Eco=struxure
 Innovation At Every Level

Catalog 2021

LV air circuit breakers from 630 to 4000A

An industry leading portfolio of offers delivering sustainable value

Green Premium

More than 75% of our product sales offer superior transparency on the material content, regulatory information and environmental impact of our products:

- RoHS compliance
- REACh substance information
- Industry leading \# of PEP's*
- Circularity instructions

Discover what we mean by green Check your products!

The Green Premium program stands for our commitment to deliver customer valued sustainable performance. It has been upgraded with recognized environmental claims and extended to cover all offers including Products, Services and Solutions.
CO_{2} and P\&L impact through... Resource Performance
Green Premium brings improved resource efficiency throughout an asset's lifecycle. This includes efficient use of energy and natural resources, along with the minimization of CO_{2} emissions.

Cost of ownership optimization through... Circular Performance We're helping our customers optimize the total cost of ownership of their assets. To do this, we provide loT-enabled solutions, as well as upgrade, repair, retrofit, and remanufacture services.

Peace of mind through... Well-being Performance
Green Premium products are RoHS and REACh compliant. We're going beyond regulatory compliance with step-by-step substitution of certain materials and substances from our products.

Improved sales through... Differentiation
Green Premium delivers strong value propositions through third-party labels and services. By collaborating with third-party organizations we can support our customers in meeting their sustainability goals such as green building certifications.

EasyPact MVS range
 The easy choice for reliable performance

One family and two frame sizes

> Performance without compromise
> Assured quality and safety you can trust
> Deliver exceptional reliability and flexibility in its class
> Outstanding value for an optimized feature set
> Precision engineered to meet your needs
> Unbeatable value throughout its lifecycle
> Simple to choose and easy to install

Choose the leader

>630 to 4000A ratings
> Breaking capacity: 50 \& 65kA
> Suitable for 690V applications
> Complete selectivity with Ics=Icu
> Intelligent ET range of trip system with display
> Fully protected neutral on 4 pole breakers
> Full accessories with modular design
$>$ Conforms to IEC 60947-2 \& 3

Performance Level

- Ratings:
- Frame 1: 630 to 1600A
- Frame 2: 800 to 4000A.

■ Breaking capacity: 50 \& 65kA

- Suitable for 690V applications
- Complete selectivity with Ics=100\%Icu

■ Circuit breakers type C,N,H

- Switch-disconnectors type CA,NA,HA
- 3 or 4 poles.
- Fixed or drawout versions.
- Conforms to IEC 60947-2 \& 3

ET range of trip system

Type of measurement

- ET for basice protection
- ETA for "current"
- ETV for "Energy"

Type of protection

- 2.0 for basice protection
- 5.0 for seletive protection
- 6.0 for selective + earth-fault protection

Communication

Eco COM

- EasyPact in a communication network.
- BCM-ULP COM option inside breaker

■ IFM: Modbus interface module.

- I/O application module.

Transmission signal

- Breaker signal:OF, SDE, PF and CH.
- Cradel signal:CD, CT, CE
- Measurements ways:Instantaneous,maximum/ minimum, demand
■ Measurements value: current, voltage, power,
power factor,energy
- Protection settings
- Trip causes

EasyCom Communication

■ Independent Modbus interface module

- Digital Input: 3 sets of OF, SDE, PF
- Digital output: 3 sets of MX \& XF

■ Analog Input: 1 set of $4-20 \mathrm{~mA}$

M2C programmable contacts

- Two programmable contacts

■ Signal events:Ir, Isd, Alarm Ir, Alarm Ig, Igv

EasyPact MVS Benefits for every customer

 EasyPact MVS06 to MVS40

 EasyPact MVS06 to MVS40}

Panel builders/ contractors

> Suitable for copper \& Aluminium termination with the pole pitch of 70 or 115 mm
> Terminal orientation can be converted from horizontal to vertical and vice-versa at workshop
> Direct mounting Door frames (escutcheon) without drilling any holes
> Front fitted accessories like undervolt release, shunt release \& closing coil for complete range
> Conversion of manual operated breaker in to electrical operated, with single bolt fixing

EasyPact MVS wwith modular design helps to increase the shop floor efficiency,enabling faster delivery of swith boards.

Designers

> Conforms to IEC60947-2 for breakers \& IEC60947-3 for disconnectors
> Designed and manufactured using advanced manufacturing methods to match your quality expectations and the needs of each project.
> Continuous rated coils helps in simple interlocking schemes
> Extensive choice of software tools \& documentation to reduce design time.
> EasyPact MVS respects the environment throughout their life cycle

EasyPact MVS is designed to meet the needs of your customers with flexibility to achieve system efficiency during the design phase most stringent application with most reliable distribution systems assuring continuity of service

The Key values

90\%
of applications are covered

The performance you need

EasyPact MVS provides the ideal level of capability for your installation from 630 to 4000 A.

Reduce stock by up 30%
€ At a cost-effective investment

Pay for what you need: Get outstanding durability with the features you need, with the benefit of easy to order and stock.

■With the quality you demand

Designed and manufactured by Schenider Electric using advanced manufacturing methods and premium materials.

Gain peace of mind and optimised cost for every installation

 V
 Quality and safety you can trust
 Performance without compromise
 Outstanding value for an optimized feature set

Exceptional reliability,flexibility and convenience

Buildings

Panelbuilders

General contents EasyPact™ MVS

Functions
and characteristics A-1
\qquad

Installation
recommendations
\qquad

Dimensions and connection

Electrical diagrams

Additional
characteristics

Functions and characteristics

Functions and characteristics

General overview A-2
Detailed contents A-2
Circuit breakers and switch-disconnectors A-4
MVS06 to MVS16(Frame 1) A-4
Circuit breakers and switch-disconnectors A-6
MVS08 to MVS40(Frame 2) A-6
Identifying ET range of trip system A-8
Overview of functions A-10
ET trip system A-10
ETA trip system A-12
ETV trip system A-14
ET range of trip system A-16
Accessories and test equipment A-16
Eco Com Communication A-17
IFM Modbus Communication Interface A-18
EasyCom Communication Interface A-24
Connections A-28
Overview of solutions and accessories A-28
Accessories and auxiliaries A-30
Locking A-32
On the device A-32
On the chassis A-33
Indication contacts A-34
Remote operation A-36
Remote ON / OFF A-36
Remote tripping A-38
Source-changeover systems A-39
Mechanical interlocking A-39
Electrical interlocking A-40
IVE unit A-40
Controller selection A-41
Accessories A-42
Installation recommendations B-1
Dimensions and connection C-1
Electrical diagrams D-1
Additional characteristics E-1
Catalogue numbers and order form F-1

Functions

 and characteristicsThis overview describes all the functions offered by EasyPact MVS devices.

ET2l trip system.

ET5S trip system.

ET6G trip system.

General overview

Detailed contents

Circuit breakers and switch-disconnectors page A-4

- Ratings:
- EasyPact MVS 630 to 4000 A
- Circuit breakers type C, N, H
- Switch-disconnectors type CA, NA, HA
- 3 or 4 poles
- Fixed or draw-out versions

ET trip system page A-8

- 21 basic protection
- 5 S selective protection
- 6 G selective + earth-fault protection
- Standard long-time rating plug:
- Current setting (A) 0.4 to $1 \times \ln$

ETA trip system with current measurement page A-10

- 21 basic protection
- 5 S selective protection
- 6G selective + earth-fault protection
- Standard long-time rating plug:
- Current setting (A) 0.4 to $1 \times \ln$
- External power-supply module

ETV trip system with energy measurement page A-12

- 21 basic protection
- 5 S selective protection
- 6G selective + earth-fault protection
- Standard long-time rating plug:
- Current setting (A) 0.4 to $1 \times \mathrm{In}$
- External power-supply module

Connections page A-15

- Rear connection:
- Horizontal
- Vertical
- Optional accessories
- Interphase barriers
\square Safety shutters and shutter locking
 blocks

Locking
 page A-18

- Pushbutton locking by padlockable transparent cover
- OFF-position locking by keylock
- Chassis locking in disconnected position by keylock
- Chassis locking in connected, disconnected and test positions

Chassis key lock

- Door interlock (inhibits door opening with breaker in 'connected' or 'test' position

Door interlock

Functions

and characteristics

General overview

Detailed contents

Source-changeover systems

- Mechanical interlocking using cables:
- Interlocking between two devices
- Interlocking between three devices

Interlocking of two devices

Functions

 and characteristics
Circuit breakers

and switch-disconnectors
MVS06 to MVS16(Frame 1)

Circuit breaker.

| Common characteristics | | $3 / 4$ |
| :--- | :--- | :--- | :--- |
| Number of poles | Ui | 1000 |
| Rated insulation voltage (V) | Uimp | 12 |
| Impulse withstand voltage (kV) | Ue | 440 |
| Rated operational voltage (V AC 50/60 Hz) | IEC 60947-2 | Yes |
| Suitability for isolation | IEC 60664-1 | 3 |
| Degree of pollution | | |
| Basic circuit-breaker at $40^{\circ} \mathrm{C}^{(1)}$ | | |

Rating of 4th pole (A)
Sensor ratings (A)
Type of circuit breaker

Ultimate breaking capacity (kA rms)	Icu	$220 \ldots .440 \mathrm{~V}$	
Rated service breaking capacity (kA rms)	Ics	$\%$ Icu	
Utilisation category			
Rated short-time withstand current (kA rms)	Icw	1 s	$220 \ldots . .440 \mathrm{~V}$
V AC $50 / 60 \mathrm{~Hz}$		3 s	440 V
Rated making capacity (kA peak)	Icm	$220 \ldots . .440 \mathrm{~V}$	
Integrated instantaneous protection(DIN KA instantaneous $\pm 10 \%)$			
Breaking time (ms) between tripping order and arc extinction(ms)			
Closing time (ms)			

Switch-disconnector as per IEC60947-3 and Annex A

MVS06	MVS08	MVS10	MVS12	MVS16
630	800	1000	1250	1600
630	800	1000	1250	1600
630	800	1000	1250	1600
C	C	C	C	C
50	50	50	50	50
100\%	100\%	100\%	100\%	100\%
B	B	B	B	B
35	35	35	35	35
20	20	20	20	20
105	105	105	105	105
105	105	105	105	105
25	25	25	25	25
<50	<50	<50	<50	<50
MVS06	MVS08	MVS10	MVS12	MVS16
CA	CA	CA	CA	CA
630	800	1000	1250	1600
75	75	75	75	75
35	35	35	35	35
20	20	20	20	20
20	20	20	20	20
10	10	10	10	10
5	5	5	5	5
Yes				
Yes				
$322 \times 288 \times 277$				
$322 \times 358 \times 277$				
$301 \times 276 \times 196$				
$301 \times 346 \times 196$				
30/39				
14/18				

Functions

Circuit breaker.

Switch disconnector.

