with local regulations.

Visit <u>http://www.schneider-electric.com/green-premium</u> for information and documents on environmental protection as per ISO 14025 such as:

- EoLi (Product End-of-Life Instructions)
- PEP (Product Environmental Profile)

What Is in This Part?

This part contains the following chapters:

Chapter	Chapter Name	Page
21	SERCOS III IDN's	331
22	SERCOS III Hardware Setup	369

What Is in This Chapter?

This chapter contains the following sections:

Section	Торіс	Page
21.1	SERCOS III IDN's Overview	332
21.2	P0P11 Object Group	345
21.3	Device-Specific Object Group	364

Section 21.1 SERCOS III IDN's Overview

What Is in This Section?

This section contains the following topics:

Торіс	Page
List of SERCOS III Standard IDN's Parameters Supported	333
List of Mappable Parameters to RT Data	343

List of SERCOS III Standard IDN's Parameters Supported

Parameter name	Description	Unit Minimum value Factory setting Maximum value	Data type RW Persistent Expert	Parameter address via fieldbus
S-0-0011	Class 1 diagnostic (C1D) This parameter provides information on detected errors. A class 1 diagnostics error leads to a Quick Stop (with transition to operating state Fault). Type: Hexadecimal - 2 bytes Write access via Sercos: Read only	- 0 0 65535	RO - -	IDN S-0-0011
S-0-0012	Class 2 diagnostic (C2D) This parameter provides information on warnings. Type: Hexadecimal - 2 bytes Write access via Sercos: Read only	- 0 0 65535	RO - -	IDN S-0-0012
S-0-0014	Interface Status This parameter contains the status of the SERCOS interface. Type: Binary - 2 bytes Write access via Sercos: Read only Class name: SCP_VarCFG	- 0 0 16383	RO - -	IDN S-0-0014
S-0-0017	IDN-list of all operation data This parameter contains all procedure commands and parameters supported by the drive. Type: IDN - 4 bytes (variable length) Write access via Sercos: Read only Class name: GDP_Basic		RO - -	IDN S-0-0017
S-0-0021	IDN list of invalid operation data for CP2 This parameter contains an IDN list with IDNs which are considered invalid by the drive when it performs the CP3 transition check (S-0-0127). Type: IDN - 4 bytes (variable length) Write access via Sercos: Read only Class name: SCP_VarCFG, SCP_Diag		RO - -	IDN S-0-0021
S-0-0022	IDN list of invalid operation data for CP3 This parameter contains an IDN list with IDNs which are considered invalid by the drive when it performs the CP4 transition check (S-0-0128). Type: IDN - 4 bytes (variable length) Write access via Sercos: Read only Class name: SCP_VarCFG, SCP_Diag		RO - -	IDN S-0-0022
S-0-0032	Primary Operation Mode This parameter sets the primary operating mode of the drive. The operating mode is started via bits 8, 9 and 10 in the parameter Drive Control (S-0-0134). The active operating mode is indicated by bits 8, 9 and 10 in the status word (S-0-0135). Type: Hexadecimal - 2 bytes Write access via Sercos: CP2, CP3	- 3 3 3	RW - -	IDN S-0-0032
S-0-0033	Secondary Operation Mode 1 This parameter sets the secondary operating mode 1 of the drive. The operating mode is started via bits 8, 9 and 10 in the parameter Drive Control (S-0- 0134). The active operating mode is indicated by bits 8, 9 and 10 in the status word (S-0-0135). Type: Hexadecimal - 2 bytes Write access via Sercos: CP2, CP3	- 2 2 2	RW - -	IDN S-0-0033

Parameter name	Description	Unit Minimum value Factory setting Maximum value	Data type RW Persistent Expert	Parameter address via fieldbus
S-0-0034	Secondary Operation Mode 2 This parameter sets the secondary operating mode 2 of the drive. The operating mode is started via bits 8, 9 and 10 in the parameter Drive Control (S-0- 0134). The active operating mode is indicated by bits 8, 9 and 10 in the status word (S-0-0135). Type: Hexadecimal - 2 bytes Write access via Sercos: CP2, CP3	- 1 1 1	RW - -	IDN S-0-0034
S-0-0047	Position Command Value This parameter contains the target values for operating modes with position target values. Type: Signed decimal - 4 bytes Write access via Sercos: CP2, CP3, CP4	- -2147483648 - 2147483647	RW - -	IDN S-0-0047
S-0-0051	Position Feedback Value 1 (motor feedback) This parameter contains the position data of the motor encoder. Type: Signed decimal - 4 bytes Write access via Sercos: Read only	- -2147483648 - 2147483647	RO - -	IDN S-0-0051
S-0-0099	Reset class 1 diagnostic If this procedure command is received by the drive via the service channel, the detected errors, the error bits and the shut-down mechanism are cleared. Type: Binary - 2 bytes Write access via Sercos: CP2, CP3, CP4 Class name: GDP_Basic	- 0 0 7	RW - -	IDN S-0-0099
S-0-0127	CP3 transition check This procedure command instructs the drive to verify that all parameters necessary for CP3 have been transferred. If an error is detected, parameter S-0-0021 contains the appropriate IDNs. After correct termination of the command by the master, the master can activate CP3. Type: Binary - 2 bytes Write access via Sercos: CP2, CP3, CP4 Class name: SCP VarCFG	- 0 - 3	RW - -	IDN S-0-0127
S-0-0128	CP4 transition check This procedure command instructs the drive to verify that all parameters necessary for CP4 have been transferred. If an error is detected, parameter S-0-0022 contains the appropriate IDNs. After correct termination of the command by the master, the master can activate CP4. Type: Binary - 2 bytes Write access via Sercos: CP2, CP3, CP4 Class name: SCP_VarCFG	- 0 - 3	RW - -	IDN S-0-0128
S-0-0134	Drive Control This parameter contains the control word. Type: Hexadecimal - 2 bytes Write access via Sercos: CP2, CP3, CP4	- 0 - 65535	RW - -	IDN S-0-0134
S-0-0135	Drive Status This parameter contains the status word of the AT. It can be used for diagnostics purposes. Type: Hexadecimal - 2 bytes Write access via Sercos: Read only	- 0 - 65535	RO - -	IDN S-0-0135
S-0-0148	Drive controlled homing procedure command This parameter starts homing with the homing method settings made in the drive objects. See the product manual for details on homing. Type: Unsigned decimal - 2 bytes Write access via Sercos: CP2, CP3, CP4	- 0 - 3	RW - -	IDN S-0-0148

Parameter name	Description	Unit Minimum value Factory setting Maximum value	Data type RW Persistent Expert	Parameter address via fieldbus
S-0-0187	IDN list of configurable data as producer This parameter contains a list of all IDNs with operation data (feedback values) which can be cyclically processed by the drive. Type: IDN - 4 bytes (variable length) Write access via Sercos: Read only Class name: SCP_VarCFG	-	RO - -	IDN S-0-0187
S-0-0188	IDN list of configurable data as consumer This parameter contains a list of all IDNs with operation data command values) which can be cyclically processed by the drive. Type: IDN - 4 bytes (variable length) Write access via Sercos: Read only Class name: SCP_VarCFG		RO - -	IDN S-0-0188
S-0-0390	Diagnostic number The operation data of this parameter contains detailed information on the diagnostics event with the highest priority which is currently active in the drive. Type: Hexadecimal - 4 bytes Write access via Sercos: Read only Class name: GDP_Basic	- 0 0 4294967295	RO - -	IDN S-0-0390
S-0-1000.0.0	SCP Type & Version This parameter contains a list of the SERCOS communication capabilities/communication classes and the appropriate version supported by the drive. Type: Hexadecimal - 2 bytes (variable length) Write access via Sercos: Read only Class name: SCP_VarCFG		RO - -	IDN S-0-1000.0.0
S-0-1002	Communication Cycle time (tScyc) This parameter specifies the intervals at which the cyclic real-time data is transmitted. Possible values are 1000 µs, 2000 µs and 4000 µs. Type: Unsigned decimal - 4 bytes Write access via Sercos: CP2 Class name: SCP_VarCFG In increments of 0.001 µs.	μs 1000.000 1000.000 4000.000	RW - -	IDN S-0-1002
S-0-1003	Allowed MST losses in CP3/CP4 This parameter specifies the maximum number of successive communication cycles during which a drive is permitted to not receive the MST in CP3 and CP4. Type: Unsigned decimal - 4 bytes Write access via Sercos: CP2 Class name: SCP_VarCFG	- 0 10 65535	RW - -	IDN S-0-1003
S-0-1005	Minimum feedback processing time (t5) This parameter specifies the time required by the drive for receiving and processing actual values (such as encoder or touch probe data) and providing them in ATs. Type: Unsigned decimal - 4 bytes Write access via Sercos: Read only Class name: SCP_Sync In increments of 0.001 µs.	μs - - -	RO - -	IDN S-0-1005
S-0-1006	AT0 transmission starting time (t1) This parameter specifies the nominal time interval between the end of MST and the beginning of AT0. Type: Unsigned decimal - 4 bytes Write access via Sercos: CP2 Class name: SCP_Sync In increments of 0.001 µs.	μs - - -	RW - -	IDN S-0-1006

Parameter name	Description	Unit Minimum value Factory setting Maximum value	Data type RW Persistent Expert	Parameter address via fieldbus
S-0-1007	Synchronisation Time (tSync) This parameter specifies the point in time at which all producer cycle times (producing and consuming connections) in a drive are synchronized. This value is set by the master. It must be less than the value for the synchronization cycle time. The synchronization cycle time is the least common multiple of all producer cycle times (tPcyc) to be synchronized in the network. Type: Unsigned decimal - 4 bytes Write access via Sercos: CP2 Class name: SCP_Sync In increments of 0.001 µs.	μs 0 - 4294967.295	RW - -	IDN S-0-1007
S-0-1008	MDT Command value valid time (t3) This parameter determines the point in time at which the drive is permitted to access the new reference values, related to the synchronization time. Type: Unsigned decimal - 4 bytes Write access via Sercos: CP2 Class name: SCP_Sync In increments of 0.001 µs.	μs 0 - 4000.000	RW - -	IDN S-0-1008
S-0-1009	Device Control Offset in MDT This parameter specifies the MDT number and the position within the specified MDT for device control. This parameter is transferred by the master to each drive during CP2 and becomes effective in the master and drive in CP3. Type: Hexadecimal - 2 bytes Write access via Sercos: CP2 Class name: SCP_VarCFG	- 0 - 1492	RW - -	IDN S-0-1009
S-0-1010	Lengths of MDTs This parameter contains the lengths of the four possible MDTs in octets. These values are required for the initialization of the SERCOS hardware. Type: Unsigned decimal - 2 bytes (variable length) Write access via Sercos: CP2 Class name: SCP_VarCFG	- 0 - 1494	RW - -	IDN S-0-1010
S-0-1011	Device Status Offset in AT This parameter specifies the position of the status field of the drive in the AT in octets. This parameter is transferred by the master to each drive during CP2 and becomes effective in the master and drive in CP3. Type: Hexadecimal - 2 bytes Write access via Sercos: CP2 Class name: SCP_VarCFG	- 0 - 1492	RW - -	IDN S-0-1011
S-0-1012	Length of Ats This parameter contains the lengths of the four possible ATs in octets. These values are required for the initialization of the SERCOS hardware. Type: Unsigned decimal - 2 bytes (variable length) Write access via Sercos: CP2 Class name: SCP_VarCFG	- 0 - 1494	RW - -	IDN S-0-1012
S-0-1013	SVC offset in MDT This parameter specifies the position of the service channel in the MDT for the drive. This parameter is transferred by the master to each drive during CP2 and becomes effective in CP3. Type: Unsigned decimal - 2 bytes Write access via Sercos: CP2 Class name: SCP_VarCFG	- 0 - 1484	RW - -	IDN S-0-1013