Circuit breakers
and switch-disconnectors
MVS08 to MVS40(Frame 2)

Common characteristics		
Number of poles		3/4
Rated insulation voltage (V)	Ui	1000
Impulse withstand voltage (kV)	Uimp	12
Rated operational voltage (V AC 50/60 Hz)	Ue	690
Suitability for isolation	IEC 60947-2	Yes
Degree of pollution	IEC 60664-1	4
Basic circuit-breaker		
Circuit-breaker as per IEC 60947-2		
Rated current (A)	In	at $40^{\circ} \mathrm{C}^{(1)}$
Rating of 4th pole (A)		
Sensor ratings (A)		
Type of circuit breaker		
Ultimate breaking capacity (kA rms)	Icu	220...440V
V AC $50 / 60 \mathrm{~Hz}$		690 V
Rated service breaking capacity (kA rms)	Ics	\% Icu
Utilisation category		
Rated short-time withstand current (kA rms)	Icw 1s	220... 440 V
V AC $50 / 60 \mathrm{~Hz}$		690 V
	3 s	440/690V
Rated making capacity (kA peak)	Icm	$220 . . .440 \mathrm{~V}$
V AC $50 / 60 \mathrm{~Hz}$		690 V
Breaking time (ms) between tripping order and arc extinction		
Closing time (ms)		
Switch-disconnector as per IEC60947-3 and Annex A		
Type of switch-disconnector		
Operational current AC23A		
Rated making capacity (kA peak)	Icm	
Rated short-time withstand current (kA rms)	Icw 1s	
	3s	

Maintenance/Connection/Installation

Service life C/O cycles $\times 1000$	Mechanical	with maintenance	
		without maintenance	
	Electrical	without maintenance	440 V
			690 V
Connection		Horizontal	
		Vertical	
Dimensions (mm)$(H \times W \times D)$		Draw-out	3P
			4P
		Fixed	3 P
			4 P
Weight (kg) (approximate)		Draw-out	3P/4P
		Fixed	3P/4P

MVS08		MVS10		MVS12		MVS16		MVS20		MVS25		MVS32		MVS40	
800		1000		1250				2000		2500		3200		4000	
800		1000		1250		1600		2000		2500		3200		4000	
800		1000		1250		1600		2000		2500		3200		4000	
N	H	N	H	N	H	N	H	N	H	N	H	N	H	N	H
50	65	50	65	50	65	50	65	50	65	50	65	50	65	55	65
42	50	42	50	42	50	42	50	42	50	42	50	42	50	42	50
100\%		100\%		100\%		100\%		100\%		100\%		100\%		100\%	
B		B		B		B		B		B		B		B	
50	65	50	65	65	65	5065	65	50	65	$50 \quad 65$		5042	65	5565	
42	50	42	50	42	50	42	50	42	50	42	$\begin{aligned} & 50 \\ & 50 \end{aligned}$		5050		4250
25	50	$25 \quad 50$		25	50	25	50	25	50	25		25		3050	
105	143	105	143	105	143	105	143	105	143	105	143	105	143	121	143
88	105	88	105	88	105	88	105	88	105	88	105	88	105	88	105
25		25		25		25		25		25		25		25	
<70		<70		<70		<70		<70		<70		<70		<70	
MVS08		MVS10		MVS12		MVS16		MVS20		MVS25		MVS32		MVS40	
NA	HA														
800		1000		1250		1600		2000		2500		3200		4000	
105	143	105	143	105	143	105	143	105	143	105	143	105	143	121	143
50	65	50	65	50	65	50	65	50	65	50	65	50	65	55	65
25	50	$25 \quad 50$		$25 \quad 50$		25 50		25 50		25 50		$25 \quad 50$		30	50
20		20		20		20		20		20		20		20	
10		10		10		10		10		10		10		10	
$\begin{aligned} & 6000 \\ & 4000 \end{aligned}$		$\begin{aligned} & 6000 \\ & 4000 \\ & \hline \end{aligned}$		$\begin{aligned} & 6000 \\ & 4000 \\ & \hline \end{aligned}$		$\begin{aligned} & 6000 \\ & 4000 \end{aligned}$		$\begin{aligned} & 6000 \\ & 4000 \end{aligned}$		$\begin{aligned} & 5000 \\ & 2500 \end{aligned}$		$\begin{aligned} & 5000 \\ & 2500 \\ & \hline \end{aligned}$		$\begin{aligned} & 5000 \\ & 2500 \end{aligned}$	
Yes															
Yes															
$439 \times 441 \times 395$															
$439 \times 556 \times 395$															
$352 \times 422 \times 297$															
$352 \times 537 \times 297$															
70/85										90/120					
										60/80					

Functions
 and characteristics

Identifying ET range of trip system

EasyPact MVS circuit breakers equipped with ET range of trip system are designed to protect power circuit and connected loads.
Measurement of current and Energy helps users to maintain continuity of service and optimize installation.

Trip unit name codes

Type of protection

- 21 for basic protection
- 5S for selective protection
- 6G for selective + earth-fault protection

Type of measurement

- ET for basic
- ETA for "Current"

■ ETV for "Current" and "Energy"

Dependability

Integration of protection functions in an ASIC electronic component used in all trip units guarantees a high degree of reliability and immunity to conducted or radiated disturbances.
On ET range, measurement functions are managed by an independent microprocessor. Protection functions are independent of measurement functions, ensure system protection even at very low load currents.

Accessories

Certain functions require the addition of trip unit accessories, described on page A-14.

ET2I: basic protection

ET5S: selective protection

Protection:

long time

+ short time
+ instantaneous

Protection:

long time

+ instantaneous

ET6G: selective + earth-fault protection

Protection:
long time

+ short time
+ instantaneous
+ earth fault

Functions
 and characteristics
 Identifying ET range of trip system

Protection and measurement functions

ET	ETA	ETV
- Fault indications - Settings in amperes and in seconds	$I_{1}, I_{2}, I_{3}, I_{N}, l_{\text {earth-fault, }}$ and maximeter for these measurements: Fault indications Settings in amperes and in seconds	■ Incorporates all the rms measurements of ETA trip unit, plus voltage, power factor, power and energy metering measurements: - Calculates the current demand value - "Quickview" function for the automatic cyclical display of the most useful values

21

21

21

$5 S$
5S

6G
6G

6G

Functions
 and characteristics

Overview of functions
 ET trip system

ET trip unit protect power circuits, under overload \& short-circuit conditions. They are equipped with individual fault trip indication LEDs. ET6G provides earth-fault protection.

1 Long-time threshold and tripping delay.
2 Overload alarm (LED) at 1,125 Ir.
3 Short-time pick-up and tripping delay.
4 Instantaneous pick-up.
5 Earth-fault pick-up and tripping delay.
6 Earth-fault test button.
7 Long-time rating plug screw.
8 Test connector.
9 Lamp test, reset and battery test.
10 Indication of tripping cause.
(1) The thermal memory continuously accounts for the amount of heat in the cables, both before and after tripping, whatever the value of the current(presence of an overload or not).The thermal memory optimises the long-time protection function of the circuit breaker by taking into account the temperature rise in the cables .The thermal memory assumes a cable cooling time of approximately 20 minutes.
(2) Refer to page D-5 for more details on ZSI.

Protection

Protection thresholds and delays are set using the adjustment dials.

Overload protection

True rms long-time protection
Protects cables (phase and neutral) against overloads
Thermal memory ${ }^{(1)}$: thermal image before and after tripping.
Short-time protection
■ The short-time protection function protects the distribution system against impedant short-circuits

- The short-time tripping delay can be used to ensure discrimination with downstream circuit breaker
- The $I^{2} t$ ON and I^{2} t OFF options enhance discrimination with a downstream protection devices
- Use of I^{2} t curves with short-time protection:
$\square I^{2} t$ OFF selected: the protection function implements a constant time curve
$\square I^{2} t$ ON selected: the protection function implements an I^{2} t inverse-time curve up to 10 Ir . Above 10 Ir , the time curve is constant
Earth-fault protection on ET6G trip system
Residual earth fault protection.
Selection of $I^{2} t$ type (ON or OFF) for delay.
A ground fault in the protection conductors can provoke local temperature rise at the site of the fault or in the conductors. The purpose of the ground-fault protection function is to eliminate this type of fault

Type	Description
Residual	The function determines the zero-phase sequence current, i.e.
	the vectorial sum of the phase and neutral currents
	■ It detects faults downstream of the circuit breaker

Instantaneous protection

The Instantaneous-protection function protects the distribution system against solid short-circuits. Contrary to the short-time protection function, the tripping delay for instantaneous protection is not adjustable. The tripping order is sent to the circuit breaker as soon as current exceeds the set value, with a fixed time delay of
20 milliseconds.

Neutral protection

On three-pole circuit breakers, neutral protection is not possible.
On four-pole circuit breakers, neutral protection may be set using a three-position switch: neutral unprotected (4P 3d), neutral protection at $0.5 \operatorname{Ir}(4 \mathrm{P} 3 \mathrm{~d}+\mathrm{N} / 2$), neutral
protection at Ir (4P 4d).
Zone selective interlocking (ZSI)
A ZSI ${ }^{(2)}$ terminal block may be used to interconnect a number of control units to provide total discrimination for short-time and earth-fault protection, without a delay before tripping.

Overload alarm

A yellow alarm LED goes on when the current exceeds the long-time trip threshold.

Fault indications

LEDs indicate the type of fault:

- Overload (long-time protection Ir)

■ Short-circuit (short-time Isd or instantaneous li protection)

- Earth fault (Ig)
- Internal fault (Ap)

Battery power

The fault indicating LEDs are powered by an in-built battery. The fault indication LEDs remain on until the test/reset button is pressed.

Test

A hand-held test kit may be connected to the test connector on the front to check circuit-breaker operation. For ET6G trip unit, the operation of earth-fault protection can be checked by pressing the test button located above the test connector.

Overview of functions
 ET trip system

Note: All current-based protection functions require no auxiliary source.
The test/reset button, clears the tripping indication and tests the battery.

Functions and characteristics

ETA trip units include all functions offered by ET trip unit. In addition, they also offer measurements, display and current maximeters.

1 Long-time threshold and tripping delay.
2 Overload alarm (LED) at 1,125 Ir.
3 Short-time pick-up and tripping delay.
4 Instantaneous pick-up.
5 Earth-fault pick-up and tripping delay.
6 Earth-fault test button.
7 Long-time rating plug screw.
8 Test connector.
9 Lamp test, reset and battery test.
10 Indication of tripping cause.
11 Digital display.
12 Three-phase bargraph and ammeter
13 Navigation button to view menu contents.
14 Navigation button to change menu.
(1) The thermal memory continuously accounts for the amount of heat in the cables, both before and after tripping, whatever the value of the current(presence of an overload or not).The thermal memory optimises the long-time protection function of the circuit breaker by taking into account the temperature rise in the cables .The thermal memory assumes a cable cooling time of approximately 20 minutes.
(2) Refer to page D-5 for more details on ZSI.

Note: ETA trip units come with a transparent leadseal cover as standard.

Overview of functions ETA trip system

"Ammeter" measurements

ETA trip units measure the true (rms) value of currents.
They provide continuous current measurements from 0.2 to 1.2 In and are accurate to within 1.5% (including the sensors).
A digital LCD screen continuously displays the most heavily loaded phase (Imax) or displays the $I_{1}, I_{2}, I_{3}, I_{N}, I_{g}$, stored-current (maximeter) and setting values by successively pressing the navigation button.
The optional external power supply makes it possible to display currents $<20 \%$ In. Below 0.1 In , measurements are not significant. Between 0.1 and 0.2 In , accuracy changes linearly from 4% to 1.5%.

Protection

Protection thresholds and delays are set using the adjustment dials.

Overload protection

True rms long-time protection.
Protects cables (phase and neutral) against overloads
Thermal memory ${ }^{(1)}$: thermal image before and after tripping.

Short-time protection

- The short-time protection function protects the distribution system against impedant short-circuits
- The short-time tripping delay can be used to ensure discrimination with downstream circuit breaker
- The $I^{2} \mathrm{t}$ ON and $I^{2} \mathrm{t}$ OFF options enhance discrimination with a downstream protection devices
- Use of $I^{2} t$ curves with short-time protection:
$\square I^{2}$ t OFF selected: the protection function implements a constant time curve
$\square I^{2}$ t ON selected: the protection function implements an I^{2} t inverse-time curve up to 10 Ir . Above 10 Ir , the time curve is constant
Earth-fault protection on ETA6G trip system
Residual earth fault protection.
Selection of $I^{2} t$ type (ON or OFF) for delay.
A ground fault in the protection conductors can provoke local temperature rise at the site of the fault or in the conductors. The purpose of the ground-fault protection function is to eliminate this type of fault.

Type	Description
Residual	The function determines the zero-phase sequence current, i.e.
	the vectorial sum of the phase and neutral currents
	■ It detects faults downstream of the circuit breaker

Instantaneous protection

The Instantaneous-protection function protects the distribution system against solid short-circuits. Contrary to the short-time protection function, the tripping delay for instantaneous protection is not adjustable. The tripping order is sent to the circuit breaker as soon as current exceeds the set value, with a fixed time delay of 20 milliseconds.