Parameter name	Description	Unit Minimum value Factory setting Maximum value	Data type RW Persistent Expert	Parameter address via fieldbus
S-0-1014	SVC offset in AT This parameter specifies the position of the service channel in the AT for the drive. This parameter is transferred by the master to each drive during CP2 and becomes effective in CP3. Type: Unsigned decimal - 2 bytes Write access via Sercos: CP2 Class name: SCP_VarCFG	- 0 - 1484	RW - -	IDN S-0-1014
S-0-1015	Ring delay This parameter contains the entire ring delay determined by the master. The master assigns this value to the drives. Type: Unsigned decimal - 4 bytes Write access via Sercos: CP2, CP3, CP4 Class name: SCP_Sync In increments of 0.001 µs.	μs 0 - 1048.575	RW - -	IDN S-0-1015
S-0-1016	Slave delay (P/S) This parameter contains the slave delay. After the master has assigned the ring delay (S-0-1015) to the slaves, the slaves measure their own delay (SYNCCNT-P/SYNCCNT-S) when the procedure command S-0-1024 is executed. Type: Unsigned decimal - 4 bytes (variable length) Write access via Sercos: Read only Class name: SCP_Sync In increments of 0.001 µs.	μs 0 - 4294967.296	RO - -	IDN S-0-1016
S-0-1017	NRT transmission time This parameter contains the NRT transmission time. Type: Hexadecimal - 1 byte (variable length) Write access via Sercos: Read only Class name: SCP_VarCFG	μs 0 650000 4000000	RO - -	IDN S-0-1017
S-0-1019	MAC Address The drive writes its MAC address to this parameter. Type: Unsigned decimal - 1 byte (variable length) Write access via Sercos: CP2, CP3, CP4 Class name: SCP_NRT		RO - -	IDN S-0-1019
S-0-1020	Current IP address This parameter contains the IP address of the SERCOS III interface of the drive. The master can change the IP address by writing this parameter. Type: Unsigned decimal - 1 byte (variable length) Write access via Sercos: CP2, CP3, CP4 Class name: SCP_NRT		RW - -	IDN S-0-1020
S-0-1021	Subnet Mask This parameter contains the subnet mask. The master can change the subnet mask for IP communication via the NRT channel. Type: Unsigned decimal - 1 byte (variable length) Write access via Sercos: CP2, CP3, CP4 Class name: SCP_NRT	-	RW - -	IDN S-0-1021
S-0-1022	Gateway address This parameter contains the gateway address. The master can change the gateway address for IP communication via the NRT channel. Type: Unsigned decimal - 1 byte (variable length) Write access via Sercos: CP2, CP3, CP4 Class name: SCP_NRT		RW - -	IDN S-0-1022

Parameter name	Description	Unit Minimum value Factory setting Maximum value	Data type RW Persistent Expert	Parameter address via fieldbus
S-0-1023	SYNC jitter This parameter contains the maximum synchronization jitter. The synchronization jitter is used by the drive to calculate the MST window (2 x synchronization jitter). This parameter is transmitted to all drives supporting SCP_Sync. Type: Unsigned decimal - 4 bytes Write access via Sercos: CP2 Class name: SPC_Sync In increments of 0.001 μs.	μs - -	RW - -	IDN S-0-1023
S-0-1024	SYNC delay measuring procedure command This procedure command causes the drive to determine its slave delay (S-0-1016) depending on the ring delay (S-0-1015). Type: Binary - 2 bytes Write access via Sercos: CP2, CP3, CP4 Class name: SCP_Sync	- 0 0 3	RW - -	IDN S-0-1024
S-0-1026	Version of communication hardware This parameter contains the SERCOS III-specific communication hardware identification. Type: Text - 1 byte (variable length) Write access via Sercos: Read only Class name: SCP_VarCFG	-	RO - -	IDN S-0-1026
S-0-1027.0.1	Requested MTU The requested MTU specifies the maximum number of octets that can be sent via the NRT channel by higher layers. Type: Unsigned decimal - 2 bytes Write access via Sercos: CP2 Class name: SCP_NRT	- 46 - 1500	RW - -	IDN S-0-1027.0.1
S-0-1027.0.2	Effective MTU This parameter contains the current MTU. The current MTU is calculated using the parameters S-0- 1017 and S-0-1027.0. Type: Unsigned decimal - 2 bytes Write access via Sercos: Read only Class name: SCP_NRT	- 46 - 1500	RO - -	IDN S-0-1027.0.2
S-0-1028	Error counter MST P/S This parameter is an error counter which is incremented if no valid MST is received at port 1 or port 2 during CP 3 and CP4. Type: Unsigned decimal - 2 bytes Write access via Sercos: Read only Class name: SCP_Diag	- 0 0 65535	RO - -	IDN S-0-1028
S-0-1031	Test pin assignment Port 1 & Port 2 This parameter is used to assign communication- related hardware signals to the test pins TS1 and TS2. Type: Binary - 2 bytes Write access via Sercos: CP2, CP3, CP4 Class name: SCP_Diag	- 0 0 3855	RW - -	IDN S-0-1031
S-0-1035	Error counter Port1 and Port2 This parameter is an error counter which counts the detected Ethernet errors. Type: Hexadecimal - 4 bytes Write access via Sercos: CP2, CP3, CP4 Class name: SCP_VarCFG	- 0 0 65535	RW - -	IDN S-0-1035
S-0-1040	SERCOS address This parameter contains the SERCOS device address assigned to the drive. Type: Unsigned decimal - 2 bytes Write access via Sercos: CP2, CP3, CP4 Class name: SCP_VarCFG	- 0 0 511	RW - -	IDN S-0-1040

Parameter name	Description	Unit Minimum value Factory setting Maximum value	Data type RW Persistent Expert	Parameter address via fieldbus
S-0-1040.0.128	Topology address This parameter contains the topology address of the drive (physical position in the network). This address is independent of the SERCOS address. This parameter is a manufacturer-specific extension of the standard parameter. Type: IDN - 2 bytes Write access via Sercos: Read only	- 0 0 511	RO - -	IDN S-0-1040.0.128
S-0-1041	AT Command value valid time (t9) This parameter determines the point in time at which the drive is permitted to access the new reference values from the AT. Type: Unsigned decimal - 4 bytes Write access via Sercos: CP2 Class name: SCP_Sync In increments of 0.001 µs.	μs 0 - 4000.000	RW - -	IDN S-0-1041
S-0-1044	Device Control This parameter contains the control information (for example, topology control, fast-forward, loopback, physical topology, ring, etc.) set by the master and evaluated by the drive. Type: Hexadecimal - 2 bytes Write access via Sercos: Read only Class name: SCP_Diag		RO - -	IDN S-0-1044
S-0-1045	Device Status This parameter contains the status information (for example, topology status, fast-forward, loopback, physical topology, ring, etc.) set by the drive and evaluated by the master. Type: Hexadecimal - 2 bytes Write access via Sercos: Read only Class name: SCP_Diag		RO - -	IDN S-0-1045
S-0-1046	List of SERCOS addresses in device If a device comprises multiple SERCOS slaves, this parameter contains the SERCOS addresses of the slaves that participate in the communication. Type: Unsigned decimal - 2 bytes (variable length) Write access via Sercos: Read only Class name: SCP_VarCFG	- 1 1 1	RO - -	IDN S-0-1046
S-0-1050.x.01	Connection setup This parameter is used to configure connections. Type: Hexadecimal - 2 bytes Write access via Sercos: CP2 Class name: SCP_VarCFG, SCP_Sync, SCP_WDCon	- 0 8218 65535	RW - -	IDN S-0-1050.x.01
S-0-1050.x.02	Connection Number The connection number is used to identify a connection. The producer and all consumers of the same connection have the same connection number. Type: Unsigned decimal - 2 bytes Write access via Sercos: CP2 Class name: SCP_VarCFG	- 0 0 65535	RW - -	IDN S-0-1050.x.02
S-0-1050.x.03	Telegram Assignment This parameter contains the telegram type (MDT or AT), the telegram number and the telegram offset of connection control for this connection. Type: Hexadecimal - 2 bytes Write access via Sercos: CP2 Class name: SCP_VarCFG	- 0 0 15828	RW - -	IDN S-0-1050.x.03

Parameter name	Description	Unit Minimum value Factory setting Maximum value	Data type RW Persistent Expert	Parameter address via fieldbus
S-0-1050.x.04	Max. Length Of Connection This parameter specifies the maximum length of this connection. Type: Unsigned decimal - 2 bytes Write access via Sercos: Read only Class name: SCP_VarCFG	- 2 2 200	RO - -	IDN S-0-1050.x.04
S-0-1050.x.05	Current length of connection This parameter specifies the current length of this connection. Type: Unsigned decimal - 2 bytes Write access via Sercos: Read only Class name: SCP_VarCFG	- 2 2 200	RO - -	IDN S-0-1050.x.05
S-0-1050.x.06	Configuration List If the connection data is configured via IDNs (type of connection, bit 5-4 = 00, in S-0-1050.x.01), this parameter contains the list of IDNs within this connection. Type: IDN - 4 bytes (variable length) Write access via Sercos: CP2 Class name: SCP_VarCFG		RW - -	IDN S-0-1050.x.06
S-0-1050.x.08	Connection Control (C-Con) This parameter contains the image of the control word C-Con of this connection. Type: Unsigned decimal - 4 bytes Write access via Sercos: CP2 Class name: SCP_Diag In increments of 0.001.		RW - -	IDN S-0-1050.x.08
S-0-1050.x.10	Producer Cycle Time This parameter contains the producer cycle time. The producer cycle time should be an integer multiple of the communication cycle time. Type: Unsigned decimal - 2 bytes Write access via Sercos: CP2 Class name: SCP_Sync, SCP_WDCon	µs 31250 1000000 4294967296	RW - -	IDN S-0-1050.x.10
S-0-1050.x.11	Allowed Data Losses This parameter specifies the maximum amount of consecutive producer data that may be lost before a connection is closed. Type: Unsigned decimal - 2 bytes Write access via Sercos: Read only Class name: SCP_Sync, SCP_WDCon	- 1 1 65535	RO - -	IDN S-0-1050.x.11
S-0-1050.x.12	Error Counter Data Losses This parameter is a counter which counts the amount of producer data lost. Type: Hexadecimal - 2 bytes (variable length) Write access via Sercos: Read only Class name: SCP_Sync, SCP_Diag	- 0 0 65535	RO - -	IDN S-0-1050.x.12
S-0-1051.0.0	Image of connection setups This parameter contains the actual state of all the connections of the drive, corresponding to the parameter S-0-1050.x.1. Type: Unsigned decimal - 4 bytes (variable length) Write access via Sercos: CP2 Class name: SCP_VarCFG In increments of 0.001.	- - -	RW - -	IDN S-0-1051.0.0
S-0-1300.0.02	Vendor Name This parameter contains the vendor-specific name of the device. Type: Text - 1 byte (variable length) Write access via Sercos: Read only Class name: GDP_Id		RO - -	IDN S-0-1300.0.02

Parameter name	Description	Unit Minimum value Factory setting Maximum value	Data type RW Persistent Expert	Parameter address via fieldbus
S-0-1300.0.03	Vendor Code This parameter contains the vendor code. The vendor code is a unique number assigned to each vendor and helps to identify a SERCOS device. Type: Unsigned decimal - 2 bytes Write access via Sercos: Read only Class name: GDP_Basic	- 1 1 1	RO - -	IDN S-0-1300.0.03
S-0-1300.0.04	Device Name This parameter contains the device name published in vendor's price list. Type: Text - 1 byte (variable length) Write access via Sercos: Read only Class name: GDP_Id	- 0 - 255	RO - -	IDN S-0-1300.0.04
S-0-1300.0.05	Vendor Device ID The parameter contains the vendor device ID. The vendor device ID is a unique device ID managed by the vendor; it identifies the component number. Type: Text - 1 byte (variable length) Write access via Sercos: Read only Class name: GDP_Basic	- 0 - 255	RO - -	IDN S-0-1300.0.05
S-0-1300.0.08	Hardware Revision This parameter contains the hardware revision of the device. Type: Text - 1 byte (variable length) Write access via Sercos: Read only	- 0 - 255	RO - -	IDN S-0-1300.0.08
S-0-1300.0.09	Software Revision This parameter contains the firmware version of the drive. Type: Text - 1 byte (variable length) Write access via Sercos: Read only	- 0 - 255	RO - -	IDN S-0-1300.0.09
S-0-1300.0.11	Order Number This parameter contains the order number of the drive. Type: Text - 1 byte (variable length) Write access via Sercos: Read only	-	RO - -	IDN S-0-1300.0.11
S-0-1300.0.12	Serial Number This parameter contains the serial number of the drive. Type: Text - 1 byte (variable length) Write access via Sercos: Read only Class name: GDP_Id	- 0 - 255	RO - -	IDN S-0-1300.0.12
S-0-1300.1.09	Software Revision This parameter contains the software version of the SERCOS III Communication Option. Type: Text - 1 byte (variable length) Write access via Sercos: Read only	- 0 - 255	RO - -	IDN S-0-1300.1.09
S-0-1300.1.10	Firmware Loader Revision This parameter contains the revision of the firmware loader or bootloader implemented in the drive. Type: Text - 1 byte (variable length) Write access via Sercos: Read only	- 0 - 255	RO - -	IDN S-0-1300.1.10
S-0-1300.1.11	Reference Number This parameter contains the reference number of the drive. Type: Text - 1 byte (variable length) Write access via Sercos: Read only		RO - -	IDN S-0-1300.1.11
S-0-1300.2.09	Software Revision This parameter contains the software version of the FPGA of the SERCOS communication option. Type: Text - 1 byte (variable length) Write access via Sercos: Read only	- 0 - 255	RO - -	IDN S-0-1300.2.09

Parameter name	Description	Unit Minimum value Factory setting Maximum value	Data type RW Persistent Expert	Parameter address via fieldbus
S-0-1301	List of GDP classes & Version This parameter contains a list of the generic profile capabilities and the versions supported by the drive. Type: Hexadecimal - 2 bytes (variable length) Write access via Sercos: Read only Class name: GDP_Basic	- 257 - 5889	RO - -	IDN S-0-1301
S-0-1302.0.01	FSP Type & Version This parameter contains the function-specific type and the function-dependent version of the resource. Type: Hexadecimal - 4 bytes Write access via Sercos: Read only Class name: GDP_Basic	- 0 - 4294967295	RO - -	IDN S-0-1302.0.01
S-0-1302.0.02	Function groups The operation data of this parameter contains a list of all instanced function groups. Type: IDN - 4 bytes (variable length) Write access via Sercos: Read only Class name: GDP_Basic	- 0 - 4294967295	RO - -	IDN S-0-1302.0.02
S-0-1302.0.03	Application Type The operation data of this parameter contains the type of the sub-device application (for example, main spindle drive, round axis, X axis, etc.). Type: Text - 1 byte (variable length) Write access via Sercos: CP2, CP3, CP4 Class name: GDP_Id	- 0 - 255	RW - -	IDN S-0-1302.0.03

List of Mappable Parameters to RT Data

Overview

Mapping of IDN's to real-time data performed by IDN S-0-1050.X.6 – List of mapped IDN's.