Neutral protection

On three-pole circuit breakers, neutral protection is not possible.
On four-pole circuit breakers, neutral protection may be set using a three-position switch: neutral unprotected (4P 3d), neutral protection at $0.5 \operatorname{Ir}(4 \mathrm{P} 3 d+\mathrm{N} / 2)$, neutral protection at Ir (4P 4d).
Zone selective interlocking (ZSI)
A ZSI ${ }^{(2)}$ terminal block may be used to interconnect a number of control units to provide total discrimination for short-time and earth-fault protection, without a delay before tripping.

Overload alarm

A yellow alarm LED goes on when the current exceeds the long-time trip threshold.

Fault indications

LEDs indicate the type of fault:
■ Overload (long-time protection Ir)

- Short-circuit (short-time Isd or instantaneous li protection)
- Earth fault (lg)
- Internal fault (Ap)

Battery power

The fault indicating LEDs are powered by an in-built battery. The fault indication LEDs remain on until the test/reset button is pressed.

Test

A hand-held test kit may be connected to the test connector on the front to check circuit-breaker operation. For ETA6G trip unit, the operation of earth-fault protection can be checked by pressing the test button located above the test connector.

Overview of functions ETA trip system

Note: All current-based protection functions require no auxiliary source.
The test / reset button resets maximeters, clears the tripping indication and tests the battery.

Functions and characteristics

Overview of functions
 ETV trip system

ETV trip units include all the functions offered by ETA. In addition, they measure Energy values.
They also offer trip history \& display tripping cause.

1 Long-time threshold and tripping delay.
2 Overload alarm (LED) at 1,125 Ir.
3 Short-time pick-up and tripping delay.
4 Instantaneous pick-up.
5 Earth-fault pick-up and tripping delay.
6 Earth-fault test button.
7 Long-time rating plug screw.
8 Test connector.
9 Lamp test, reset and battery test.
10 Indication of tripping cause.
11 Digital display.
12 Three-phase bargraph and ammeter.
13 Navigation button "quick View" (only with ETV).
14 Navigation button to view menu contents.
15 Navigation button to change menu.

Note: ETV trip units come with a transparent leadseal cover as standard.

"Energy meter" measurements

In addition to the ammeter measurements of ETA
ETV control units measure and display:

- current demand
- voltages: phase to phase, phase to neutral, average ${ }^{(1)}$ and unbalanced ${ }^{(1)}$
- instantaneous power: P, Q, S
- power factor: PF
- power demand: P demand
- energy: $\mathrm{Ep}, \mathrm{Eq}^{(1)}, \mathrm{Es}^{(1)}$.

Accuracy of active energy Ep is 2% (including the sensors). The range of measurement is the same as current with ETA, depending of an external power supply module (24 V DC).

Communication option

In conjunction with the COM communication option, the control unit transmits the
following:

- settings

■ all "ammeter" and "energy" measurements

- tripping causes
- maximeter / minimeter readings.

Protection

Protection thresholds and delays are set using the adjustment dials.

Overload protection

True rms long-time protection.
Thermal memory: thermal image before and after tripping.
Setting accuracy may be enhanced by limiting the setting range using a different
long-time rating plug.
Short-circuit protection
Short-time (rms) and instantaneous protection.
Selection of I^{12} type (ON or OFF) for short-time delay.

Earth-fault protection

Residual or source ground return earth fault protection.
Selection of 1^{2} type (ON or OFF) for delay

Neutral protection

On three-pole circuit breakers, neutral protection is not possible.
On four-pole circuit breakers, neutral protection may be set using a three-position switch: neutral unprotected (4P 3d), neutral protection at $0.5 \operatorname{lr}(4 \mathrm{P} 3 \mathrm{~d}+\mathrm{N} / 2)$, neutral protection at Ir (4P 4d).
Zone selective interlocking (ZSI)
A ZSI terminal block may be used to interconnect a number of control units to provide total selectivity for short-time and earth-fault protection, without a delay before tripping.

Overload alarm

A yellow alarm LED goes on when the current exceeds the long-time trip threshold.

M2C programmable contacts

The M2C (two contacts) programmable contacts may be used to signal envents (Ir, Isd, Alarm Ir, Alarm Ig, Ig). They can be programmed using the keypad on the ETV control unit or remotely using the COM option (BCM ULP).

Fault indications

LEDs indicate the type of fault:

- overload (long-time protection Ir)
- short-circuit (short-time Isd or instantaneous li protection)
- earth fault (Ig)
- internal fault (Ap).

Trip history

The trip history displays the list of the last 10 trips. For each trip, the following indications are recorded and displayed:

- the tripping cause: Ir, Isd, li, Ig or Auto-protection (Ap) trips
- the date and time of the trip (requires communication option).

Battery power

The fault indication LEDs remain on until the test/reset button is pressed. Under normal operating conditions, the battery supplying the LEDs has a service life of approximately 10 years.

Test

A mini test kit or a portable test kit may be connected to the test connector on the front to check circuit breaker operation. For ETV6G control units, the operation of earth-fault or earth-leakage protection can be checked by pressing the test button located above the test connector.

Overview of functions
 ETV trip system

Note: All current-based protection functions require no auxiliary source.
The test / reset button resets maximeters, clears the tripping indication and tests the battery.
Important: long time plug must be removed before carrying out insulation or dielectric withstand tests

Functions and characteristics

External sensor (CT).

External 24 V DC power supply module.

M2C.

(1) Refer to EasyPact MVS user manual on using 3 pole circuit breakers in 4 wire system with ETV trip system for Energy measurement.

ET range of trip system Accessories and test equipment

External sensors
 External sensor for earth-fault protection

The sensors, used with the 3P circuit breakers, are installed on the neutral conductor for:

- Residual type earth-fault protection (with 6 G trip units)

The rating of the sensor (CT) must be compatible with the rating of the circuit breaker:
■ MVS 06 to MVS16(frame 1): TC 400/1600
■ MVS 08 to MVS 20(frame 2): TC 400/2000

- MVS25 to MVS40: TC 1000/4000

Voltage measurement inputs ${ }^{(1)}$
As standard, the control unit is supplied by internal voltage measurement inputs placed downstream of the pole for voltages between 220 and 690 V AC.

External 24 V DC power-supply module (AD)

The external power-supply module makes it possible:

- to use the display even if the circuit breaker is open or not supplied (for the exact
conditions of use, see the "electrical diagrams" part of this catalogue)
- to display fault currents after tripping
- to modify settings when the circuit breaker is open (OFF position)

An external 24 V DC power supply is required for installation with communication, whatever the type of trip unit.
This module is not designed to power on 24 V DC voltage releases and electric motor mechanism.
This module powers both the control unit and the M2C programmable contacts. We recommended using the AD power supply due to its low stray primary secondary capacitance. Good operation of the Micrologic control unit in noisy environment is not guaranteed with other power supplies.
If the COM option is used, a second dedicated power supply shall be used.
This module powers both the control unit and the M2C programmable contacts.

Characteristics

- Power supply AC-to-DC or DC-to-DC

■ Output voltage: 24 V DC $\pm 5 \%$.
■ Output current: 1 A.

- DIN rail or platine Fixing with Acti9 form factor

■ Conducted emissions power line: class B per EN 61000-6-3.

M2C programmable contacts

These contacts are optional equipment for the ETV control units.
They are described with the indication contacts for the circuit breakers.

Micrologic			Type ETV
Characteristics		M2C	
Minimum load		$100 \mathrm{~mA} / 24 \mathrm{~V}$	
Breaking capacity (A) p.f.: 0.7	V AC	240	5
		380	3
	VDC	24	1.8
		48	1.5
		125	0.4
		250	0.15

M2C: 24 V DC power supplied by control unit (consumption 100 mA).

Spare parts

Lead-seal covers
A lead-seal cover controls access to the adjustment dials.
When the cover is closed:
■ The test connector remains accessible

- The test button for the earth-fault protection function remains accessible

Characteristics
■ Transparent cover for all trip units

Spare battery

A battery supplies power to the LEDs identifying the tripping causes. The healthiness of the battery to be checked periodically. A test button on the front of the control unit is used to check the battery condition. The battery may be replaced on site when discharged.

Eco COM transmits metering data and status. It is not used to communicate controls.

Functions

Eco COM Communication

BCM ULP.

For fixed and Drawout devices, the common communication option is made up of:

- a BCM ULP module, installed behind the Trip System and supplied with its set of sensors (OF, SDE, PF and CH micro switches) and its COM terminal block (inputs E1 to E6). This module is independent of the control unit. It receives and transmits information on the communication network. An infra-red link transmits data between the control unit and the communication module.
Consumption: $30 \mathrm{~mA}, 24 \mathrm{~V}$.
- IFM, this module required for connection to the network, contains the Modbus address (1 to 99) declared by the user via the two dials in front. It automatically adapts (baud rate, parity) to the Modbus network in which it is installed.

For drawout device the Cradle Management option must be added: I/O (Input/Output) application module for LV breaker, the I/O application module is delivered with withdrawable devices ordered with the COM option, for cradle management. It must be installed on a DIN rail near the device. It must be connected to the ULP system and to the position contacts (CD, CT, CE) that transmit the position of the device in the cradle.

I/O application module.

IFM Modbus communication interface.
 Ref.: LV434000.

IFM Modbus communication interface

Function

A IFM - Modbus communication interface - is required for connection of a Masterpact or Easypact to a Modbus network as long as this circuit breaker is provided with
a ULP (Universal Logic Plug) port. The port is available on respectively a BCM ULP.
The IFM is defined as an IMU (Intelligent Modular Unit) in the ULP connection System documentation.

Once connected, the circuit breaker is considered as a slave by the Modbus master. Its electrical values, alarm status, open/close signals car be monitored or controlled by a Programmable Logic Controller or any other system.

Characteristics

ULP port

2 RJ45 sockets, internal parallel wiring

- Connection of a single circuit breaker (eventually via its I/O application module).
■ A ULP line terminator must be connected to the second RJ45 ULP socket.
The RJ45 sockets deliver a 24 VDC supply fed from the Modbus socket.
Built-in test function, for checking the correct connection to the circuit breaker.

Modbus slave port

■ Top socket for screw-clamp connector, providing terminals for:

- 24 VDC input supply ($0 \mathrm{~V},+24 \mathrm{~V}$)
\square Modbus line (D1, D2, Gnd).
- Lateral socket, for Din-rail stackable connector.

Both top and lateral sockets are internally parallel wired.

- Multiple IFM can be stacked, thus sharing a common power supply and

Modbus line without individual wiring.
■ On the front face:
\square Modbus address setting (1 to 99): 2 coded rotary switches
\square Modbus locking pad: enables or disable the circuit breaker remote control and modification of IFM parameters.
■ Self adjusting communication format (Baud rate, parity).

IFM Modbus communication interface

Technical characteristics

IFM Modbus communication interface

Dimensions		$18 \times 72 \times 96 \mathrm{~mm}$
Maximum number of stacked IFM		12
Degree of protection of the installed module	Part projecting beyond the escutcheon	IP4x
	Other module parts	IP3x
	Connectors	IP2x
Operating temperature		$-25 \ldots+70^{\circ} \mathrm{C}$
Power supply voltage		24 V DC - 20 \%/+10 \% (19.2...26.4 V DC)
Consumption	Typical	$21 \mathrm{~mA} / 24 \mathrm{~V}$ DC at $20^{\circ} \mathrm{C}$
	Maximum	$30 \mathrm{~mA} / 19.2 \mathrm{~V}$ DC at $60^{\circ} \mathrm{C}$
Certification		
CE		IEC/EN 60947-1
UL		UL 508 - Industrial Control Equipment
CSA		No. 142-M1987 - Process Control Equipment - CAN/CSA C22.2 No. 0-M91 - General requirements - Canadian Electrical Code Part - CAN/CSA C22.2 No. 14-05- Industrial Control Equipment

Simplified IFM installation
Staking IFM

Up to 12 stacked IFM

I/O application module

Description

The I/O input/output application module for LV breaker is part of an ULP system with built-in functionalities and applications to enhance the application needs. The ULP system architecture can be built without any restrictions using the wide range of circuit breakers.
The I/O application is compliant with the ULP system specifications.
Two I/O application module can be connected in the same ULP network.
The ranges of LV circuit breakers enhanced by the I/O are:

- Masterpact NT/NW
- EasyPact MVS
- Compact NS1600b-3200
- Compact NS630b-1600
- Compact NSX100-630 A.