- The IDN's that can be mapped to RT data is registered in the following lists:
- IDN S-0-0187 IDN-list of configurable data as producer (MDT)
- IDN S-0-0188 IDN-list of configurable data as consumer (AT)

IDN Mappable to RT MDT Data

IDN	Description
S-0-0134.0.0	Drive Control Word (SERCOS III)
S-0-0047.0.0	Position command value (CSP mode)
S-0-0036.0.0	Velocity command value (CSV mode)
S-0-0080.0.0	Torque command value (CST mode)
S-0-0372.0.0	Halt acceleration bipolar
S-0-0429.0.0	Emergency stop deceleration
P-0-3027.0.13	Velocity Command Value
P-0-3027.0.16	Torque Command Value
P-0-3020.0.3	Position window
P-0-3020.0.23	Velocity offset
P-0-3020.0.24	Torque offset
P-0-3020.0.25	Touch Probe Function
P-0-3025.0.80	SPD Sercos control (CAP1 and CAP2)
P-0-3008.0.17	Setting the digital outputs directly
P-0-3040.0.11	Position at reference point

IDN Mappable to RT AT Data

IDN	Description
s-0-0135.0.0	Drive status (SERCOS III)
S-0-0051.0.0	Position feedback
S-0-0040.0.0	Velocity feedback
S-0-0084.0.0	Torque feedback
P-0-3030.0.32	Velocity feedback
P-0-3030.0.36	Torque feedback
P-0-3020.0.6	Torque demand value
P-0-3020.0.9	DC link circuit voltage
P-0-3010.0.1	Status of the capture inputs
P-0-3010.0.37	Capture input 1 captured position at rising edge
P-0-3010.0.38	Capture input 1 captured position at falling edge
P-0-3010.0.39	Capture input 2 captured position at rising edge
P-0-3010.0.40	Capture input 2 captured position at falling edge
P-0-3010.0.43	Capture input 1 event counter at rising edges
P-0-3010.0.44	Capture input 1 event counter at falling edges
P-0-3010.0.45	Capture input 2 event counter at rising edges
P-0-3010.0.46	Capture input 2 event counter at falling edges
P-0-3025.0.81	SPD Sercos status (CAP1 and CAP2)
P-0-3008.0.1	Physical status of the digital inputs and outputs
P-0-3027.0.4	Active operating mode
P-0-3030.0.18	Current position deviation including dynamic position deviation
P-0-3008.0.15	State of Digital Inputs / Activate Forcing
P-0-3008.0.16	State of Digital Outputs
P-0-3010.0.23	Capture input 1 event counter (Continuous)
P-0-3010.0.24	Capture input 1 event position (Continuous)
P-0-3010.0.25	Capture input 2 event counter (Continuous)
P-0-3010.0.26	Capture input 2 event position (Continuous)
P-0-3010.0.6	Capture input 1 captured position (one-time)
P-0-3010.0.7	Capture input 2 captured position (one-time)
P-0-3010.0.8	Capture input 1 Event Counter
P-0-3010.0.9	Capture input 2 Event Counter
P-0-3028.0.35	Current Overload
P-0-3028.0.4	Action Status
P-0-3030.0.3	Motor Current
P-0-3030.0.39	Position
S-0-0390.0.0	Diagnostic number

Section 21.2 P0...P11 Object Group

What Is in This Section?

This section contains the following topics:

Торіс	Page
P0 Object Group	346
P1 Object Group	348
P2 Object Group	351
P3 Object Group	353
P4 Object Group	354
P5 Object Group	355
P8 Object Group	357
P9 Object Group	360
P11 Object Group	362

P0 Object Group

P0 Object Group

This objects list is also available in P0 - Status parameters (see page 225)

IDN	Name	Parameter	Object type Data type Access	Minimum value Factory setting Maximum value
P-0-3000.0.0	Firmware Version	P0-00	VAR UINT16 ro	0 - 65535
P-0-3000.0.1	Error code of detected error	P0-01	VAR UINT16 rw	0 - 65535
P-0-3000.0.2	Drive Status Displayed by HMI	P0-02	VAR UINT16 rw	0 0 123
P-0-3000.0.4	FPGA Version	P0-04	VAR UINT16 ro	0 - 65535
P-0-3000.0.8	Operating Hour Meter in Seconds	P0-08	VAR UINT32 ro	0 - 4294967295
P-0-3000.0.9	Status Value 1	P0-09	VAR INT32 ro	-2147483647 - 2147483647
P-0-3000.0.10	Status Value 2	P0-10	VAR INT32 ro	-2147483647 - 2147483647
P-0-3000.0.11	Status Value 3	P0-11	VAR INT32 ro	-2147483647 - 2147483647
P-0-3000.0.12	Status Value 4	P0-12	VAR INT32 ro	-2147483647 - 2147483647
P-0-3000.0.13	Status Value 5	P0-13	VAR INT32 ro	-2147483647 - 2147483647
P-0-3000.0.17	Indicate status value 1	P0-17	VAR UINT16 rw	0 0 123
P-0-3000.0.18	Indicate status value 2	P0-18	VAR UINT16 rw	0 0 123
P-0-3000.0.19	Indicate status value 3	P0-19	VAR UINT16 rw	0 0 123
P-0-3000.0.20	Indicate status value 4	P0-20	VAR UINT16 rw	0 0 123
P-0-3000.0.21	Indicate status value 5	P0-21	VAR UINT16 rw	0 0 123
P-0-3000.0.25	Parameter Mapping 1	P0-25	VAR UINT32 rw	0 - 4294967295
P-0-3000.0.26	Parameter Mapping 2	P0-26	VAR UINT32 rw	0 - 4294967295
P-0-3000.0.27	Parameter Mapping 3	P0-27	VAR UINT32 rw	0 - 4294967295

IDN	Name	Parameter	Object type Data type Access	Minimum value Factory setting Maximum value
P-0-3000.0.28	Parameter Mapping 4	P0-28	VAR UINT32 rw	0 - 4294967295
P-0-3000.0.29	Parameter Mapping 5	P0-29	VAR UINT32 rw	0 - 4294967295
P-0-3000.0.30	Parameter Mapping 6	P0-30	VAR UINT32 rw	0 - 4294967295
P-0-3000.0.31	Parameter Mapping 7	P0-31	VAR UINT32 rw	0 - 4294967295
P-0-3000.0.32	Parameter Mapping 8	P0-32	VAR UINT32 rw	0 - 4294967295
P-0-3000.0.35	Block Data Read/Write P0-35P0- 42 1	P0-35	VAR UINT32 rw	0 0 4294967295
P-0-3000.0.36	Block Data Read/Write P0-35P0- 42 2	P0-36	VAR UINT32 rw	0 0 4294967295
P-0-3000.0.37	Block Data Read/Write P0-35P0- 42 3	P0-37	VAR UINT32 rw	0 0 4294967295
P-0-3000.0.38	Block Data Read/Write P0-35P0- 42 4	P0-38	VAR UINT32 rw	0 0 4294967295
P-0-3000.0.39	Block Data Read/Write P0-35P0- 42 5	P0-39	VAR UINT32 rw	0 0 4294967295
P-0-3000.0.40	Block Data Read/Write P0-35P0- 42 6	P0-40	VAR UINT32 rw	0 0 4294967295
P-0-3000.0.41	Block Data Read/Write P0-35P0- 42 7	P0-41	VAR UINT32 rw	0 0 4294967295
P-0-3000.0.42	Block Data Read/Write P0-35P0- 42 8	P0-42	VAR UINT32 rw	0 0 4294967295
P-0-3000.0.46	State of Signal Output Functions	P0-46	VAR UINT16 ro	0 - 65535
P-0-3000.0.47	Number of Last Alert	P0-47	VAR UINT16 ro	0 - 65535

P1 Object Group

P1 Object Group

This objects list is also available in P1 - Basic parameters (see page 230)

IDN	Name	Parameter	Object type Data type Access	Minimum value Factory setting Maximum value
P-0-4001.0.1	Operating Mode and Direction of Rotation	P1-01	VAR UINT16 rw	32 153 4505
P-0-4001.0.2	Velocity and Torque Limitations Activation/Deactivation	P1-02	VAR UINT16 rw	0 0 17
P-0-4001.0.3	Polarity of Pulse Outputs	P1-03	VAR UINT16 rw	0 0 16
P-0-4001.0.7	Limit Switch Fault Reaction	P1-07	VAR UINT16 rw	0 1 1
P-0-4001.0.9	Velocity Limitation 1	P1-09	VAR INT32 rw	-60000 10000 60000
P-0-4001.0.10	Velocity Limitation 2	P1-10	VAR INT32 rw	-60000 20000 60000
P-0-4001.0.11	Velocity Limitation 3	P1-11	VAR INT32 rw	-60000 30000 60000
P-0-4001.0.12	Torque Limitation 1	P1-12	VAR INT16 rw	-300 100 300
P-0-4001.0.13	Torque Limitation 2	P1-13	VAR INT16 rw	-300 100 300
P-0-4001.0.14	Torque Limitation 3	P1-14	VAR INT16 rw	-300 100 300
P-0-4001.0.15	Mains Phase Monitoring - Response to Missing Mains Phase	P1-15	VAR UINT16 rw	0 0 2
P-0-3001.0.16	Mains Phase Monitoring - Fault Reset	P1-16	VAR UINT16 rw	0 0 1
P-0-3001.0.17	Mains Phase Monitoring - Type	P1-17	VAR UINT16 rw	0 0 2
P-0-4001.0.19	Active Disable - Delay Time Power Stage	P1-19	VAR UINT16 rw	0 0 6500
P-0-4001.0.20	Current Limit During Quick Stop	P1-20	VAR INT16 rw	1 1000 1000
P-0-4001.0.21	Status of Foldback Current Drive	P1-21	VAR UINT16 ro	0 - 1
P-0-4001.0.22	Foldback Current Limit - Drive	P1-22	VAR UINT32 ro	0 - 30000
P-0-4001.0.23	Current Monitoring Drive - Detected Error Threshold Foldback Current	P1-23	VAR UINT32 rw	0-30000
P-0-4001.0.24	Current Monitoring Drive - Alert Threshold Foldback Current	P1-24	VAR UINT32 rw	0-30000

IDN	Name	Parameter	Object type Data type	Minimum value Factory setting
			Access	Maximum value
P-0-4001.0.25	Reserved	P1-25	VAR UINT32	-
D 0 1001 0 00		D 4 00	rw	-
P-0-4001.0.26	Foldback Current Limit - Motor	P1-26	VAR UINT32 ro	0 - 30000
P-0-3001.0.27	Motor Current Monitoring -	P1-27	VAR	0
1 0 000 1.0.27	Detected Error Threshold Foldback Current		UINT32 rw	- 30000
P-0-4001.0.28	Motor Current Monitoring - Alert Threshold Foldback Current	P1-28	VAR UINT32	0 -
			rw	30000
P-0-4001.0.29	DC Bus Overvoltage Monitoring - Threshold	P1-29	VAR UINT16 ro	-
P-0-4001.0.30	Commutation Monitoring -	P1-30	VAR	0
	Maximum Counter Value		UINT16 rw	0
P-0-4001.0.32	Stop Method	P1-32	VAR	0
			UINT16 rw	0 32
P-0-4001.0.34	Acceleration Period	P1-34	VAR	6
			UINT16 rw	30 65500
P-0-4001.0.35	Deceleration Period	P1-35	VAR	6
			UINT16 rw	30 65500
P-0-4001.0.37	Ratio of Load Inertia to Motor	P1-37	VAR	0
	Inertia		UINT32 rw	10 20000
P-0-3006.0.27	Signal Output Function ZSPD	P1-38	VAR	0
			INT32 rw	100 2000
P-0-4001.0.39	Signal Output Function TSPD -	P1-39	VAR	0
	Velocity		UINT32 rw	3000 5000
P-0-3005.0.7	ON Delay Time of Holding Brake	P1-42	VAR	0
			UINT16 rw	0 1000
P-0-4001.0.44	Electronic Gear Ratio - Numerator	P1-44	VAR	1
	1		UINT32 rw	1 536870911
P-0-4001.0.45	Electronic Gear Ratio -	P1-45	VAR	1
	Denominator		UINT32 rw	131072 2147483647
P-0-4001.0.46	Encoder Simulation Resolution	P1-46	VAR	-
			INT32 rw	2048 -
P-0-3001.0.52	Braking Resistor - Resistance	P1-52	VAR	-1
			INT16 rw	- 32767
P-0-3001.0.53	Braking Resistor - Power	P1-53	VAR	-1
			INT16	-
D 0 2001 0 54	Signal Output Eurotian TDOS	P1-54	rw VAR	32767
P-0-3001.0.54	Signal Output Function TPOS - Trigger Value	r 1-04	VAR UINT32 rw	0 1311 1280000
P-0-3017.0.16	Maximum Velocity - User-Defined	P1-55	VAR	1280000
			UINT32 rw	- 6000
P-0-3001.0.57	Torque Monitoring - Torque Value	P1-57	VAR	0
2 300 1.0.01			UINT16	0
			rw	300