I/O input/output interface for LV breaker resources

The I/O application module ressources are:
■ 6 digital inputs that are self powered for either NO and NC dry contact or pulse counter

- 3 digital outputs that are bistable relay (5 A maximum)
- 1 analog input for Pt100 temperature sensor.

Pre-defined applications

Pre-defined application adds new functions to the IMU in a simple way: - selection by the application rotary switch on the I/O, defining the application with pre-defined input/output assignment and wiring diagram.

- no additional setting with the customer engineering tool required.

The resources not assigned to the pre-defined application are free for additional user-defined applications:

- cradle management
- breaker operation
- light and load control
- custom.

User-defined applications

User-defined applications are processed by the I/O in addition to the pre-defined application selected.
The user-defined applications are available depending on:

- the pre-defined application selected
- the I/O resources (inputs and outputs) not used by the application.

The resources required by user-defined applications are assigned using the customer engineering tool:

- protection
- control
- energy management
- monitoring.

Mounting

The I/O is a DIN rail mounting device.

Application rotary switch

The application rotary switch enables the selection of the pre-defined application.
It has 9 positions and each position is assigned to a pre-defined application.
The factory set position of the switch is pre-defined application 1.

Setting locking pad

The setting locking pad on the front panel of the I/O enables the setting of the I/O by the customer engineering tool.

General characteristics

Environmental characteristics

Conforming to standards	UL 508, UL 60950, IED 60950, 60947-6-2
Certification	cUIUs, GOST, FCC, CE
Ambient temperature	-20 to $+70^{\circ} \mathrm{C}\left(-4\right.$ to $\left.+158^{\circ} \mathrm{F}\right)$
Relative humidity	5-85\%
Level of pollution	Level 3
Flame resistance	ULVO
Mechanical characteristics	
Shock resistance	$1000 \mathrm{~m} / \mathrm{s} 2$
Resistance to sinusoidal vibrations	$5 \mathrm{~Hz}<\mathrm{f}<8.4 \mathrm{~Hz}$
Electrical characteristics	
Resistance to electromagnetic discharge	Conforming to IEC/EN 61000-4-3
Immunity to radiated fields	$10 \mathrm{~V} / \mathrm{m}$
Immunity to surges	Conforming to IEC/EN 61000-4-5
Consumption	165 mA
Physical characteristics	
Dimensions	$71.7 \times 116 \times 70.6 \mathrm{~mm}(2.83 \times 4.56 \times 2.78 \mathrm{in}$. $)$
Mounting	DIN rail
Weight	229.5 g (0.51 lb)
Degree of protection of the installed I/O application module	■ On the front panel (wall mounted enclosure): IP4x - IO parts: IP3x ■ Connectors: IP2x

Connections Screw type terminal blocks

Technical characteristics - 24 V DC power supply

Power supply type	Regulated switch type
Rated power	72 W
Input voltage	$100-120$ V AC for single phase
PFC filter	$200-500$ V AC phase-to-phase
Output voltage	With IEC 61000-3-2
Power supply out current	24 V DC

Note: it is recommended to use an UL listed/UL listed recognized limited voltage/Limited current or a class 2 power supply with a 24 VDC, 3 A maximum.

Digital inputs	
Digital input type	Self powered digital input with current limitations as per IEC 61131-2 type 2 standards (7 mA)
Input limit values at state 1 (close)	19.8-25.2 V DC, 6.1-8.8 mA
Input limit values at state 0 (open)	$0-19.8 \mathrm{~V}$ DC, 0 mA
Maximum cable length	10 m (33 ft)
Note: for a length greater than $10 \mathrm{~m}(33 \mathrm{ft})$ and up to 300 m (1,000 ft), it is mandatory to use a shielded twisted cable. The shield cable is connected to the I/O functional ground of the I/O application module.	
Digital outputs	
Digital output type	Bistable relay
Rated load	5 A at 250 V AC
Rated carry current	5 A
Maximum switching voltage	380 V AC, 125 V DC
Maximum switch current	5 A
Maximum switching power	1250 VA, 150 W
Minimum permissible load	10 mA at 5 V DC
Contact resistance	$30 \mathrm{~m} \Omega$
Maximum operating frequency	18000 operations/hr (Mechanical) 1800 operations/hr (Electrical)
Digital output relay protection by an external fuse	External fuse of 5 A or less
Maximum cable length	$10 \mathrm{~m}(33 \mathrm{ft})$
Analog inputs	

The I/O application module analog input can be connected to a Pt100 temperature sensor

Range	-30 to $200{ }^{\circ} \mathrm{C}$	-22 to $392^{\circ} \mathrm{F}$
Accuracy	$\pm 2^{\circ} \mathrm{C}$ from -30 to $20^{\circ} \mathrm{C}$	$\pm 3.6^{\circ} \mathrm{F}$ from -22 to $68{ }^{\circ} \mathrm{F}$
	$\pm 1^{\circ} \mathrm{C}$ from 20 to $140^{\circ} \mathrm{C}$	$\pm 1.8^{\circ} \mathrm{F}$ from 68 to $284^{\circ} \mathrm{F}$
	$\pm 2^{\circ} \mathrm{C}$ from 140 to $200^{\circ} \mathrm{C}$	$\pm 3.6^{\circ} \mathrm{F}$ from 284 to $392^{\circ} \mathrm{F}$
Refresh interval	5 s	5 s

Functions

and characteristics

Connection of the IFM \& I/O module to a fixed or drawout Easypact MVS

Connect the IFM to a fixed electrically operated EasyPact MVS or circuit breaker using the breaker ULP cord

A IFM Modbus interface for LV circuit breaker
B Breaker ULP cord
C Fixed terminal block
D BCM ULP communication module
E Fixed electrically operated circuit breaker

Connect the IFM to a drawout EasyPact MVS or circuit breaker using the breaker ULP cord

A IFM Modbus interface for LV circuit breaker
B ULP cable
C Breaker ULP cord
D Circuit breaker disconnected position contact (CD)
E Circuit breaker cradle

F BCM ULP communication module
G Drawout circuit breaker
H Drawout terminal block
I Circuit breaker connected position contact (CE)
J Circuit breaker test position contact (CT)
K I/O (Input/Output) application module for LV circuit breaker

EasyCom Communication interface

EasyCom Communication

Overview

EasyCom Communication module allows you to connect and control the air circuit breakers over Modbus communication architecture.

Resources(Inputs/Outputs)
The Communication module resources are:

- Nine digital inputs
- Six digital outputs
- One analog inout

Key Features
The main features of the communication module are

- Ensures to make communication architechture affordable and easily maintainable
- Connects,controls, and manages up to three circuit breakers.

O connect:Breaker ON/OFF status(OF),Breaker Trip status(SDE), Ready Tc Close status(PF)
O Control: Remote Oper/Close of EasyPact air circuit breakers
O Manage: One Analog Input for temperature measurement(4...20mA)

Safety Operation

The communication module keeps safety as its top priority while you control
the communication architecture.

- During maintenance, the local operator can switch off the remote operation module locally. The remote operator can see the status of the air circuit breaker from remot, but cannot give the ON/OFF command.
- The communication module provides 'ready-to-close' indication on the communication network,keeping the safety of the operator and installation on priority.
- The operator must check the following status of the air breaker before the ON command is given to the circuit breaker through the communication architecture.
O The circuit breaker is in the OFF position.
O The Spring mechanism is charged.
O A maintained opening order is not present.
- The tripping command is not present through shunt, under voltage.

O The air circuit breaker is completely rack in or not.
O The air circuit breaker is locked in the Off position or is mechanically interlock with any other air circuit breaker.
The EasyPact air circuit breaker is equipped witha 'ready-to-cloase' accessory that helps to check these conditions from remote on the communication architecture. Once it is fulfilled, the ON command is given to the circuit breaker.

Functions
and characteristics

EasyCom Communication interface

Commnuication Architecture

A Customer Scope Modbus Master/SCADA Supervisor
B Customer Scope Modubus communication cable (RS 485 cable)
C Custmer Scope Modbus to USB/convertor
D EasyCom Communication module
E Digital input/Digital Output wires
F EasyPact MVS

EasyCom Communication interface

Hardware Description
Description

Mounting
EasyCom Communication module mounts on a DIN rail(Reference: Top hat rail EN50022/TS35).
Pull the sliders provided with the unit towards the outward direction. Rest the unit on the DIN rail plate. Pull down the slider again so that the unit gets fixed on the DIN rail plate

24 Vdc Power Supply
It is recoomended to use UL listed/UL recognized limited voltage/limited cuuert or a Class 2 Power supply with a $24 \mathrm{Vdc}, 3 \mathrm{~A}$ maxmum and with the shield pin connection.

Module Power LED

Markeing on the product	LED Indication	Status Description
PWR	ON	Module is powered
	OFF	Module is not powered

EasyCom Communication interface

Module Communication Status L

Markeing on the product	LED Indication	Status Description
COM	ON	Commnuncation established
	Blink	Commnuncation established
	OFF	No Commnuncation

Digital Input status LED

Markeing on the product	LED Indication	Status Description
$3 \times(\mathrm{OF}, \mathrm{SDE}, \mathrm{PF})$	ON	Input is high
	OFF	Input is low

Digital Output status LED

Markeing on the product	LED Indication	Status Description
$3 X($ OF,SDE,PF $)$	ON	Relay output is CLOSE
	OFF	Relay output is OPEN

Analog Input status LED

Markeing on the product	LED Indication	Status Description
AI	ON	$4 \ldots 20 \mathrm{~mA}$ range Input
	OFF	No sensor
	$1 \mathrm{~s} \mathrm{ON}, 1 \mathrm{~s}$ OFF	Out of range input

Functions

and characteristics

Connections

Overview of solutions and accessories

Available connection:
■ Rear connections: horizontal, vertical and mixed
The solutions presented are similar in principle for all
EasyPact MVS fixed and draw-out devices.

Rear connection

Horizontal

Simply turn a horizontal rear connector 90° to make it a vertical connector.

Functions and characteristics

Connections

Overview of solutions and accessories

Interphase barriers EIP

These barriers are flexible insulated partitions used to reinforce isolation of connection points in installations with busbars, whether insulated or not. For EasyPact MVS devices, they are installed vertically between rear connection terminals. They are not compatible with spreaders.

Safety shutters VO

Mounted on the chassis, the safety shutters automatically block access to the disconnecting contact cluster when the device is in the disconnected or test positions
(degree of protection IP 20) When the device is removed from its chassis, no live parts are accessible.
The shutter-locking system is made up of a moving block (optional device) that can be padlocked (padlock not supplied). The block:
■ Prevents connection of the device

- Locks the shutters in the closed position

For EasyPact MVS06 to MVS40

A support at the bottom of the chassis is used to store the blocks when they are not used:

- 2 blocks for MVS06 to MVS40

Accessories and auxiliaries

Type of accessory	EasyPact MVS06 to	
	Fixed breaker Rear connection	Draw-out breaker Rear connection
Interphase barriers		
Safety shutters		Standard
Safety shutters locking blocks		Optional
Door interlock		
Pushbutton locking device	Optional	Optional
OFF position locking	Optional	Optional
"Disconnected" position locking		Optional
ON/OFF indication contacts(OF)	Standard	Standard
Additional ON/OFF indication contacts(OF) not incl MVS frame 1		
"Fault trip" indication contact(SDE)		

Accessories and auxiliaries

Type of accessory	EasyPact MVS06 to MVS40	
	Fixed breaker Rear connection	Draw-out breaker Rear connection
"Connected, disconnected, test position" indication contact(CE,CD,CT)		
"Ready to close" contact(PF)	Optional	Optional
Escutcheon(CDP)	 Standard	Standard
Mechanical operation counter(CDM) not incl MVS frame 1	Optional	Optional
Escutcheon blanking plate	Optional	
Auxiliary terminal shield(CB)		 Optional
Transparent cover (IP54)		Optional

Functions

[^0]

Access to pushbuttons protected by transparent cover.

Pushbutton locking using a padlock.

OFF position locking using a keylock.

Door interlock

Pushbutton locking VBP

The transparent cover blocks access to the pushbuttons used to open and close the device.
It is possible to independently lock the opening button and the closing button.
The locking device is often combined with a remote operating mechanism.
The pushbuttons may be locked using either:
■ Three padlocks (not supplied)

- Lead seal

■ Two screws

Device locking in the OFF position by keylocks VSPO

The circuit breaker is locked in the OFF position by physically maintaining the opening pushbutton pressed down:
■ Using keylocks (one or two keylocks, supplied)
Keys may be removed only when locking is effective (Profalux or Ronis type locks).
The keylocks are available in any of the following configurations:
■ One keylock
■ One keylock mounted on the device + one identical keylock supplied separately for interlocking with another device
A locking kit (without locks) is available for installation of one or two keylocks (Ronis, Profalux).

Profaulx

Ronis

Door interlock catch VPEC

Mounted on the right or left-hand side of the chassis, this device inhibits opening of
the cubicle door when the circuit breaker is in "connected" or "test" position. It the breaker is put in the "connected" position with the door open, the door may be closed
without having to disconnect the circuit breaker.
Automatic spring discharge before breaker removal DAE This option discharges the springs before the breaker is removed from the chassis.

Functions and characteristics

1 Door interlock.
2 Keylock locking.
3 Padlock locking.
4 Position indicator
5 Chassis front plate (accessible with cubicle door closed).
6 Racking-handle entry.
7 Release button.
8 Racking-handle storage.

"Disconnected" position locking by padlock.

"Disconnected" position locking by keylock.

Locking
 On the chassis

"Connected", "disconnected" and "test" position racking interlock

The "connected", "disconnected" and "test" positions are shown by an indicator and
are mechanically indexed. The exact position is obtained when the racking handle blocks. A release button is used to free it.
"Disconnected" position locking by padlocks or keylocks VSPD Mounted on the chassis and accessible with the door closed, these devices lock the circuit breaker in the "disconnected" position in two manners:
■ Using padlocks (standard), up to three padlocks (not supplied)
■ Using keylocks (optional), one or two different keylocks are available
Profalux and Ronis keylocks are available in different options:

- One keylock
- Two identical key locks - one keylock mounted on the device + one identical keylock supplied separately for interlocking with another device
A locking kit (without locks) is available for installation of one or two keylocks (Ronis, Profalux).

Padlock

Circuit breaker in "disconnected" position.

Insert the shackle (max. diameter 5 to 8 mm) of the padlock(s).

Keylock

Circuit breaker in "disconnected" position.

Remove the key(s)

Pull out the tab.

The crank connot be inserted.

Turn the key(s).

The crank cannot be inserted.

Functions

and characteristics

Indication contacts are available:

- in the standard version for relay applications

ON/OFF indication contacts (OF) (rotary type).

"Fault-trip" indication contact (SDE).

ON/OFF indication contacts OF

Indication contacts indicate the ON or OFF position of the circuit breaker:
■ Rotary type changeover contacts directly driven by the mechanism for EasyPact MVS. These contacts trip when the minimum isolation distance between the main circuit-breaker contacts is reached

OF			Frame 1	Frame 2
Supplied as standard			4	4
Maximum number			4	12
Breaking capacity (A)	Standard		Minimum load	$100 \mathrm{~mA} / 24 \mathrm{~V}$
p.f.: 0.3	V AC	240/380	6	$10 / 6{ }^{(1)}$
AC12/DC12		480	6	$10 / 6{ }^{(1)}$
		690	6	6
	VDC	24/48	2.5	10/6 ${ }^{(1)}$
		125	0.5	$10 / 6{ }^{(1)}$
		250	0.3	3
	Low-level		Minimum load	$2 \mathrm{~mA} / 15 \mathrm{~V}$
	V AC	24/48	5	6
		240	5	6
		380	5	3
	V DC	24/48	5/2.5	6
		125	0.5	6
		250	0.3	3

(1) Standard contacts: 10 A; optional contacts: 6 A.
"Fault-trip" indication contacts SDE
Circuit-breaker tripping due to a fault is signalled by:

- A red mechanical fault indicator (reset)
- One changeover contact SDE

Following tripping, the mechanical indicator must be reset before the circuit breaker
may be closed. One SDE is supplied as standard.

SDE				MVS
Supplied as standard				1
Breaking capacity (A)	Standard			Minimum load: $100 \mathrm{~mA} / 24 \mathrm{~V}$
p.f.: 3		V AC	$240 / 380$	6
AC12/DC12			480	2
		VDC	$24 / 48$	3
			125	0.3
			250	0.15

Functions and characteristics

CE, CD and CT "connected/disconnected/test" position carriage switches.

Indication contacts

"Connected", "disconnected" and "test" position carriage switches CE, CD \& CT
Three series of optional auxiliary contacts are available for the chassis:
■ Changeover contacts to indicate the "connected" position CE

- Changeover contacts to indicate the "disconnected" position CD. This position is indicated when the required clearance for isolation of the power and auxiliary circuits is reached
■ Changeover contacts to indicate the "test" position CT. In this position, the power circuits are disconnected and the auxiliary circuits are connected

			MV	me 1		F	rame 2
Contacts			CE			CD	
Maximum number	Standard		3	1	3	3	3
	with additional a	uators			9	0	0
					6	3	0
					6	0	3
					3	6	0
Breaking capacity (A)	Standard		Min	load	m	A/2	
p.f.: 0.3	V AC	240	8		8		
AC12/DC12		380	8		8		
		480	8		8		
		690	6		6		
	V DC	24/48	2.5		2.5		
		125	0.8		0.8		
		250	0.3		0.3		
	Low-level		Min	load	mA	15	
	V AC	24/48	5		5		
		240	5		5		
		380	5		5		
	V DC	24/48	2.5		2.5		
		125	0.8		0.8		
		250	0.3		0.3		

M2C programmable contacts

These contacts, used with the ETV control units, may be programmed via the control unit keypad or via a supervisory station with the COM communication option. They require an external power supply module.
The M2C (two contacts) auxiliary contacts may be used to signal threshold overruns or status changes. They can be programmed using the COM option (BCM ULP).

Micrologic			Type ETV
Characteristics			M2C
Minimum load			$100 \mathrm{~mA} / 24 \mathrm{~V}$
Breaking capacity (A)	V AC	240	5
p.f.: 0.7		380	3
	V DC	24	1.8
		48	1.5
		125	0.4
		250	0.15

Functions

A point-to-point solution for remote operation of EasyPact MVS

Note: An opening order always takes priority over a closing order.
If opening and closing orders occur simultaneously, the mechanism discharges without any movement of the main contacts. The circuit breaker remains in the open position (OFF).
In the event of maintained opening and closing orders, the standard mechanism provides an anti-pumping function by blocking the main contacts in open position.
Anti-pumping function. After fault tripping or intentional opening using the manual or electrical controls, the closing order must first be discontinued, then reactivated to close the circuit breaker.

Remote operation

Remote ON / OFF

The remote ON / OFF function is used to remotely open and close the circuit breaker.
It is made up of:

- An electric motor MCH equipped with a "springs charged" limit switch contact CH
■ Two voltage releases:
- A closing release XF
\square An opening release MX

Optionally, other function may be added:

- A "ready to close" contact PF

A remote-operation function is generally combined with:

- Device ON / OFF indication OF

■ "Fault-trip" indication SDE

Wiring diagram of a point-to-point remote ON / OFF function

Functions
 and characteristics

Remote operation
 Remote ON / OFF

Electric motor MCH for
EasyPact MVS.

MX voltage releases.

"Ready to close" contacts PF.

Electric motor MCH

The electric motor automatically charges and recharges the spring mechanism when
the circuit breaker is closed. Instantaneous reclosing of the breaker is thus possible
following opening. The spring-mechanism charging handle is used only as a backup
if auxiliary power is absent.
The electric motor MCH is equipped as standard with a limit switch contact CH that
signals the "charged" position of the mechanism (springs charged).

Characteristics	
Power supply VAC 50/60 Hz	$100 / 130-200 / 240-380 / 415$
	V DC

Voltage releases XF and MX

Their supply can be maintained or automatically disconnected.
Closing release XF
The XF release remotely closes the circuit breaker if the spring mechanism is charged.
Opening release MX
The MX release instantaneously opens the circuit breaker when energised. It locks the circuit breaker in OFF position if the order is maintained.

| Characteristics | XF | MX |
| :--- | :--- | :--- | :--- |
| Power supply | VAC 50/60 Hz | $24-48-100 / 130-200 / 250-380 / 480$ |
| | V DC | $12-24 / 30-48 / 60-100 / 130-200 / 250$ |
| Operating threshold | 0.85 to 1.1 Un | 0.7 to 1.1 Un |
| Consumption (VA or W) | Hold: 4.5 | Hold: 4.5 |
| | Pick-up: $200(200 \mathrm{~ms})$ | Pick-up: $200(200 \mathrm{~ms})$ |
| Circuit-breaker response time at | $70 \mathrm{~ms} \pm 10$ | $50 \mathrm{~ms} \pm 10$ |
| Un | | |

"Ready to close" contact PF

The "ready to close" position of the circuit breaker is indicated by a mechanical indicator and a PF changeover contact. This signal indicates that all the following are valid:
■ The circuit breaker is in the OFF position

- The spring mechanism is charged
- A maintained opening order is not present:
\square MX energised
- Fault trip
- Remote tripping MN
\square Device not completely racked in
- Device locked in OFF position
\square Device interlocked with a second device

Characteristics				
Maximum number				
Breaking capacity (A)	Standard			Minimum load: $100 \mathrm{~mA} / 24 \mathrm{~V}$
p.f.: 0.3		V AC	$240 / 380$	5
AC12/DC12			480	5
		690	3	
		V DC	$24 / 48$	3
		125	0.3	
			250	0.15

Functions

and characteristics

Remote operation

 Remote tripping

MN voltage release.

MN delay unit.

Instantaneous voltage releases MN

The MN release instantaneously opens the circuit breaker when its supply voltage drops to a value between 35% and 70% of its rated voltage. If there is no supply on
the release, it is impossible to close the circuit breaker, either manually or electrically.
Any attempt to close the circuit breaker has no effect on the main contacts. Circuit breaker closing is enabled again when the supply voltage of the release returns to 85% of its rated value.

Characteristics

Power supply	V AC 50/60 Hz	$24-48-100 / 130-200 / 250-380 / 480$	
	V DC	$24 / 30-48 / 60-100 / 130-200 / 250$	
Operating threshold	Opening	0.35 to 0.7 Un	
	Closing	0.85 Un	
Consumption (VA or W)	Pick-up: $200(200 \mathrm{~ms})$	Hold: 4.5	
MN consumption	Pick-up: $200(200 \mathrm{~ms})$	Hold: 4.5	
with delay unit (VA or W)			
Circuit-breaker response time at Un	$90 \mathrm{~ms} \pm 5$		

MN delay units

To eliminate circuit-breaker nuisance tripping during short voltage dips, operation of
the MN release can be delayed. This function is achieved by adding an external delay unit in the MN voltage-release circuit. Two versions are available, adjustable and non-adjustable.