IDN	Name	Parameter	Object type	Minimum value
			Data type Access	Factory setting Maximum value
P-0-3001.0.58	Torque Monitoring - Time Value	P1-58	VAR	1
			UINT16	1
		54.50	rw	1000
P-0-3001.0.59	S Curve Filter for Profile Velocity	P1-59	VAR UINT32	0 0
			rw	255875
P-0-3001.0.60	Commutation Monitoring - Time	P1-60	VAR	0
	Threshold		UINT16	0
			rw	3000
P-0-3001.0.61	Commutation Monitoring - Velocity Threshold	P1-61	VAR UINT32	0 600
	The shou		rw	60000
P-0-3001.0.62	Motor Overtemperature Monitoring	P1-62	VAR	0
	- Response		UINT16	0
<u> </u>		54.00	rw	5
P-0-3001.0.63	Motor Overtemperature Monitoring - Delay Time	P1-63	VAR UINT16	0 30
			rw	300
P-0-3001.0.64	Undervoltage Monitoring -	P1-64	VAR	0
	Response		UINT16	0
			rw	3
P-0-3001.0.66	Status of Foldback Current Motor	P1-66	VAR UINT16	0
			ro	-
P-0-3001.0.67	Undervoltage Monitoring - Delay	P1-67	VAR	0
	Time		UINT16	30
			rw	300
P-0-3001.0.68	Active Disable - Deceleration	P1-68	VAR	6
	Ramp		UINT16 rw	30 65500
P-0-3001.0.69	Disable - Deceleration Time	P1-69	VAR	0
			UINT16	0
			rw	6500
P-0-3001.0.71	Braking Resistor - Maximum Time	P1-71	VAR	10
	in Braking		UINT16 rw	40 100
P-0-3001.0.72	Braking Resistor Overload	P1-72	VAR	0
0 0001.0.72	Monitoring - Response	2	UINT16	0
			rw	1
P-0-4001.0.78	User-Defined Maximum Current	P1-78	VAR	-
			UINT32 rw	-
P-0-3017.0.12	Maximum Current	P1-79	VAR	-
0 0011.0.12			UINT32	-
			ro	-
P-0-3001.0.80	Maximum Peak Current	P1-80	VAR	-
			UINT32	-
P-0-3001.0.81	Nominal Current	P1-81	ro VAR	-
			UINT32	-
			ro	-
P-0-3001.0.82	Velocity limitation for operating	P1-82	VAR	0
	mode Profile Torque		UINT16	0
P-0-3001.0.84	Configured motor type	P1-84	rw VAR	3
1 -0-3001.0.04		ı⁻ ।-0 4	UINT32	-
			rw	2147483647
P-0-3001.0.85	Torque Limit For Modes	P1-85	VAR	0
			UINT16	0
	Quick Step Maximum Quints 1	D1 07	rw	3
P-0-3017.0.13	Quick Stop - Maximum Current	P1-87	VAR UINT32	- 0
	1	1	011102	v

P2 Object Group

P2 Object Group

This objects list is also available in P2 - Extended parameters (see page 238)

IDN	Name	Parameter	Object type Data type Access	Minimum value Factory setting Maximum value
P-0-4002.0.1	Gain Switching - Rate for Position Loop	P2-01	VAR UINT16 rw	10 100 500
P-0-4002.0.5	Gain Switching - Rate for Velocity Loop	P2-05	VAR UINT16 rw	10 100 500
P-0-3002.0.8	Factory Reset / Save Parameters / Activation of Forcing of Outputs	P2-08	VAR UINT16 rw	0 0 406
P-0-3002.0.9	Debounce Time - Inputs	P2-09	VAR UINT16 rw	0 2 20
P-0-3007.0.1	Signal Input Function for DI1	P2-10	VAR UINT16 rw	0 256 326
P-0-3007.0.2	Signal Input Function for DI2	P2-11	VAR UINT16 rw	0 256 326
P-0-3007.0.3	Signal Input Function for DI3	P2-12	VAR UINT16 rw	0 256 326
P-0-3007.0.4	Signal Input Function for DI4	P2-13	VAR UINT16 rw	0 256 326
P-0-3007.0.5	Signal Input Function for DI5	P2-14	VAR UINT16 rw	0 36 326
P-0-3007.0.6	Signal Input Function for DI6	P2-15	VAR UINT16 rw	0 34 326
P-0-3007.0.7	Signal Input Function for DI7	P2-16	VAR UINT16 rw	0 35 326
P-0-3007.0.8	Signal Input Function for DI8	P2-17	VAR UINT16 rw	0 33 326
P-0-3007.0.9	Signal Output Function for DO1	P2-18	VAR UINT16 rw	0 257 311
P-0-3007.0.10	Signal Output Function for DO2	P2-19	VAR UINT16 rw	0 256 311
P-0-3007.0.11	Signal Output Function for DO3	P2-20	VAR UINT16 rw	0 256 311
P-0-3007.0.12	Signal Output Function for DO4	P2-21	VAR UINT16 rw	0 256 311
P-0-3007.0.14	Signal Output Function for OCZ	P2-23	VAR UINT16 rw	0 64 311
P-0-4002.0.24	Debounce Time - Fast Inputs	P2-24	VAR UINT16 rw	0 50 100

IDN	Name	Parameter	Object type Data type Access	Minimum value Factory setting Maximum value
P-0-4002.0.27	Gain Switching - Conditions and Type	P2-27	VAR UINT16 rw	0 0 24
P-0-4002.0.29	Gain Switching - Comparison Value	P2-29	VAR UINT32 rw	0 1280000 3840000
P-0-4002.0.30	Auxiliary Functions	P2-30	VAR INT16 rw	-8 0 8
P-0-4002.0.31	Autotuning Optimization Value Threshold	P2-31	VAR UINT32 rw	100 1000 10000
P-0-4002.0.32	Autotuning	P2-32	VAR UINT16 rw	0 0 56
P-0-4002.0.34	Velocity Monitoring - Threshold Value	P2-34	VAR UINT32 rw	0 50000 60000
P-0-3006.0.62	Position Deviation Monitoring - Threshold Value	P2-35	VAR UINT32 rw	1 384000 12800000
P-0-3002.0.50	Signal Input Function CLRPOS - Trigger	P2-50	VAR UINT16 rw	0 0 1
P-0-3002.0.65	Special Function 1	P2-65	VAR UINT16 rw	0 512 65472
P-0-3002.0.66	Special Function 2	P2-66	VAR UINT16 rw	0 0 4
P-0-3002.0.68	Auto-Enable and Automatic Hardware Limit Switch Fault Reset	P2-68	VAR UINT16 rw	0 256 273

P3 Object Group

P3 Object Group

Part of this objects list is also available in P3 - Communication parameters (see page 244)

Index	Name	Parameter	Object type Data type Access	Minimum value Factory setting Maximum value
P-0-3003.0.0	Device Address Modbus	P3-00	VAR UINT16 rw	1 127 247
P-0-3003.0.1	Transmission Rate for Integrated Fieldbus and Modbus	P3-01	VAR UINT16 rw	0 2 5
P-0-3003.0.2	Modbus Connection Settings	P3-02	VAR UINT16 rw	6 7 9
P-0-3003.0.3	Detected Modbus Communication Errors - Handling	P3-03	VAR UINT16 rw	0 0 1
P-0-3003.0.4	Modbus Connection Monitoring	P3-04	VAR UINT16 rw	0 0 20000
P-0-3003.0.5	Device Address Integrated Fieldbus	P3-05	VAR UINT16 rw	0 0 127
P-0-3003.0.6	Digital Inputs - Forcing Settings	P3-06	VAR UINT16 rw	0 0 2047
P-0-3003.0.7	Modbus Response Delay Time	P3-07	VAR UINT16 rw	0 0 1000
P-0-3003.0.8	Fieldbus Protocol	P3-08	VAR UINT16 rw	0 2 4
P-0-3003.0.30	Internal Limit for Bit 11 Status Word S-0-0135.	P3-30	VAR UINT16 rw	0 0 11
P-0-3003.0.31	Settings for operating state Quick Stop	P3-31	VAR INT16 rw	-2 6 7
P-0-3003.0.32	Automatic operating state transition from Switch On Disabled to Ready To Switch On	P3-32	VAR UINT16 rw	0 0 1
P-0-3003.0.33	Fieldbus Communication Status	P3-33	VAR INT16 r	0 - 6

P4 Object Group

P4 Object Group

Part of this objects list is also available in P4 - Diagnostics parameters (see page 246)

Index	Name	Parameter	Object type Data type Access	Minimum value Factory setting Maximum value
P-0-3004.0.0	Error History - Error Number of the Most Recently Detected Error n	P4-00	VAR UINT16 rw	0 - 65535
P-0-3004.1.1	Error History - Error Number of the Most Recently Detected Error n - 1	P4-01	VAR UINT16 ro	0 - 65535
P-0-4004.0.2	Error History -Error Number of the Most Recently Detected Error n - 2	P4-02	VAR UINT16 ro	0 - 65535
P-0-4004.0.3	Error History - Error Number of the Most Recently Detected Error n - 3	P4-03	VAR UINT16 ro	0 - 65535
P-0-4004.0.4	Error History - Error Number of the Most Recently Detected Error n - 4	P4-04	VAR UINT16 ro	0 - 65535
P-0-4004.0.5	Jog Velocity	P4-05	VAR UINT32 rw	0 20 5000
P-0-3004.0.6	Forcing Matrix of Digital Outputs	P4-06	VAR UINT16 rw	0 0 255
P-0-3008.0.15	State of Digital Inputs / Activate Forcing	P4-07	VAR UINT16 rw	0 - 255
P-0-4004.0.8	Status of HMI Keypad	P4-08	VAR UINT16 ro	0 0 255
P-0-3008.0.16	State of Digital Outputs	P4-09	VAR UINT16 ro	0 - 63
P-0-4004.0.10	Clear Error History	P4-10	VAR UINT16 rw	0 0 0
P-0-3004.0.24	Undervoltage Monitoring - Threshold Value	P4-24	VAR UINT16 rw	140 160 190
P-0-3004.0.25	Safety Function STO - Status	P4-25	VAR UINT16 ro	0 - 1
P-0-3004.0.26	Forceable digital outputs	P4-26	VAR UINT16 ro	15 15 15
P-0-3004.0.27	Digital output force mask	P4-27	VAR UINT16 rw	0 0 15
P-0-3004.0.28	Digital output force value	P4-28	VAR UINT16 rw	0 0 15
P-0-3004.0.29	Motor Load Period Time	P4-29	VAR UINT32 rw	1 5000 100000

P5 Object Group

P5 Object Group

This objects list is also available in P5 - Motion settings parameters (see page 249)

Index	Name	Parameter	Object type Data type Access	Minimum value Factory setting Maximum value
P-0-3005.0.0	Firmware Revision	P5-00	VAR UINT16 ro	0 - 65535
P-0-4005.0.8	Positive Software Limit Switch - Position	P5-08	VAR INT32 rw	-2147483647 134217727 2147483647
P-0-4005.0.9	Negative Software Limit Switch - Position	P5-09	VAR INT32 rw	-2147483647 -134217727 2147483647
P-0-3005.2.11	Software Limit Switches - Hysteresis Value	P5-11	VAR UINT16 rw	0 3556 35555
P-0-4005.0.12	Touch Probe Input 1 - Stable Level Duration	P5-12	VAR UINT16 rw	2 5 32
P-0-4005.0.13	Position Limiting Mode	P5-13	VAR UINT16 rw	0 2 3
P-0-3006.0.42	Motion Profile for Torque - Slope	P5-14	VAR UINT32 rw	1 100000 3000000
P-0-3006.0.44	Motion Profile for Torque - Activation	P5-15	VAR UINT16 rw	0 0 1
P-0-4005.0.16	Encoder Increments in PUU	P5-16	VAR INT32 rw	-2147483647 0 2147483647
P-0-4005.0.18	External Encoder (Pulses)	P5-18	VAR INT32 ro	-2147483648 - 2147483647
P-0-3005.0.21	Deceleration Ramp - Detected Transmission Error	P5-21	VAR UINT16 rw	6 50 65500
P-0-4005.0.22	Deceleration Ramp - Position Overflow	P5-22	VAR UINT16 rw	6 30 65500
P-0-3005.0.23	Deceleration Ramp - Triggering of Negative Software Limit Switch	P5-23	VAR UINT16 rw	6 50 65500
P-0-3005.0.24	Deceleration Ramp - Triggering of Positive Software Limit Switch	P5-24	VAR UINT16 rw	6 50 65500
P-0-4005.0.25	Deceleration Ramp - Triggering of Negative Hardware Limit Switch	P5-25	VAR UINT16 rw	6 30 65500
P-0-4005.0.26	Deceleration Ramp - Triggering of Positive Hardware Limit Switch	P5-26	VAR UINT16 rw	6 30 65500
P-0-4005.0.35	Touch Probes Polarity	P5-35	VAR UINT16 ro	0 - 3
P-0-4005.0.36	Touch Probe Input 1 - Captured Position SERCOS III Units	P5-36	VAR INT32 ro	-2147483647 0 2147483647

Index	Name	Parameter	Object type Data type Access	Minimum value Factory setting Maximum value
P-0-4005.0.37	Touch Probe Input 1 - Captured Position	P5-37	VAR INT32 ro	-2147483647 0 2147483647
P-0-4005.0.38	Touch Probe Input 1 - Event Counter	P5-38	VAR UINT16 ro	0 0 65535
P-0-4005.0.39	Touch Probe Input 1 - Configuration	P5-39	VAR UINT16 rw	0 0 257
P-0-3005.0.56	Touch Probe Input 2 - Captured Position SERCOS III Units	P5-56	VAR INT32 ro	-2147483647 0 2147483647
P-0-3005.0.57	Touch Probe Input 2 - Captured Position	P5-57	VAR INT32 ro	-2147483647 0 2147483647
P-0-3005.0.58	Touch Probe Input 2 - Event Counter	P5-58	VAR UINT16 ro	0 0 65535
P-0-3005.0.59	Touch Probe Input 2 - Configuration	P5-59	VAR UINT16 rw	0 0 257
P-0-3005.0.76	Move Offset When Homing	P5-76	VAR UINT16 rw	0 0 1
P-0-3005.0.77	Touch Probe Input 2 - Stable Level Duration	P5-77	VAR UINT16 rw	2 5 32

P8 Object Group

P8 Object Group

This objects list is also available in P8 - Control loops parameters (see page 253)

Index	Name	Parameter	Object type Data type Access	Minimum value Factory setting Maximum value
P-0-3008.0.0	Derivative Gain	P8-00	VAR UINT32 rw	0 800 20000
P-0-3008.1.1	Integral Gain	P8-01	VAR UINT32 rw	0 100 2000
P-0-3008.0.2	Derivative-Integral Gain	P8-02	VAR UINT32 rw	0 400 4000
P-0-3008.0.3	Proportional Gain	P8-03	VAR UINT32 rw	0 300 4000
P-0-3008.0.4	Global Gain	P8-04	VAR UINT32 rw	100 500 3000
P-0-3008.0.5	LTN Spring Filter	P8-05	VAR UINT16 rw	10 7000 7000
P-0-3008.0.6	Anti-Vibration Gain	P8-06	VAR UINT32 rw	0 0 10000
P-0-3008.0.7	Pe filter	P8-07	VAR UINT32 rw	0 0 99000
P-0-3008.0.8	Anti-Vibration Filter	P8-08	VAR UINT32 rw	50 4000 4000
P-0-3008.0.9	Pe filter	P8-09	VAR UINT32 rw	50 4000 8000
P-0-4008.0.10	Ratio of Load Inertia to Motor Inertia for Anti-Vibration	P8-10	VAR UINT32 rw	0 0 6000
P-0-4008.0.11	NL Anti-Resonance Filter Divider	P8-11	VAR UINT32 rw	1 200 10000
P-0-4008.0.12	Anti-Resonance Sharpness	P8-12	VAR UINT16 rw	10 500 10000
P-0-4008.0.13	Pe Sharpness	P8-13	VAR UINT16 rw	10 500 10000
P-0-3008.0.14	Current Filter Damping	P8-14	VAR UINT16 rw	0 0 100
P-0-3008.1.15	Current Filter Low Pass Filter Rise Time	P8-15	VAR UINT16 rw	0 300 3000
P-0-3008.1.16	Current Filter - Second Notch Filter Bandwidth	P8-16	VAR UINT16 rw	0 0 500
P-0-3008.1.17	Current Filter - Second Notch Filter Center	P8-17	VAR UINT16 rw	5 100 1800
P-0-4008.0.18	Current Filter - Notch Filter Bandwidth	P8-18	VAR UINT16 rw	0 0 500

Index	Name	Parameter	Object type Data type Access	Minimum value Factory setting Maximum value
P-0-4008.0.19	Current Filter - Notch Filter Center	P8-19	VAR UINT16 rw	5 100 1800
P-0-3008.0.20	Elasticity Compensation	P8-20	VAR UINT32 rw	0 50000 50000
P-0-3008.0.21	Spring Deceleration Ratio	P8-21	VAR UINT16 rw	0 1000 2000
P-0-4008.0.32	S-Curve Setting for Profile Position	P8-32	VAR UINT32 rw	25 400 25600
P-0-4008.0.33	Low Pass Filter Setting for Profile Position	P8-33	VAR UINT32 rw	1 5000 500000
P-0-4008.0.34	Smoothing Filter for Profile Position	P8-34	VAR UINT16 rw	0 2 2
P-0-4008.0.35	Type of Velocity Control and Type of position Control	P8-35	VAR UINT16 rw	5 519 16385
P-0-4008.0.36	Pe filter 3	P8-36	VAR UINT32 rw	0 0 6000
P-0-4008.0.37	Pe filter 3	P8-37	VAR UINT32 rw	50 4000 8000
P-0-4008.0.38	Pe filter 3	P8-38	VAR UINT32 rw	200 1000 10000
P-0-3008.0.39	Gravity Compensation	P8-39	VAR INT16 rw	- 0 -
P-0-3008.0.40	LTN AFF	P8-40	VAR UINT16 rw	0 0 200
P-0-3008.0.41	Pe Sharpness	P8-41	VAR UINT16 rw	10 200 10000
P-0-3008.0.42	Homing Incorrect Information	P8-42	VAR UINT32 ro	0 - 4294967295
P-0-3008.0.43	ZSPD Low Pass Filter Value	P8-43	VAR UINT16 rw	10 1000 1000
P-0-3008.0.44	Send commands to multi turn encoder	P8-44	VAR UINT16 rw	0-2
P-0-3008.0.45	Feedback type	P8-45	VAR UINT16 ro	0-2
P-0-3008.0.46	Encoder temperature	P8-46	VAR INT16 ro	
P-0-3008.0.47	Encoder firmware and hardware versions	P8-47	VAR UINT32 ro	0 - 4294967295
P-0-3008.0.48	Encoder active errors	P8-48	VAR UINT32 ro	0 - 4294967295
P-0-3008.0.49	Encoder active alerts	P8-49	VAR UINT32 ro	0 - 4294967295

Index	Name	Parameter	Object type Data type	Minimum value Factory setting
			Access	Maximum value
P-0-3008.0.51	Speed Observer Mode	P8-51	VAR UINT16 rw	0 0 3
P-0-3008.0.53	Position Linear Controller	P8-53	VAR	0
	Proportional Gain <i>(see page 261)</i>		UINT16 rw	300 12000
P-0-3008.0.54	Position Velocity Feedforward	P8-54	VAR INT32 rw	-2000 500 2000
P-0-3008.0.55	Position Acceleration Feedforward	P8-55	VAR INT32 rw	-20000 0 20000
P-0-3008.0.56	Position Acceleration Feedforward to Current Loop	P8-56	VAR INT32 rw	-20000 0 20000
P-0-3008.0.57	Velocity Proportional Gain (see page 261)	P8-57	VAR UINT32 rw	0 300 100000000
P-0-3008.0.58	Velocity Integral Gain (see page 261)	P8-58	VAR UINT32 rw	0 30000 20000000
P-0-3008.0.59	Velocity Feedforward Ratio	P8-59	VAR UINT16 rw	0 900 1000
P-0-3008.0.60	Velocity Loop Output Filter Mode (see page 261)	P8-60	VAR UINT16 rw	0 2 3
P-0-3008.0.61	Velocity Loop Output Filter Parameter 1 <i>(see page 261)</i>	P8-61	VAR UINT16 rw	1 500 10000
P-0-3008.0.62	Velocity Loop Output Filter	P8-62	VAR	1
1 0 0000.0.02	Parameter 2 <i>(see page 261)</i>	1002	UINT16 rw	500 10000
P-0-3008.0.63	Velocity Filter Mode	P8-63	VAR UINT16 rw	0 1 2
P-0-3008.0.64	Velocity Filter Pole Frequency	P8-64	VAR UINT16 rw	20 440 2000
P-0-3008.0.65	Current Feedforward Low Pass Filter	P8-65	VAR UINT16 rw	10 1000 1000
P-0-3008.0.66	LTN Torque Filter Mode	P8-66	VAR UINT16 rw	0 0 1
P-0-3008.0.67	LTN Torque Filter Bandwidth	P8-67	VAR UINT16 rw	50 1000 2000
P-0-3008.0.68	Current Filter - Notch Filter Mode	P8-68	VAR UINT16 rw	0 0 1
P-0-3008.0.69	Standstill Mode	P8-69	VAR UINT16 rw	0 0 1
P-0-3008.0.70	Standstill Gain	P8-70	VAR UINT16 rw	128 1024 1024
P-0-3008.0.71	Encoder Filter Mode	P8-71	VAR INT16 rw	0 1 1
P-0-3008.0.99	Adaptive Velocity Reference Value Gain	P8-99	VAR UINT32 rw	0 1000 3000

P9 Object Group

P9 Object Group

Part of this objects list is also available in P9 - DTM data parameters (see page 262)

IDN	Name	Parameter	Object type Data type Access	Minimum value Factory setting Maximum value
P-0-3009.0.0	Lexium program number	P9-00	VAR UINT32 ro	0 - 4294967295
P-0-3009.0.1	Firmware Version Date	P9-01	VAR UINT32 ro	0 - 4294967295
P-0-3009.0.2	MTP Identification Code	P9-02	VAR UINT16 ro	0 - 65535
P-0-3009.0.3	User-Defined Application Name 1	P9-06	VAR UINT32 rw	0 0 4294967295
P-0-3009.0.7	User-Defined Application Name 2	P9-07	VAR UINT32 rw	0 0 4294967295
P-0-3009.0.8	User-Defined Application Name 3	P9-08	VAR UINT32 rw	0 0 4294967295
P-0-3009.0.9	User-Defined Application Name 4	P9-09	VAR UINT32 rw	0 0 4294967295
P-0-3009.0.10	Modbus Word Order	P9-10	VAR UINT16 rw	0 0 1
P-0-3009.0.11	Serial Number Part 1	P9-11	VAR UINT32 ro	0 - 4294967295
P-0-3009.0.12	Serial Number Part 2	P9-12	VAR UINT32 ro	0 - 4294967295
P-0-3009.0.13	Serial Number Part 3	P9-13	VAR UINT32 ro	0 - 4294967295
P-0-3009.0.14	Serial Number Part 4	P9-14	VAR UINT32 ro	0 - 4294967295
P-0-3009.0.15	Autotuning Method	P9-15	VAR UINT16 rw	0 0 6
P-0-3009.0.16	Autotuning Motion Profile - Type	P9-16	VAR UINT16 rw	0 0 2
P-0-3009.0.17	Anti-vibration tuning mode.	P9-17	VAR UINT16 rw	0 0 6
P-0-3009.0.18	Autotuning Results - Save/Discard	P9-18	VAR UINT16 rw	0 0 3
P-0-3009.0.19	Autotuning - Elasticity Compensation Filters	P9-19	VAR INT16 rw	0 1 1
P-0-3009.0.20	Autotuning - Direction of Movement	P9-20	VAR INT16 rw	0 0 3

IDN	Name	Parameter	Object type Data type Access	Minimum value Factory setting Maximum value
P-0-3009.0.21	Minimum Dwell Time for Detection of Movement Cycle	P9-21	VAR UINT16 rw	100 200 1000
P-0-3009.0.22	Autotuning - Automatic Estimation of Ratio of Load Inertia and Motor Inertia	P9-22	VAR UINT16 rw	0 0 1
P-0-3009.0.23	Defines which values will be used for the position command filters.	P9-23	VAR UINT16 rw	0 0 1
P-0-3009.0.25	Autotuning Motion Profile - Activation	P9-25	VAR UINT16 rw	0 0 1
P-0-3009.0.26	Autotuning - Movement Range in Direction1	P9-26	VAR INT32 rw	-2147483647 0 2147483647
P-0-3009.0.27	Autotuning - Movement Range in Direction2	P9-27	VAR INT32 rw	-2147483647 0 2147483647
P-0-3009.0.28	Autotuning Active	P9-28	VAR INT16 ro	0 - 1
P-0-3009.0.29	Autotuning - Velocity	P9-29	VAR UINT32 rw	
P-0-3009.0.30	Autotuning - Status	P9-30	VAR UINT32 ro	0 - 65535
P-0-3009.0.31	Autotuning - Acceleration and Deceleration	P9-31	VAR UINT32 rw	6 6 6000 6000 65500 65500
P-0-3009.0.32	Autotune advance mode.	P9-32	VAR UINT16 rw	0 1 2
P-0-3009.0.33	Maximum Autotuning Optimization Value	P9-33	VAR UINT32 ro	0 - 1000
P-0-3009.0.34	Autotuning Progress Bar	P9-34	VAR UINT16 ro	0 0 100
P-0-3009.0.35	Autotuning - Gravity Estimation	P9-35	VAR UINT16 rw	0 0 1
P-0-3009.0.36	Set LTNAFRC in Autotune	P9-36	VAR INT16 rw	0 0 2
P-0-3009.0.37	Autotuning - Last Stored Event	P9-37	VAR UINT32 ro	0 0 65535
P-0-3009.0.38	Mode 2 AT improvment	P9-38	VAR UINT16 ro	0 0 100
P-0-3009.0.39	Cycle Identification status	P9-39	VAR UINT16 ro	0 0 9
P-0-3009.0.40	LTN Autotuning Using Defaults	P9-40	VAR UINT16 rw	0 0 1