Characteristics			
Power supply	Non-adjustable	$100 / 130-200 / 250$	
V AC 50-60 Hz /DC	Adjustable	$48 / 60-100 / 130-200 / 250-380 / 480$	
Operating threshold	Opening	0.35 to 0.7 Un	
	Closing	0.85 Un	
Delay unit consumption	Pick-up: $200(200 \mathrm{~ms})$	Hold: 4.5	
Circuit-breaker response time at Un	Non-adjustable	0.25 s	
	Adjustable	$0.5 \mathrm{~s}-0.9 \mathrm{~s}-1.5 \mathrm{~s} \mathrm{-} \mathrm{3} \mathrm{s}$	

Source-changeover systems
 Mechanical interlocking

Interlocking of two EasyPact circuit breakers using cable.

Interlocking of two EasyPact MVS or up to three EasyPact MVS devices using cables
For cable interlocking, the circuit breakers may be mounted one above the other or
side-by-side. The interlocked devices may be fixed or draw-out, three-pole or four-pole, and have different ratings.
Interlocking between two MVS frame 1 or two MVS frame 2
This function requires:

- An adaptation fixture on the right side of each device
- A set of cable with no-slip adjustments

The maximum distance between the fixing planes (vertical or horizontal) is 2000 mm .
Interlocking between three MVS frame 2
This function requires:

- A specific adaptation fixture for each type of interlocking, installed on the right side of each device
- Two or three sets of cables with no-slip adjustments

■ The use of a mechanical operation counter CDM is compulsory
The maximum distance between the fixing planes (vertical or horizontal) is 1000 mm .
Installation
The adaptation fixtures, sets of cables and circuit breakers or switchdisconnectors
are supplied separately, ready for assembly by the customer.

Installation conditions for cable interlocking systems:
■ Cable length: 2.5 m

- Radius of curvature: 100 mm
- Maximum number of curves: 3

Possible combinations of "Normal" and "Replacement" source circuit breakers

"Normal N"	"Replacement" \mathbf{R}
MVS06 to MVS40	MVS Frame 1 or Frame 2
Ratings 630...4000A	\square
Possible combinations of three device	
MVS08 to MVS40	MVS Frame 2
Ratings $800 \ldots 4000$ A	\square

Functions
 and characteristics

Electrical interlocking
 IVE unit

Electrical interlocking is used with a mechanical interlocking system.

Morover, the relays controlling the closing order to the "S1" and "S2" circuit breakers must be mechanically and/or electrically interlocked to prevent them from giving simultaneous closing commands.

Electrical interlocking is carried out by an electrical control device.
For EasyPact \& Masterpact, this function can be implemented in one of two ways:
■ using the IVE unit

- by an electrician based on the diagrams in accordance with the chapter "Electric diagrams" of this catalogue.

Characteristics of the IVE unit

■ External connection terminal block:

- inputs: circuit breaker control signals
- outputs: status of the SDE contacts on the "S1" and "S2" source circuit breakers.
■ 2 connectors for the two "S1" and "S2" source circuit breakers:
\square inputs:
- status of the OF contacts on each circuit breaker (ON or OFF)
- status of the SDE contacts on the "S1" and "S2" source circuit breakers
\square outputs: power supply for operating mechanisms.
■ Control voltage:
- 24 to 250 V DC
- 48 to $415 \mathrm{~V} 50 / 60 \mathrm{~Hz}-440 \mathrm{~V} 60 \mathrm{~Hz}$.

The IVE unit control voltage must be same as that of the circuit breaker operating mechanisms.

IVE unit.

Necessary equipment

For MVS, each circuit breaker must be equipped with:
■ a remote-operation system made up of:
\square MCH gear motor
\square MX or MN opening release
\square XF closing release

- PF "ready to close" contact
\square CDM mechanical operation counter
- an available OF contact

■ one to three CE connected-position contacts (carriage switches) on drawout
circuit breakers (depending on the installation).

Functions and characteristics

Controller selection

By combining a remote-operated source-changeover system with an integrated BA or UA automatic controller, it is possible to automatically control source transfer according to user-selected sequences.
These controllers can be used on sourcechangeover systems comprising 2 circuit breakers. For source-changeover systems comprising 3 circuit breakers, the automatic control diagram must be prepared by the installer as a complement to to diagrams provided in the "electrical diagrams" section of this catalogue.

BA controller.

UA controller.

(1) For example, 220 V single-phase or 220 V three-phase.
(2) The controller is powered by the ACP control plate. The same voltage must be used for the ACP plate, the IVE unit and the circuit-breaker operating mechanisms. If this voltage is the same as the source voltage, then the "Normal" and "Replacement" sources can be used directly for the power supply. If not, an isolation transformer must be used.

Functions

 and characteristics
Accessories

Auxiliary terminal shield CB

Optional equipment mounted on the chassis, the shield prevents access to the terminal block of the electrical auxiliaries.

Escutcheon CDP with blanking plate.

Transparent cover CP for escutcheon.

Operation counter CDM

The operation counter sums the number of operating cycles and is visible on the front panel. It is compatible with manual and electrical control functions.
This option is compulsory for all the source-changeover systems.

Escutcheon CDP

Standard equipment mounted on the door of the cubicle, the escutcheon increases
the degree of protection to IP 40 (circuit breaker installed free standing: IP30) . It is available in fixed and draw-out versions.

Blanking plate for escutcheon OP

Used with the escutcheon, this option closes off the door cut-out of a cubicle not yet
equipped with a device. It may be used with the escutcheon for both fixed and draw-out devices.

Transparent cover for escutcheon CP

Optional equipment mounted on the escutcheon, the cover is hinged and secured by
a screw. It increases the degree of protection to IP54, IK10. It adapts to draw-out devices.

Installation recommendations

Functions and characteristics A-1
Operating conditions B-2
Installation in switchboard B-3
Door interlock catch B-5
Control wiring B-6
Power connection B-7
Recommended busbars drilling B-9
Busbar sizing B-11
Temperature derating Power dissipation B-13
Dimensions and connection C-1
Electrical diagrams D-1
Additional characteristics E-1
Catalogue numbers and order form F-1

Operating conditions

EasyPact MVS circuit breakers have been tested for operation in industrial atmospheres. It is recommended that the equipment be cooled or heated to the proper operating temperature and kept free of excessive vibration and dust.

Ambient temperature

EasyPact MVS devices can operate under the following temperature conditions:

- The electrical and mechanical characteristics are stipulated for an ambient temperature of $-5^{\circ} \mathrm{C}$ to $+60^{\circ} \mathrm{C}$
- Circuit-breaker closing is guaranteed down to $-35^{\circ} \mathrm{C}$

Storage conditions are as follows:
■ -40 to $+85^{\circ} \mathrm{C}$ for a Easypact MVS device without its control unit

- $-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ for the control unit

Altitude

At altitudes higher than 2000 metres, the modifications in the ambient air (electrical resistance, cooling capacity) lower the following characteristics as follows:

Altitude (m)	2000	3000
Impulse withstand voltage uimp (kV)	12	11
Rated insulation voltage (Ui)	1000	900
Maximum rated operationnal	$\frac{690}{1000}$	590
voltage $50 / 60 \mathrm{~Hz} \mathrm{Ue} \mathrm{(V)}$	$1 \times \ln$	890
Rated current $40^{\circ} \mathrm{C}$	$0.99 \times \mathrm{In}$	

Intermediate values may be obtained by interpolation.

Electromagnetic disturbances

EasyPact MVS devices are protected against:
■ Overvoltages caused by devices that generate electromagnetic disturbances

- Overvoltages caused by atmospheric disturbances or by a distribution-system outage (e.g. failure of a lighting system)
■ Devices emitting radio waves (radios, walkie-talkies, radar, etc.)
- Electrostatic discharges produced by users

EasyPact MVS devices have successfully passed the electromagneticcompatibility
tests (EMC) defined by the following international standards:

- IEC 60947-2, appendix F

The above tests guarantee that:

- No nuisance tripping occurs

■ Tripping times are respected

Possible positions

Power supply

EasyPact MVS devices can be supplied either from the top or from the bottom without reduction in performance, in order to facilitate connection when installed in a switchboard.

Mounting the circuit-breaker

It is important to distribute the weight of the device uniformily over a rigid mounting surface such as rails or a base plate.
This mounting plane should be perfectly flat (tolerance on support flatness: 2 mm). This eliminates any risk of deformation which could interfere with correct operation of the circuit breaker.
EasyPact devices can also be mounted on a vertical plane using the special brackets.

[^1]
Partitions

Sufficient openings must be provided in partitions to ensure good air circulation around the circuit breaker; Any partition between upstream and downstream connections of the device must be made of nonmagnetic material.
For high currents, of 2500 A and upwards, the metal supports or barriers in the immediate vicinity of a conductor must be made of non-magnetic material \mathbf{A} Metal barriers through which a conductor passes must
not form a magnetic loop.

A : Non magnetic material.

Door interlock VPEC

Mounted on the right or left-hand side of the chassis, this device inhibits opening of the cubicle door when the circuit breaker is in "connected" or "test" position.
It the breaker is put in the "connected" position with the door open, the door may be closed without having to disconnect the circuit breaker.

Dimensions (mm)

Type	(1)	(2)
MVS frame 1 (3P)	135	168
MVS frame 1 (4P)	205	168
MVS frame 2 (3P)	215	215
MVS frame 2 (4P)	330	215

MVS frame 1

Breaker in "connected" or "test" position

Door cannot be opened

MVS frame 1

MVS frame 2.

Breaker in "disconnected" position

Door can be opened

MVS frame 1.

MVS frame 2.

Dimensions (mm)

Type	(1)	(2)
MVS frame 1	5	23
MVS frame 2	87	103

Wiring of voltage releases

During pick-up, the power consumed is approximately 150 to 200 VA. For low control
voltages ($12,24,48 \mathrm{~V}$), maximum cable lengths are imposed by the voltage and the
cross-sectional area of cables.
Recommended maximum cable lengths (meter).

		$\begin{aligned} & 12 \mathrm{~V} \\ & 2,5 \mathrm{~mm}^{2} \end{aligned}$	1,5 mm ${ }^{2}$	$\begin{aligned} & 24 \mathrm{~V} \\ & 2,5 \mathrm{~mm}^{2} \end{aligned}$	$1,5 \mathrm{~mm}^{2}$	$\left\lvert\, \begin{aligned} & 48 \mathrm{~V} \\ & 2,5 \mathrm{~mm}^{2} \end{aligned}\right.$	$1,5 \mathrm{~mm}^{2}$
MN	U source 100 \%	-	-	58	35	280	165
	U source 85%	-	-	16	10	75	45
MX-XF	U source 100 \%	21	12	115	70	550	330
	U source 85%	10	6	75	44	350	210

Note: The indicated length is that of each of the two wires.

24 V DC power-supply module

External 24 V DC power-supply module (F1-, F2+)
■ Do not connect the positive terminal (F2+) to earth
■ The negative terminal (F1-) can be connected to earth
■ A number of trip units can be connected to the same 24 V DC power supply (the consumption of a trip unit is approximately 100 mA)
■ Do not connect any devices other than a trip unit

- The maximum length for each conductor is ten metres. For greater distances, it is advised to twist the supply wires together
■ The 24 V DC supply wires must cross the power cables perpendicularly. If this is difficult, it is advised to twist the supply wires together
■ The technical characteristics of the external 24 V DC power-supply module are indicated on page A-14

Note: Wiring of ZSI: it is recommended to use twisted shielded cable. The shield must be connected to earth at both ends.

Cables connections

If cables are used for the power connections, make sure that they do not apply excessive mechanical forces to the circuit breaker terminals.
For this, make the connections as follows:

- Extend the circuit breaker terminals using short bars designed and installed according to the recommendations for bar-type power connections:
\square For a single cable, use solution B opposite
\square For multiple cables, use solution C opposite
- In all cases, follow the general rules for connections to busbars:
\square Position the cable lugs before inserting the bolts
- The cables should firmly secured to the framework E

Busbars connections

The busbars should be suitably adjusted to ensure that
the connection points are positioned on the terminals before the bolts are inserted B
The connections are held by the support which is solidly fixed to the framework of the switchboard, such that the circuit breaker terminals do not have to support its weight \mathbf{C}. (This support should be placed close to the terminals).