P11 Object Group

P11 Vendor-specific Object Group

IDN	Name	Parameter	Object type Data type Access	Minimum value Factory setting Maximum value
P-0-3030.0.39	Position	-	VAR INT32 ro	
P-0-3030.0.12	Target Position in PUU	-	VAR INT32 ro	
P-0-3011.0.2	Position Deviation in PUU	-	VAR INT32 ro	
P-0-3011.0.3	Actual Position in Pulses	-	VAR INT32 ro	
P-0-3011.0.4	Target Position in Pulses	-	VAR INT32 ro	-
P-0-3011.0.5	Position Deviation in Pulses	-	VAR INT32 ro	
P-0-3011.0.6	Input Frequency	-	VAR INT32 ro	
P-0-3011.0.7	Actual Velocity in rpm	-	VAR INT32 ro	
P-0-3011.0.9	Target Velocity in rpm	-	VAR INT32 ro	
P-0-3011.0.11	Target Torque in Percent of Nominal Current	-	VAR INT32 ro	-
P-0-3011.0.14	DC Bus Voltage	-	VAR INT32 ro	-
P-0-3011.0.15	Ratio of Load Inertia and Motor Inertia	-	VAR INT32 ro	-
P-0-3011.0.16	Drive Temperature - Power Stage	-	VAR INT32 ro	-
P-0-3011.0.23	Indicate P0-09	-	VAR INT32 ro	
P-0-3011.0.24	Indicate P0-10	-	VAR INT32 ro	
P-0-3011.0.25	Indicate P0-11	-	VAR INT32 ro	-
P-0-3011.0.26	Indicate P0-12	-	VAR INT32 ro	-
P-0-3011.0.27	Drive Temperature - Controller	-	VAR INT32 ro	

IDN	Name	Parameter	Object type Data type Access	Minimum value Factory setting Maximum value
P-0-3011.0.29	Digital Inputs	-	VAR INT32 ro	-
P-0-3011.0.40	Digital Outputs	-	VAR INT32 ro	
P-0-3011.0.41	Drive Status	-	VAR INT32 ro	
P-0-3011.0.42	Operating Mode	-	VAR INT32 ro	-
P-0-3011.0.49	External Encoder	-	VAR INT32 ro	-
P-0-3011.0.50	Target Velocity in rpm	-	VAR INT32 ro	-
P-0-3011.0.53	Target Torque	-	VAR INT32 ro	-
P-0-3011.0.54	Actual Torque in Percent	-	VAR INT32 ro	-
P-0-3011.0.55	Actual Torque in A	-	VAR INT32 ro	
P-0-3011.0.60	Target Position Raw	-	VAR INT32 ro	
P-0-3011.0.61	Position Deviation Raw in PUU	-	VAR INT32 ro	-
P-0-3011.0.62	Target Position Raw in Pulses	-	VAR INT32 ro	
P-0-3011.0.63	Position Deviation Raw in Pulses	-	VAR INT32 ro	
P-0-3011.0.77	Target Velocity	-	VAR INT32 ro	

Section 21.3 Device-Specific Object Group

Device-Specific Object Group

Object Group

Index	Name	Data type Access	Minimum value Factory setting Maximum value
P-0-3004.0.1	Save parameter values to the non-volatile memory.	s s16 RW	0 NA 11
P-0-3006.0.33	Velocity scaling: Denominator	u32 RW	1 1 2147483647
P-0-3006.0.34	Velocity scaling: Numerator	u32 RW	1 1 2147483647
P-0-3006.0.10	Acceleration of the motion profile for velocity	u32 RW	1 20000 4294967295
P-0-3006.0.11	Deceleration of the motion profile for velocity	u32 RW	1 20000 4294967295
P-0-3008.0.1	Physical status of the digital inputs and outputs	u16 RO	0 0 1
P-0-3008.0.17	Setting the digital outputs directly	u32 RW	0 0 15
P-0-3010.0.7	Capture input 2 captured position (one- time)	s32 RO	-2147483648 0 2147483647
P-0-3010.0.2	Capture input 1 configuration	u16 RW	0 0 2
P-0-3010.0.3	Capture input 2 configuration	u16 RW	0 0 2
P-0-3010.0.31	Touch Probe CapEdgeStatus	u16 RW	NA NA NA
P-0-3010.0.4	Capture input 1 start/stop	u16 RW	0 NA 4
P-0-3010.0.5	Capture input 2 start/stop	u16 RW	0 NA 4
P-0-3010.0.10	Capture input 1 encoder source	u16 RW	0 0 1
P-0-3010.0.11	Capture input 2 encoder source	u16 RW	0 0 1
P-0-3010.0.6	Capture input 1 captured position (one-time).	s32 RO	-2147483648 0 2147483647
P-0-3013.0.22	Continuous stall torque of motor	s16 RW	NA NA NA

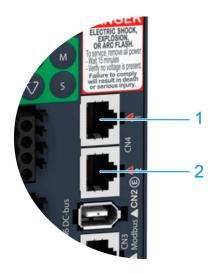
Index	Name	Data type	Minimum value
		Access	Factory setting Maximum value
P-0-3020.0.0	Position Demand Value	s32 RO	NA NA NA
P-0-3030.0.10	Position Actual Internal Value	s32 RO	NA NA NA
P-0-3040.0.11	Position at reference point	s32 RW	-2147483648 0 2147483647
P-0-3006.0.5	Min Software Position Limit	s32 RW	-2147483648 -134217727 2147483647
P-0-3006.0.4	Max Software Position Limit	s32 RW	-2147483648 -134217727 2147483647
P-0-3013.0.4	Max Motor Speed	u32 RO	0 0 4294967295
P-0-3020.0.14	Position encoder resolution Encoder Increments	u32 RW	16 2048 1000000
P-0-3020.0.15	Position encoder resolution Motor Revolutions	u32 RO	NA NA NA
P-0-3020.0.16	Feed Constant Feed	u32 RW	0 131072 4294967295
P-0-3020.0.17	Feed Constant Shaft Revolutions	u32 RW	0 1 4294967295
P-0-3027.0.12	Homing Method	u16 RW	1 18 35
P-0-3040.0.4	Fast Homing Speed	u32 RW	10 1000 60000
P-0-3005.0.11	Following Error Time Out	u16 RW	0 0 65535
P-0-3040.0.5	Slow Homing Speed	u32 RW	10 200 60000
P-0-3020.0.21	Homing Acceleration	u32 RW	1 65536000 4294967295
P-0-3020.0.22	Position Offset	s32 RW	-2147483648 0 2147483647
P-0-3020.0.23	Velocity Offset	s32 RW	-2147483648 0 2147483647
P-0-3020.0.24	Torque Offset	s16 RW	-32768 0 32767
P-0-3020.0.25	Touch Probe Function	u16 RW	0 0 65535
P-0-3010.0.1	Status of the capture inputs	u16 RW	NA NA NA
P-0-3010.0.37	Capture input 1 captured position at rising edge	s32 RO	NA NA NA

Index	Name	Data type	Minimum value
		Access	Factory setting Maximum value
P-0-3010.0.38	Capture input 1 captured position at falling	s32	NA
	edge	RO	NA
			NA
P-0-3010.0.39	Capture input 2 captured position at rising	s32	NA
	edge	RO	NA
			NA
P-0-3020.0.3	Position Window	u32	0
		RO	0 4294967295
D 0 2040 0 40		- 22	
P-0-3010.0.40	Capture input 2 captured position at falling edge	s32 RO	NA NA
		NO	NA
P-0-3020.0.31	Interpolation Sub Mode Select	s16	0
		RW	0
			3
P-0-3031.0.12	Max Acceleration	u32	1
		RW	436906667
			4294967295
P-0-3020.0.33	Max Deceleration	u32	1
		RW	436906667
			4294967295
P-0-3010.0.43	Capture input 1 event counter at rising	u16	NA
	edges	RO	NA NA
D 0 2040 0 44	Conturn innut 4 sugat sources at falling		
P-0-3010.0.44	Capture input 1 event counter at falling	u16 RO	NA NA
	edges	RU	NA
P-0-3010.0.45	Capture input 2 event counter at rising	u16	NA
1-0-3010.0.43	Capture input 2 event counter at rising edges	RO	NA
			NA
P-0-3010.0.46	Capture input 2 event counter at falling	u16	NA
	edges	RO	NA
			NA
P-0-3020.0.38	Position Demand Internal Value	s32	NA
		RO	NA
			NA
P-0-3020.0.39	Fieldbus Gear Driving Shaft Scaling	u32	0
		RW	1
D 0 2020 0 4	Desition Window Time		4294967295
P-0-3020.0.4	Position Window Time	u16 RW	0
		1.1.1	65535
P-0-3020.0.40	Fieldbus Gear Motor Shaft Scaling	u32	0
		RW	1
			4294967295
P-0-3020.0.41	Digital Output Physical	u32	NA
		RW	NA
			NA
P-0-3020.0.42	Digital Output Mask	u32	NA
		RW	4294967295
			NA
P-0-3020.0.5	Velocity Demand Value	u32	NA
		RO	NA
		-10	NA
P-0-3020.0.6	Torque Demand Value	s16 RO	NA NA
		ΝU	NA
D-0-3020 0 7	Motor Rated Current	1132	NA
P-0-3020.0.7		u32 RO	NA
			NA
P-0-3020.0.8	Motor Rated Torque	u32	NA
		RO	NA
		-	NA

Index	Name	Data type	Minimum value
		Access	Factory setting Maximum value
P-0-3020.0.9	DC Link Circuit Voltage	u32 RO	NA NA
			NA
P-0-3025.0.80	SPD Sercos control (CAP1 and CAP2)	u16	NA
		RW	NA
			NA
P-0-3025.0.81	SPD Sercos status (CAP1 and CAP2)	u16	NA
		RO	0
D 0 0007 0 40			NA
P-0-3027.0.13	Velocity Command Value Temp	s32 RW	NA 0
			NA
P-0-3027.0.16	Torque Command Value Temp	s16	NA
1 0 0027.0.10		RW	0
			NA
P-0-3027.0.4	Active operating mode	s16	NA
		RO	NA
			NA
P-0-3028.0.4	Action Status	u16	NA
		RO	NA
			NA
P-0-3030.0.18	Position Deviation Monitoring - Threshold	s32	-2147483646
	Value	RO	NA 2147483647
D 0 2020 0 2	Matan Ourrent	-10	
P-0-3030.0.3	Motor Current	s16 RO	0 NA
		NO	32767
P-0-3030.0.32	Velocity Feedback Value 1 Temp	s32	NA
1 0 0000.0.02		RO	0
			NA
P-0-3030.0.36	Torque Feedback Value Temp	s16	NA
		RO	0
			NA
P-0-3010.0.23	Capture input 1 event counter	u16	-
	(Continuous)	RO	-
P-0-3010.0.24	Conture input 4 event position	16	-
P-0-3010.0.24	Capture input 1 event position (Continuous)	u16 RO	-
		110	-
P-0-3010.0.25	Capture input 2 event counter	u16	-
	(Continuous)	RO	-
			-
P-0-3010.0.26	Capture input 2 event position	u16	-
	(Continuous)	RO	-
			-
P-0-3010.0.8	Capture input 1 Event Counter	u16	-
		RO	-
D 0 2010 0 0	Conturo input 2 Event Counter	u16	-
P-0-3010.0.9	Capture input 2 Event Counter	RO	
			-
P-0-3028.0.35	Current Overload	u16	-
		RO	-
			-
P-0-3071.0.2	Fieldbus Communication Status	s16	-
		RO	-
			-
P-0-4028.1.35	MICONT - the nominal current of the motor		-
		RO	-
D 0 4020 0 7	Llomo offect		-
P-0-4020.0.7	Home offset	s32 RW	-2147483648 0
			2147483647
			2111100041

Chapter 22 SERCOS III Hardware Setup

What Is in This Chapter?


This chapter contains the following topics:

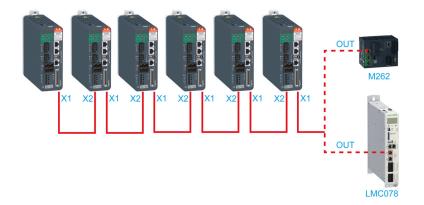
Торіс	Page
SERCOS III Connector Description (CN4)	370
Cable Routing Practices	371

SERCOS III Connector Description (CN4)

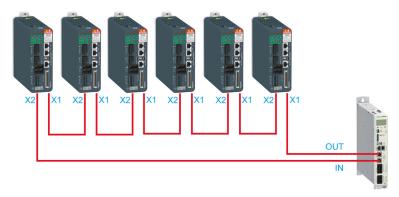
SERCOS III Dual Port/RJ45 Connector

The following figure shows the SERCOS III dual port/RJ45 connector on the device.

Item	Description
1	(SERCOS III IN X1) RJ45 connector
2	(SERCOS III OUT X2) RJ45 connector


Cable Routing Practices

Installation Topology


The OUT connector of the SERCOS III controller is connected to the IN (X1) connector of the drive.

Each OUT (X2) connector of a drive is connected to the IN (X1) connector of the next drive. If this wiring rule is not respected, the network topology will not be discovered correctly by the SERCOS III controller.

Example of daisy chain topology with a LMC078 or a M262 Motion controller:

Example of ring topology with a LMC078:

Glossary

	Α
AWG	(American wire gauge) The standard that specifies wire section sizes in North America.
	C
CSA	(<i>Canadian standards association</i>) The Canadian standard for industrial electronic equipment in hazardous environments.
	D
Degree of Protection	ı
	The degree of protection is a standardized specification for electrical equipment that describes the protection against the ingress of foreign objects and water (for example: IP 20).
DIN	(Deutsches Institut für Normung) A German institution that sets engineering and dimensional standards.
DOM	
	Date of manufacturing: The nameplate of the product shows the date of manufacture in the format DD.MM.YY or in the format DD.MM.YYYY. For example: 31.12.11 corresponds to December 31, 2011; 31.12.2011 corresponds to December 31, 2011
DTM	
	 (device type manager) Classified into 2 categories: Device DTMs connect to the field device configuration components. CommDTMs connect to the software communication components.
	The DTM provides a unified structure for accessing device parameters and configuring, operating, and diagnosing the devices. DTMs can range from a simple graphical user interface for setting device parameters to a highly sophisticated application capable of performing complex real-time calculations for diagnosis and maintenance purposes.
	E
EMC	
	Electromagnetic compatibility
Encoder	Sensor that converts a measured distance or angle into an electrical signal. This signal is evaluated by the drive to determine the actual position of a shaft (rotor) or a driving unit.
	F
firmware	Represents the BIOS, data parameters, and programming instructions that constitute the operating system on a controller. The firmware is stored in non-volatile memory within the controller.
flash memory	A non-volatile memory that can be overwritten. It is stored on a special EEPROM that can be erased and reprogrammed.
	н
НМІ	(<i>human machine interface</i>) An operator interface (usually graphical) for human control over industrial equipment.

	I contract of the second se
I/O	
	(input/output)
IEC	(<i>international electrotechnical commission</i>) A non-profit and non-governmental international standards organization that prepares and publishes international standards for electrical, electronic, and related technologies.
IT Mains	Mains in which all active components are isolated from ground or are grounded by a high impedance. IT: isolé terre (French), isolated ground. Opposite: Grounded mains, see TT/TN mains
LED	L
Limit Switch	(light emitting diode) An indicator that illuminates under a low-level electrical charge.
	Switches that signal overtravel of the permissible range of travel.
	Μ
Modbus	The protocol that allows communications between many devices connected to the same network.
Monitoring Function	Monitoring functions acquire a value continuously or cyclically (for example, by measuring) in order to check whether it is within permissible limits. Monitoring functions are used for error detection.
	Ν
network	A system of interconnected devices that share a common data path and protocol for communications.
node	An addressable device on a communication network.
non-volatile memory	/ A memory that can be overwritten. It is stored on a special EEPROM that can be erased and reprogrammed.
	P
Parameter	Device data and values that can be read and set (to a certain extent) by the user.
PE	(<i>Protective Earth</i>) A common grounding connection to help avoid the hazard of electric shock by keeping any exposed conductive surface of a device at earth potential. To avoid possible voltage drop, no current is allowed to flow in this conductor (also referred to as <i>protective ground</i> in North America or as an equipment grounding conductor in the US national electrical code).
PELV	Protective Extra Low Voltage, low voltage with isolation. For more information: IEC 60364-4-41
Position Deviation	The position deviation is the difference between reference position and actual position. The current position deviation consists of the load-dependent position deviation and the dynamic position deviation.
Power Stage	The power stage controls the motor. The power stage generates current for controlling the motor on the basis of the motion signals from the controller.
PWM	
	(<i>pulse width modulation</i>) A fast output that oscillates between off and on in an adjustable duty cycle, producing a rectangular wave form (though you can adjust it to produce a square wave). The PTO is well adapted to simulate or approximate an analog output in that it regulates the voltage of the output over its period making it useful in light dimming or speed control applications, among others.

	Q
Quick Stop	The quick Stop function can be used for fast deceleration of a movement as a response to a detected error or via a command.
	R
RJ45	A standard type of 8-pin connector for network cables defined for Ethernet.
rms	"Root Mean Square" value of a voltage (Vrms) or a current (Arms)
RPM	(revolutions per minute)
	S
Safety Function	Safety functions are defined in the standard IEC 61800-5-2 (for example, Safe Torque Off (STO), Safe Operating Stop (SOS) or Safe Stop 1 (SS1)). If the safety functions are wired properly, they meet the requirements specified in IEC 61800-5-2.
Sercos	(<i>serial real-time communications system</i>) A digital control bus that interconnects, motion controls, drives, I/Os, sensors, and actuators for numerically controlled machines and systems. It is a standardized and open controller-to-intelligent digital device interface, designed for high-speed serial communication of standardized closed-loop real-time data.
STO	(<i>Safe Torque Off</i>) The Safety Function STO (IEC 61800-5-2) ("Safe Torque Off") removes power to the motor thereby relieving the torque applied by the motor. There is no monitoring for standstill
	т
TN Mains	Grounded mains, differ in terms of the ground connection (PE conductor connection). Opposite: Ungrounded mains, see IT mains.
touchprobe input	Touchprobe inputs are advanced digital inputs. These inputs are used for measuring functions, which accurately detect positions relative to a measure input. Once a touchprobe function has been activated, it runs independently in the system, independent of the IEC program. The IEC program can use parameters to detect the state of the measuring function. This function is supported by hardware and software.
TP	(<i>touch probe</i>) A position capture that is triggered by a fast input signal (quick sensor). On the rising edge of the touch probe input, the position of an encoder is captured.
	For example, this is used for packaging machines to capture the position of a printmark on a film to cut on the same position.
TT Mains	Grounded mains, differ in terms of the ground connection (PE conductor connection). Opposite: Ungrounded mains, see IT mains.
	U
UL	(underwriters laboratories) A US organization for product testing and safety certification.

Index

access channels, accessories external braking resistors, external mains filters,

В

braking resistor rating, 118

С

cable specifications protected cable installation, cables, *102* category 0 stop, category 1 stop, comfort tuning, commissioning software, common DC bus, components and interfaces, control cabinet,

D

DC bus, *105* degree of protection, *39* dimensions drive, *41* disposal, *327*, *327* drive:mounting, *134*

Ε

easy tuning, *199* Electrical Installation Drive, *135* electromagnetic compatibility (EMC), *98*, *99* EMC, *98*, *99* improvement of EMC, *100* environmental conditions drive, *39* motor, *56* equipotential bonding conductors, *100*, *102*

F

Fault Reset, function safety function, functional safety, fuses UL,

Η

hazard and risk analysis, 107

improvement of EMC, installation site and connection, Intended Use, *9*, internal braking resistor,

Μ

manual tuning, monitoring functions, mounting distances;ventilation, mounting position,

Ν

nameplate, 36, 52

0

online help, *190* operating states, *273* overvoltage category UL, *30*

Ρ

P0-00, 225 P0-01, 225 P0-02, 225 P0-04, 225 P0-08, 225 P0-09, 225 P0-10, 225 P0-11, 226 P0-12. 226 P0-13, 226 P0-17, 226 P0-18, 226 P0-19, 226 P0-20, 226 P0-21, 226 P0-25, 226 P0-26, 227 P0-27, 227 P0-28, 227 P0-29, 227 P0-30, 227 P0-31, 227 P0-32, 227 P0-35, 228 P0-36, 228 P0-37, 228 P0-38, 228 P0-39, 228 P0-40, 228 P0-41, 228 P0-42, 229 P0-46, 229 P0-47, 229 P1-01, 230

R1 00 020	D0 44 020
P1-02, <i>230</i>	P2-11, <i>239</i>
P1-03, <i>231</i>	P2-12, <i>239</i>
P1-06, <i>231</i>	P2-13, <i>239</i>
P1-07, <i>231</i>	P2-14, <i>239</i>
	P2-15, <i>239</i>
P1-09, <i>231</i>	
P1-10, <i>231</i>	P2-16, <i>239</i>
P1-11, <i>231</i>	P2-17, <i>239</i>
P1-12, <i>231</i>	P2-18, <i>240</i>
P1-13, <i>231</i>	P2-19, <i>240</i>
P1-14, <i>231</i>	P2-20, <i>240</i>
P1-15, <i>232</i>	P2-21, <i>240</i>
P1-16, <i>232</i>	P2-23, <i>240</i>
P1-17, <i>232</i>	P2-24, <i>240</i>
P1-19, <i>232</i>	P2-27, <i>241</i>
P1-20, <i>232</i>	P2-29, <i>241</i>
P1-21, <i>232</i>	P2-30, <i>241</i>
P1-22, <i>232</i>	P2-31, <i>241</i>
P1-23, <i>232</i>	P2-32, <i>242</i>
P1-24, <i>232</i>	P2-34, <i>242</i>
P1-25, <i>232</i>	P2-35, <i>242</i>
P1-26, <i>233</i>	P2-50, <i>242</i>
P1-27, <i>233</i>	P2-65, <i>242</i>
P1-28, <i>233</i>	P2-66, <i>243</i>
P1-29, <i>233</i>	P2-68, <i>243</i>
P1-30, <i>233</i>	P3-00, <i>244</i>
P1-32, <i>233</i>	P3-01, 244
P1-34, <i>233</i>	P3-02, <i>244</i>
P1-35, <i>234</i>	P3-03, <i>244</i>
P1-37, <i>234</i>	P3-04, <i>244</i>
P1-38, <i>234</i>	P3-05, <i>244</i>
P1-39, <i>234</i>	P3-06, <i>244</i>
P1-42, <i>234</i>	P3-07, <i>245</i>
P1-44, <i>234</i>	P3-08, <i>245</i>
P1-45, <i>234</i>	P3-30, <i>245</i>
P1-46, <i>234</i>	
	P3-31, <i>245</i>
P1-52, <i>234</i>	P3-32, <i>245</i>
P1-53, <i>234</i>	P3-33, <i>245</i>
P1-54, <i>234</i>	P4-00, <i>246</i>
P1-55, <i>235</i>	P4-01, <i>246</i>
P1-57, <i>235</i>	P4-02, <i>246</i>
P1-58, <i>235</i>	P4-03, <i>246</i>
P1-59, <i>235</i>	P4-04, <i>246</i>
P1-60, <i>235</i>	P4-05, <i>246</i>
P1-61, <i>235</i>	P4-06, <i>246</i>
•	•
P1-62, <i>235</i>	P4-07, <i>247</i>
P1-63, <i>235</i>	P4-08, <i>247</i>
P1-64, <i>236</i>	P4-09, <i>247</i>
P1-66, <i>236</i>	P4-10, <i>247</i>
P1-67, <i>236</i>	P4-24, <i>247</i>
P1-68, <i>236</i>	P4-25, <i>247</i>
P1-69, <i>236</i>	P4-26, <i>248</i>
P1-71, <i>236</i>	P4-27, <i>248</i>
P1-72, <i>236</i>	P4-28, <i>248</i>
P1-78, <i>236</i>	P4-29, <i>248</i>
P1-79, <i>237</i>	P5-00, <i>249</i>
P1-80, <i>237</i>	P5-04, <i>249</i>
P1-81, <i>237</i>	P5-05, <i>249</i>
P1-82, <i>237</i>	P5-06, <i>249</i>
P1-84, <i>237</i>	P5-08, <i>249</i>
P1-85, <i>237</i>	P5-09, <i>249</i>
P1-87, <i>237</i>	P5-11, <i>249</i>
P2-01, <i>238</i>	P5-12, <i>249</i>
P2-05, <i>238</i>	P5-13, <i>250</i>
P2-08, <i>238</i>	P5-14, <i>250</i>
P2-09, <i>238</i>	P5-15, <i>250</i>
	•
P2-10, <i>239</i>	P5-16, <i>250</i>