Electrodynamic stresses

The first busbar support or spacer shall be situated within a maximum distance from
the connection point of the breaker (see table below). This distance must be respected so that the connection can withstand the electrodynamic stresses between phases in the event of a short circuit.

Maximum distance A between busbar to circuit breaker connection and the first busbar support or spacer with respect to the value of the prospective short-circuit current.

Isc (kA)	30	50	65
Distance A (mm)	350	300	250

1 Terminal screw factory-tightened to 16 Nm .
2 Breaker terminal.
3 Busbar.
4 Bolt.
5 Washer.
6 Nut.

Clamping

Correct clamping of busbars depends amongst other things, on the tightening torques used for the nuts and bolts. Over-tightening may have the same consequences as under-tightening.
For connecting busbars (Cu ETP-NFA51-100) to the circuit breaker, the tightening torques to be used are shown in the table below.
These values are for use with copper busbars and steel nuts and bolts, class 8.8.
The same torques can be used with AGS-T52 quality aluminium bars (French standard
NFA 02-104 or American National Standard H-35-1).
Examples

Tightening torques

$\varnothing(\mathrm{mm})$ $\varnothing(\mathrm{mm})$ Nominal	Tightening torques (Nm) Drilling	Tightening torques (Nm) with grower or flat washers	with contact or corrugatec washers
10	11	37.5	50

Busbar drilling

Examples

Isolation distance

Dimensions (mm)

Ui	X min
600 V	8 mm
1000 V	14 mm

Busbar bending

When bending busbars maintain the radius indicated below(a smaller radius would cause cracks).

Dimensions (mm)

e	Radius of curvature r Min	Recommended
5	5	7.5
10	15	18 to 20

Installation
recommendations

Recommended busbars drilling
Easypact MVS Frame 1: 630-1600A

Rear connection
Rear connection with spreaders

Middle left or middle right spreader for 4P

Vertical rear connection

2011

Installation
recommendations

Recommended busbars drilling
EasyPact MVS Frame 2: 800-4000A

Horizontal rear connection MVS08 to MVS32

MVS40

Vertical rear connection MVS08 to MVS32

MVS40

Installation

recommendations

Busbar sizing

Basis of tables
■ Maximum permissible busbars temperature: 100 ${ }^{\circ} \mathrm{C}$

- Ti: temperature around the ciruit breaker and its connection
- Busbar material is unpainted Copper / Aluminium

Example

Conditions:

- Drawout version
- Horizontal busbars
- $\mathrm{T}_{\mathrm{i}}: 50^{\circ} \mathrm{C}$
- Service current: 1600A

Solution:

For $\mathrm{T}_{\mathrm{i}}=50^{\circ} \mathrm{C}$, use an MVS16 which can be connected with 2 bars- $63 \times 10 \mathrm{~mm}$ copper (or) 3 bars- $80 \times 10 \mathrm{~mm}$ Aluminium.

Rear horizontal connection

Unpainted Copper(Rear Horizontal connection)

EasyPact	Maximum service current (A)	Ti: $40^{\circ} \mathrm{C}$		Ti: $50^{\circ} \mathrm{C}$	
		No. of 5 mm thick bars	No. of 10 mm thick bars	No. of 5 mm thick bars	No. of 10 mm thick bars
MVS06	630	2b.40x5	1b. 40×10	2b.40x5	1b. 40×10
MVS08	800	2b.50x5	1b. 50×10	2b.50x5	1b. 50×10
MVS10	1000	3b.50x5	1b. 63×10	3b.50x5	2b. 50×10
MVS12	1250	3b.50x5	2b. 40×10	3b.50x5	2b. 50×10
		2b.80x5		$2 \mathrm{~b} 80 \times 5$	
MVS16	1600	3b.80x5	2b. 63×10	3b.80x5	2b. 63×10
MVS20	2000	3b.100x5	2b. 63×10	3b.100x5	2b. 80×10
MVS25	2500	4b.100x5	2b. 80×10	4b.100x5	2b. 100×10
MVS32	3200	6b.100x5	3b. 100×10	8b.100x5	3b. 100×10
MVS40	4000	-	5b. 100×10	-	5b. 100×10

Unpainted Aluminum			
EasyPact	Maximum service current (A)	Busbar Orientation	Ti: $50^{\circ} \mathrm{C}$ No. of 10 mm thick bars
MVS06	630	Horizontal	2 b. 40×10
MVS08	800	Horizontal	2 2b. 40×10
MVS10	1000	Horizontal	2 . 50×10
MVS12	1250	Horizontal	2 2b. 80×10
MVS16	1600	Horizontal	3 b. 80×10

Note: The values indicated in these tables have been extrapolated from test data and theoretical calculations. These tables are only intended as a guide and cannot replace industrial experience or a temperature rise test.

Installation

recommendations

Busbar sizing

Basis of tables:

■ Maximum permissible busbars temperature: 100 ${ }^{\circ} \mathrm{C}$

- Ti: temperature around the ciruit breaker and its connection
- Busbar material is unpainted Copper / Aluminium

Example

Conditions

- Drawout version
- Hertical connections
$\mathrm{T}_{\mathrm{i}}: 40^{\circ} \mathrm{C}$
■ Service current: 1100 A

Solution:

For $\mathrm{T}_{\mathrm{i}}=40^{\circ} \mathrm{C}$ use an MVS12 which can be connected with two $63 \times 5 \mathrm{~mm}$ bars or with one $63 \times 10 \mathrm{~mm}$ bar.

Rear vertical connection

Unpainted Copper(vertical connection)					
EasyPact	Maximum service current (A)	Ti: $40^{\circ} \mathrm{C}$		Ti: $50^{\circ} \mathrm{C}$	
		No. of 5 mm thick bars	No. of 10 mm thick bars	No. of 5 mm thick bars	No. of 10 mm thick bars
MVS06	630	2b.40x5	1b. 40×10	2b.40x5	1b. 40×10
MVS08	800	2b.50x5	1b. 50×10	2b. 50×5	1b. 50×10
MVS10	1000	2b.50x5	1b. 50×10	2b. 50×5	1b. 50×10
MVS12	1250	2b.63x5	2b. 40×10	$3 \mathrm{~b} .50 \times 5$	2b. 40×10
MVS16	1600	$3 \mathrm{~b} .63 \times 5$	2b. 50×10	3b.63x5	2b. 50×10
MVS20	2000	3b.100x5	2b. 63×10	3b.100x5	2b. 63×10
MVS25	2500	4b.100x5	2b. 80×10	4b. 100×5	2b. 80×10
MVS32	3200	6b.100x5	3b. 100×10	6b.100x5	3b. 100×10
MVS40	4000	-	4b. 100×10	-	4b. 100×10

Unpainted Aluminum			
EasyPact	Maximum service current (A)	Busbar Orientation	Ti: $50^{\circ} \mathrm{C}$ No. of 10 mm thick bars
MVS06	630	Vertical	2b. 40×10
MVS08	800	Vertical	2b. 40×10
MVS10	1000	Vertical	2b. 50×10
MVS12	1250	Vertical	2b. 80×10
MVS16	1600	Vertical	3b. 80×10
MVS20	2000	Vertical	4b. 80×10
MVS25	2500	Vertical	4b. 100×10
MVS32	3200	Vertical	4b. 150×10
MVS40	4000	Vertical	5b. 150×10

Note: The values indicated in these tables have been extrapolated from test data and theoretical calculations. These tables are only intended as a guide and cannot replace industrial experience or a temperature rise test.

Temperature derating
 Power dissipation

Temperature derating

The table below indicates the maximum current rating, for each connection type, as a function of Ti around the
circuit breaker and the busbars.
For Ti greater than $60^{\circ} \mathrm{C}$, consult us.
Ti: temperature around the circuit breaker and its connection.

Version	Draw-out										Fixed									
Connection	Rear horizontal					Rear vertical					Rear horizontal					Rear vertical				
Temp. Ti		$\begin{aligned} & 45 \\ & { }^{\circ} \mathrm{C} \end{aligned}$	$\begin{aligned} & 50 \\ & { }^{\circ} \mathrm{C} \end{aligned}$	$\begin{aligned} & 55 \\ & { }^{\circ} \mathrm{C} \end{aligned}$	$\begin{aligned} & 60 \\ & { }^{\circ} \mathrm{C} \end{aligned}$	$\begin{array}{\|l} 40 \\ { }^{\circ} \mathrm{C} \end{array}$	$\begin{aligned} & 45 \\ & { }^{\circ} \mathrm{C} \end{aligned}$	$\begin{aligned} & 50 \\ & { }^{\circ} \mathrm{C} \end{aligned}$	$\begin{aligned} & 55 \\ & { }^{\circ} \mathrm{C} \end{aligned}$	$\begin{aligned} & 60 \\ & { }^{\circ} \mathrm{C} \end{aligned}$		$\begin{aligned} & 45 \\ & { }^{\circ} \mathrm{C} \end{aligned}$	$\begin{aligned} & 50 \\ & { }^{\circ} \mathrm{C} \end{aligned}$	$\begin{aligned} & 55 \\ & { }^{\circ} \mathrm{C} \end{aligned}$	$\begin{aligned} & 60 \\ & { }^{\circ} \mathrm{C} \end{aligned}$	$\begin{aligned} & 40 \\ & { }^{\circ} \mathrm{C} \end{aligned}$	$\begin{aligned} & 45 \\ & { }^{\circ} \mathrm{C} \end{aligned}$	$\begin{aligned} & 50 \\ & { }^{\circ} \mathrm{C} \end{aligned}$	$\begin{aligned} & 55 \\ & { }^{\circ} \mathrm{C} \end{aligned}$	$\begin{aligned} & 60 \\ & { }^{\circ} \mathrm{C} \end{aligned}$
MVS (50kA)																				
MVS06C	630					630					630					630				
MVS08C	800					800					800					800				
MVS10C	1000					1000					1000					1000				
MVS12C	1250					1250					1250					1250				
MVS16C	1600	1560	1520	1480	1440	1600			1560	1520	1600				1560	1600				
MVS08N	800					800					800					800				
MVS10N	1000					1000					1000					1000				
MVS12N	1250					1250					1250					1250				
MVS16N	1600					1600					1600					1600				
MVS20N	2000			1900	1800	2000				1900	2000				1920	2000				
MVS25N	2500				2450	2500					2500					2500				
MVS32N	3200		3100	3000	2900	3200					3200					3200				
MVS40N	4000		3900	3750	3650	4000				3900	4000			3900	3800	4000				
MVS (65kA)																				
MVS08H	800					800					800					800				
MVS10H	1000					1000					1000					1000				
MVS12H	1250					1250					1250					1250				
MVS16H	1600					1600					1600					1600				
MVS20H	2000			1900	1800	2000				1900	2000				1920	2000				
MVS25H	2500	2450	2400	2300	2200	2500		2450	2400	2300	2500					2500				
MVS32H	3200		3100	3000	2900	3200					3200					3200				
MVS40H	4000		3900	3750	3650	4000				3900	4000			3900	3800	4000				

Power dissipation

Total power dissipation is the value measured at $I_{N}, 50 / 60 \mathrm{~Hz}$, for a 3 pole or 4 pole breaker (values above the power $P=3 R I^{2}$). The resistance between input / output is the value measured per pole (cold state).