P5-22, <i>250</i>	
1022,200	
P5-23, <i>251</i>	
P5-24, <i>251</i>	
P5-25, <i>251</i>	
P5-26, <i>251</i>	
P5-35, <i>251</i>	
P5-36, <i>251</i>	
P5-37, <i>251</i>	
P5-38, <i>251</i>	
P5-39, <i>252</i>	
P5-56, <i>252</i>	
P5-57, <i>252</i>	
P5-58, <i>252</i>	
P5-59, <i>252</i>	
P5-76, <i>252</i>	
P5-77, <i>252</i>	
P8-00, <i>253</i>	
P8-01, <i>253</i>	
P8-02, <i>253</i>	
P8-03, <i>253</i>	
P8-04, <i>253</i>	
P8-05, <i>253</i>	
P8-06, <i>253</i>	
P8-07, <i>253</i>	
P8-08, <i>253</i>	
P8-09, <i>253</i>	
P8-10, <i>253</i>	
P8-11, <i>254</i>	
P8-12, <i>254</i>	
P8-13, <i>254</i>	
P8-14, <i>254</i>	
P8-15, <i>254</i>	
P8-16, <i>254</i>	
P8-16, <i>254</i>	
P8-16, <i>254</i> P8-17, <i>254</i>	
P8-16, <i>254</i> P8-17, <i>254</i> P8-18, <i>254</i>	
P8-16, <i>254</i> P8-17, <i>254</i> P8-18, <i>254</i> P8-19, <i>254</i>	
P8-16, <i>254</i> P8-17, <i>254</i> P8-18, <i>254</i> P8-19, <i>254</i> P8-20, <i>254</i>	
P8-16, <i>254</i> P8-17, <i>254</i> P8-18, <i>254</i> P8-19, <i>254</i> P8-20, <i>254</i> P8-21, <i>254</i>	
P8-16, <i>254</i> P8-17, <i>254</i> P8-18, <i>254</i> P8-19, <i>254</i> P8-20, <i>254</i> P8-21, <i>254</i> P8-32, <i>255</i>	
P8-16, <i>254</i> P8-17, <i>254</i> P8-18, <i>254</i> P8-19, <i>254</i> P8-20, <i>254</i> P8-21, <i>254</i> P8-32, <i>255</i> P8-33, <i>255</i>	
P8-16, 254 P8-17, 254 P8-18, 254 P8-20, 254 P8-20, 254 P8-21, 254 P8-32, 255 P8-33, 255 P8-34, 255	
P8-16, 254 P8-17, 254 P8-18, 254 P8-20, 254 P8-20, 254 P8-32, 255 P8-33, 255 P8-34, 255 P8-35, 255	
P8-16, 254 P8-17, 254 P8-18, 254 P8-20, 254 P8-20, 254 P8-32, 255 P8-33, 255 P8-34, 255 P8-35, 255 P8-36, 255	
P8-16, 254 P8-17, 254 P8-18, 254 P8-20, 254 P8-20, 254 P8-32, 255 P8-33, 255 P8-34, 255 P8-36, 255 P8-36, 255 P8-37, 255	
P8-16, 254 P8-17, 254 P8-18, 254 P8-20, 254 P8-20, 254 P8-32, 255 P8-33, 255 P8-34, 255 P8-36, 255 P8-36, 255 P8-38, 255	
P8-16, 254 P8-17, 254 P8-18, 254 P8-20, 254 P8-20, 254 P8-32, 255 P8-33, 255 P8-34, 255 P8-36, 255 P8-36, 255 P8-38, 255	
P8-16, 254 P8-17, 254 P8-18, 254 P8-20, 254 P8-20, 254 P8-32, 255 P8-33, 255 P8-34, 255 P8-36, 255 P8-36, 255 P8-37, 255	
P8-16, 254 P8-17, 254 P8-19, 254 P8-20, 254 P8-20, 254 P8-32, 255 P8-33, 255 P8-34, 255 P8-36, 255 P8-36, 255 P8-38, 255 P8-39, 255 P8-40, 255	
P8-16, 254 P8-17, 254 P8-19, 254 P8-20, 254 P8-20, 254 P8-32, 255 P8-33, 255 P8-34, 255 P8-36, 255 P8-36, 255 P8-37, 255 P8-38, 255 P8-39, 255 P8-40, 255 P8-41, 256	
P8-16, 254 P8-17, 254 P8-19, 254 P8-20, 254 P8-20, 254 P8-32, 255 P8-33, 255 P8-34, 255 P8-36, 255 P8-36, 255 P8-38, 255 P8-39, 255 P8-39, 255 P8-40, 255 P8-41, 256 P8-42, 256	
P8-16, 254 P8-17, 254 P8-19, 254 P8-20, 254 P8-20, 254 P8-32, 255 P8-33, 255 P8-34, 255 P8-36, 255 P8-36, 255 P8-36, 255 P8-38, 255 P8-39, 255 P8-39, 255 P8-40, 255 P8-41, 256 P8-43, 256	
P8-16, 254 P8-17, 254 P8-19, 254 P8-20, 254 P8-20, 254 P8-32, 255 P8-33, 255 P8-34, 255 P8-36, 255 P8-38, 255 P8-38, 255 P8-39, 255 P8-40, 255 P8-40, 255 P8-41, 256 P8-42, 256 P8-44, 256	
P8-16, 254 P8-17, 254 P8-19, 254 P8-20, 254 P8-20, 254 P8-32, 255 P8-33, 255 P8-34, 255 P8-36, 255 P8-36, 255 P8-38, 255 P8-39, 255 P8-39, 255 P8-40, 255 P8-40, 255 P8-41, 256 P8-42, 256 P8-44, 256 P8-45, 256	
P8-16, 254 P8-17, 254 P8-19, 254 P8-20, 254 P8-20, 254 P8-21, 254 P8-32, 255 P8-33, 255 P8-34, 255 P8-36, 255 P8-38, 255 P8-39, 255 P8-39, 255 P8-40, 255 P8-41, 256 P8-42, 256 P8-44, 256 P8-45, 256 P8-46, 256	
P8-16, 254 P8-17, 254 P8-18, 254 P8-20, 254 P8-20, 254 P8-20, 255 P8-32, 255 P8-33, 255 P8-34, 255 P8-36, 255 P8-39, 255 P8-39, 255 P8-40, 255 P8-41, 256 P8-42, 256 P8-44, 256 P8-46, 256 P8-47, 256	
P8-16, 254 P8-17, 254 P8-19, 254 P8-20, 254 P8-20, 254 P8-21, 254 P8-32, 255 P8-33, 255 P8-36, 255 P8-36, 255 P8-38, 255 P8-39, 255 P8-40, 255 P8-40, 255 P8-41, 256 P8-42, 256 P8-44, 256 P8-45, 256 P8-48, 256	
$\begin{array}{l} P8-16, 254\\ P8-17, 254\\ P8-18, 254\\ P8-19, 254\\ P8-20, 254\\ P8-20, 254\\ P8-20, 255\\ P8-32, 255\\ P8-33, 255\\ P8-34, 255\\ P8-36, 255\\ P8-36, 255\\ P8-37, 255\\ P8-38, 255\\ P8-39, 255\\ P8-40, 255\\ P8-40, 255\\ P8-41, 256\\ P8-44, 256\\ P8-44, 256\\ P8-45, 256\\ P8-46, 256\\ P8-46, 256\\ P8-47, 256\\ P8-48, 256\\ P8-48, 256\\ P8-49, 257\\ \end{array}$	
P8-16, 254 P8-17, 254 P8-18, 254 P8-20, 254 P8-20, 254 P8-21, 254 P8-32, 255 P8-33, 255 P8-34, 255 P8-36, 255 P8-37, 255 P8-39, 255 P8-40, 255 P8-41, 256 P8-42, 256 P8-44, 256 P8-45, 256 P8-46, 256 P8-48, 256 P8-48, 257 P8-51, 257	
P8-16, 254 P8-17, 254 P8-18, 254 P8-20, 254 P8-20, 254 P8-20, 255 P8-33, 255 P8-33, 255 P8-34, 255 P8-36, 255 P8-37, 255 P8-39, 255 P8-40, 255 P8-41, 256 P8-42, 256 P8-44, 256 P8-44, 256 P8-45, 256 P8-46, 256 P8-46, 256 P8-47, 256 P8-48, 257 P8-51, 257 P8-53, 257	
P8-16, 254 P8-17, 254 P8-18, 254 P8-20, 254 P8-20, 254 P8-20, 255 P8-33, 255 P8-33, 255 P8-34, 255 P8-36, 255 P8-37, 255 P8-39, 255 P8-40, 255 P8-41, 256 P8-42, 256 P8-44, 256 P8-44, 256 P8-45, 256 P8-46, 256 P8-46, 256 P8-47, 256 P8-48, 257 P8-51, 257 P8-53, 257	
P8-16, 254 P8-17, 254 P8-18, 254 P8-20, 254 P8-20, 254 P8-32, 255 P8-33, 255 P8-34, 255 P8-36, 255 P8-36, 255 P8-37, 255 P8-38, 255 P8-39, 255 P8-40, 255 P8-41, 256 P8-42, 256 P8-44, 256 P8-44, 256 P8-44, 256 P8-44, 256 P8-48, 256 P8-48, 257 P8-51, 257 P8-53, 257 P8-54, 257	
P8-16, 254 P8-17, 254 P8-18, 254 P8-20, 254 P8-20, 254 P8-20, 255 P8-33, 255 P8-33, 255 P8-36, 255 P8-36, 255 P8-37, 255 P8-39, 255 P8-40, 255 P8-41, 256 P8-42, 256 P8-42, 256 P8-44, 256 P8-45, 256 P8-46, 256 P8-46, 256 P8-47, 256 P8-48, 257 P8-51, 257 P8-53, 257 P8-55, 257	
P8-16, 254 P8-17, 254 P8-18, 254 P8-20, 254 P8-20, 254 P8-32, 255 P8-33, 255 P8-34, 255 P8-36, 255 P8-36, 255 P8-37, 255 P8-38, 255 P8-39, 255 P8-40, 255 P8-41, 256 P8-42, 256 P8-44, 256 P8-44, 256 P8-45, 256 P8-48, 256 P8-48, 257 P8-51, 257 P8-54, 257 P8-55, 257 P8-56, 258	
P8-16, 254 P8-17, 254 P8-18, 254 P8-19, 254 P8-20, 254 P8-20, 254 P8-32, 255 P8-33, 255 P8-34, 255 P8-36, 255 P8-36, 255 P8-37, 255 P8-39, 255 P8-40, 255 P8-41, 256 P8-42, 256 P8-44, 256 P8-44, 256 P8-45, 256 P8-46, 256 P8-46, 256 P8-48, 257 P8-51, 257 P8-53, 257 P8-55, 257 P8-56, 258 P8-57, 258	
P8-16, 254 P8-17, 254 P8-18, 254 P8-20, 254 P8-20, 254 P8-32, 255 P8-33, 255 P8-34, 255 P8-36, 255 P8-36, 255 P8-37, 255 P8-38, 255 P8-39, 255 P8-40, 255 P8-41, 256 P8-42, 256 P8-44, 256 P8-44, 256 P8-45, 256 P8-48, 256 P8-48, 257 P8-51, 257 P8-54, 257 P8-55, 257 P8-56, 258	

P5-18, 250

P5-21, 250

P8-60, 258 P8-61, 258 P8-62, 259 P8-63, 259 P8-64, 259 P8-65, 259 P8-66, 259 P8-67, 259 P8-68, 259 P8-69, 260 P8-70. 260 P8-71, 260 P8-99, 260 P9-00, 262 P9-01, 262 P9-02, 262 P9-06, 262 P9-07, 262 P9-08, 262 P9-09, 262 P9-10, 262 P9-11, 262 P9-12, 262 P9-13, 263 P9-14, 263 P9-15, 263 P9-16, 263 P9-17, 263 P9-18, 263 P9-19, 263 P9-20, 263 P9-21, 263 P9-22, 263 P9-23, *263* P9-25, 263 P9-26, 264 P9-27, 264 P9-28, 264 P9-29, 264 P9-30, 265, 266 P9-31, 266 P9-32, *266* P9-33, 266 P9-34, 266 P9-35, 266 P9-36, 267 P9-37, 267 P9-38, 267 P9-39, 267 P9-40, 267 parallel connection DC bus, 105 parameter _Cap1Pos, 287 parameter _Cap2Pos, 287 parameter _SPDSercos3Status, 287 parameter Cap1Activate, 286 parameter Cap1Config, 285 parameter Cap2Activate, 286 parameter Cap2Config, 285 parameter SPDSercos3Control, 286 parameter Touch Probe Status, 287 permissible product combinations, 43 pollution degree, 39 protected cable installation, 115 PWM frequency power stage, 43

Q

Qualification of Personnel, 9, 9

R

rating of braking resistor, Representation of the Parameters, requirements safety function, resetting error message,

S

safe torque off, safety function function, requirements, safety function STO, scope of supply, shipping, state diagram, STO, *106* function, requirements, storage, *327*

Т

tuning the control loops, *198* type code, *37*, *54* drive, *37* motor, *54* type of cooling, *43*

U

UL conditions for wiring, *30* fuses, *30* overvoltage category, *30*

W

wiring UL, 30