Type	Draw-out		Fixed	
Frame 1-50kA	Power loss (W)	Input/output resistance ($\mu \mathrm{ohm}$)	Power loss (W)	Input/output resistance ($\mu \mathrm{ohm}$)
MVS06C	55	38	30	26
MVS08C	90	38	50	26
MVS10C	150	38	80	26
MVS12C	250	36	130	26
MVS16C	460	36	220	26
Frame 2-50kA	Power loss (W)	Input/output resistance ($\mu \mathrm{ohm}$)	Power loss (W)	Input/output resistance ($\mu \mathrm{ohm}$)
MVS08N	120	36	60	19
MVS10N	180	36	100	19
MVS12N	280	36	140	19
MVS16N	460	36	200	19
MVS20N	470	30	250	13
MVS25N	600	19	260	13
MVS32N	670	13	420	8
MVS40N	900	11	650	8
Frame 2-65kA				
MVS08H	100	30	42	13
MVS10H	150	30	70	13
MVS12H	230	30	100	13
MVS16H	390	30	170	13
MVS20H	470	30	250	13
MVS25H	600	19	260	8
MVS32H	670	13	420	8
MVS40H	900	11	650	8

Dimensions and connection

Dimensions and connection

Functions and characteristics A-1
Installation recommendations $B-1$
MVS frame 1(630 to 1600A)circuit breakers C-2
Fixed 3/4-poles device C-2
Draw-out $3 / 4$ poles device C-4
MVS Frame 2(800 to 3000A) circuit breakers C-6
Fixed 3/4-poles device C-6
Draw-out 3/4-poles device C-8
MVS Frame 2(4000A) circuit breakers C-10
Fixed 3/4-poles device C-10
Draw-out 3/4-poles device C-12
Accessories C-14
External modules C-15
Electrical diagrams D-1
Additional characteristics E-1
Catalogue numbers and order form F-1

Dimensions and connection

MVS Frame 1(630 to 1600A) circuit breakers

Fixed 3/4-poles device

(*) Disconnected position.

For voltages $\leqslant 690 \mathrm{~V}$

For voltages $\leqslant 690$			
	Parts Insulated	Metal	Energised
A	0	0	30
B	10	10	60
C	0	0	30

[^2]Note: X and Y are the symmetry planes for a 3-pole device.

Dimensions
and connection

MVS Frame 1 (630 to1600A) circuit breakers
Fixed 3/4-poles device

Connections
Horizontal rear connection
Detail

Vertical rear connection

View A detail.

Dimensions and connection

MVS Frame 1(630 to 1600A) circuit breakers Draw-out 3/4-poles device

(*) Disconnected position.

Bottom mounting (on base plate or rails)

Rear mounting detail (on upright or backplate)

Door cutout
Rear panel cutout

For voltages < 690 V

For voltages < 690 V				
	Parts Insulated	Metal	Energised	
A	0	0	100	
B	0	0	60	
C	0	0	30	

(F): datum.
(1) Without escutcheon.
(2) With escutcheon.

Note: X and Y are the symmetry planes for a 3-pole device.
$A\left(^{*}\right)$ An overhead clearance of 50 mm is required to remove the arc chutes. An overhead clearance of 20 mm is required to remove the terminal block.

MVS Frame 1(630 to1600A) circuit breakers
 Draw-out 3/4-poles device

Note: recommended connection screws: M10 class 8.8
Tightening torque: $\mathbf{5 0} \mathbf{~ N m}$ with contact washer.

MVS Frame 2(800 to 3200A)
 Circuit Breakers
 Fixed 3/4-poles device

Dimensions

Mounting on base plate or rails

Mounting detail

Safety clearances

	Insulated parts	Metal parts	Energised parts
A	0	0	100
B	0	0	60

MVS Frame 2(800 to 3200A) Circuit Breakers

Fixed 3/4-poles device

Connections

Horizontal rear connection

Detail

Vertical rear connection

Detail

View A detail.

Dimensions and connection

MVS Frame 2(800 to 3200A) circuit breakers Draw-out 3/4-poles device

Dimensions

(*) Disconnected position.

Safety clearances

Door cutout

\(\left.$$
\begin{array}{l|l|l|l}\text { Insulated } \\
\text { parts }\end{array}
$$ \quad $$
\begin{array}{l}\text { Metal } \\
\text { parts }\end{array}
$$ \quad \begin{array}{l}Energised

parts\end{array}\right]\)| A |
| :--- |
| B |

Dimensions
and connection

MVS Frame 2(800 to 3200A) circuit breakers
 Draw-out 3/4-poles device

Connections

Horizontal rear connection

Detail

Vertical rear connection

Detail

View A detail.

Dimensions and connection
 MVS Frame 2(4000A)
 circuit breakers
 Fixed 3/4-poles device

Dimensions

Mounting on base plate or rails

Mounting detail

Safety clearances

Door cutout

	Insulated parts	Metal parts	Energised parts
A	0	0	100
B	0	0	60

Dimensions
and connection

MVS Frame 2(4000A) circuit breakers

Fixed 3/4-poles device

Connections

Horizontal rear connection

Detail

Vertical rear connection

Dimensions and connection
 MVS Frame 2(4000A) circuit breakers
 Draw-out 3/4-poles device

Dimensions

Safety clearances

Door cutout

(1) Without escutcheon.

(2) With escutcheon.

Note: X and Y are the symmetry planes for a 3-pole device.
The safety clearances take into account the space required to remove the arc chutes.

Dimensions
and connection

MVS Frame 2(4000A) circuit breakers
 Draw-out 3/4-poles device

Connections

Horizontal rear connection

Detail

Vertical rear connection

View A detail.

Accessories

and connection

Mounting on backplate with special brackets (EasyPact MVS08 to 32 fixed)

External modules

Connection of auxilary wiring to terminal block

One conductor only per connection point.

External power supply module (AD)

Delay unit for MN release

Dimensions External modules and connection

I/O (Input/Output) application module

IFM - Modbus-SL interface

EasyCom-Modbus -Interface

External sensor for external neutral

Dimensions 400/1600 A (MVS Frame 1)

High: 137 mm .

400/2000 A (MVS Frame 2)

High: 162 mm.

1000/4000 A (MVS Frame 2)

High: 162 mm.

Installation

400/1600 A (MVS Frame 1)

1000/4000 A (MVS Frame 2)

400/2000 A (MVS Frame 2)

Electrical diagrams

Electrical diagrams

Functions and characteristics A-1
Installation recommendations $B-1$
Dimensions and connection C-1
EasyPact MVS 06 to 40 D-2
Fixed and draw-out devices D-2
EasyPact MVS Frame 1 D-3
Fixed and draw-out devices D-3
EasyPact MVS Frame 2 D-4
Fixed and draw-out devices D-4
EasyPact MVS D-5
Earth-fault protection/Neutral protection D-5
Zone selective interlocking D-6
24 V DC external power supply AD module D-7
Fixed EasyPact MVS D-8
connection to the communication interface module D-8
Withdrawable EasyPact MVS D-9
connection to the I/O and communication interface module D-9
Additional characteristics E-1
Catalogue numbers and order form F-1

EasyPact MVS Frame 1\&2
 Fixed and draw-out devices

The diagram is shown with circuits
de-energised, all devices open, connected
and charged and relays in normal position.

Power
ET/ETA/ETV trip system

Note: V1...VN Voltage connections are available in ETV trip system.

ET trip system	
UC1	UC2
$\stackrel{\bigcirc}{\text { Z5 }}$	
$\begin{array}{cc}\bigcirc & \bigcirc \\ \text { Z3 } & \\ \text { Z4 }\end{array}$	$\stackrel{\text { O }}{\text { T3 }}$ - ${ }^{\text {T4 }}$
$\begin{array}{cc} \circ \\ \text { Z1 } & \circ \\ \text { Z2 } \end{array}$	$\begin{array}{cc} \circ \\ \mathrm{O} 1 & \circ \\ \text { T2 } \end{array}$

EA/ETV trip system				
Com	UC1	UC2	UC3	M2C
$\begin{array}{cc} \circ \\ \text { E5 } & \circ \\ \hline \end{array}$	$\begin{array}{cc} \circ & \circ \\ \text { Z5 } & \text { M1 } \end{array}$	$\begin{array}{cc} \circ & \circ \\ \text { M2 } & \\ \hline \end{array}$	$\underset{\mathrm{F} 2+}{\circ}$	δ_{484}
\bigcirc	\bigcirc			$\bigcirc \bigcirc$
E3 E4	Z3 Z4	T3 T4	VN	474
\bigcirc	\bigcirc	\bigcirc	$\delta_{\text {F1 }} 0$	δ_{471}
E1 E2	Z1 Z2	T1 T2	F1-	471

ET/ETA/ETV trip system

UC2 :
T1, T2, T3, T4=external neutral
MC2 : 2 programmable contacts (external relay) ext. 24 V DC power supply required.
UC3 :
F2+, F1-: external 24 V DC power supply
VN: external voltage connector (must be
connected to the neutral CT with a 3P
circuit breaker equipped with ETV trip system)

Remote operation

Remote operation					
SDE	MN	MX	XF	PF	MCH
${ }_{84}{ }^{\circ}$	${ }_{\text {D2 }}{ }^{\circ}$	${ }_{5} \mathrm{C} 2^{\circ}$	${ }_{\text {A2 }}{ }^{\circ}$	${ }_{254}$	$\square_{\mathrm{B} 2}{ }^{\circ}$
${ }_{82}{ }^{\circ}$				${ }_{252}$	$\text { OB3 }^{\circ}$
${ }_{81}$	$\text { © }{ }^{\circ}$	${ }_{\mathrm{C} 1}^{\mathrm{C}}$	$\text { סA1 }^{\circ}$	${ }_{251}$	$\text { OB1 }^{\circ}$

Remote operation

SDE: Fault-trip indication contact (supplied as standard)
MN: Undervoltage release
MX: Shunt release (standard for Electrical breaker)
XF: Closing release (standard for Electrical breaker)
PF: "Ready to close"contact
MCH: Gear motor (standard for Electrical breaker)

External sensor (CT).

External sensors (Neutral CT)
External sensor for earth-fault protection
The sensors, used with the 3P circuit breakers, are installed on the neutral conductor for:

1. Residual type earth-fault protection(ET/ETA/ETV 6G trip system)

The rating of the sensor (CT) must be compatible with the rating of the circuit breaker:

1. MVS frame 1: CT 400/1600;
2. MVS frame 2: CT 400/2000;
3. MVS frame 2: CT 1000/4000;

Indication contacts			
OF4	OF3	OF2	OF1
${ }_{44}^{\circ}$	ס30	${ }_{24}$	δ_{14}°
$\overleftarrow{0}_{42} 0$	$\overleftarrow{\beta}_{32}$	${ }_{22} 0$	\wp_{12}
$\overleftarrow{41}^{\circ}$	ס	δ_{21}°	\wp_{11}

Indication contacts

OF4 / OF3 / OF2 / OF1 : ON/OFF indication contacts.
(*) Spring charging motor 440/480 V AC

Chassis contacts					
CD2	CD1	CE3	CE2	CE1	CT1
δ_{824}	δ_{814}	$\underset{334}{\circ}$	${ }_{324}$	δ_{314}°	$\overleftarrow{914}^{\circ}$
δ_{822}	$\overleftarrow{812}^{\circ}$	${ }_{332}^{\circ}$	${ }_{322}$	δ_{312}	δ_{912}
δ_{821}	${ }_{811}$	$\stackrel{\delta}{331}$	δ_{321}	δ_{311}	δ_{911}

(380 V motor + additional resistor).

[^3]
EasyPact MVS Frame 2
 Fixed and draw-out devices

Indication contacts

Chassis contacts

Indication contacts

OF4	OF3	OF2	OF1	OF14	OF13	OF12	OF11
${ }_{44}{ }^{\circ}$	${ }_{34}{ }^{\circ}$	${ }_{24}{ }^{\circ}$	${ }_{14}{ }^{\circ}$	${ }_{144}$	${ }_{134}^{\circ}$	${ }^{\circ} \mathrm{O}$	\bigcirc_{114}
${ }_{42}{ }^{\circ}$	${ }_{32}{ }^{\circ}$	${ }_{22}{ }^{\circ}$	${ }_{12}^{\delta}$	${ }_{142}{ }^{\circ}$	${ }_{132}^{\circ}$	δ_{122}°	${ }_{112}{ }^{\circ}$
σ_{41}°	$\overleftarrow{31}^{\circ}$	$\delta_{21}{ }^{\circ}$	σ_{11}	$\overleftarrow{141}^{\circ}$	$\delta_{131}{ }^{\circ}$	\bigcirc_{121}°	$\bigcirc_{111}{ }^{\circ}$
Standard				Optional			

Indication contacts

OF 4	Standard
OF 3	ON/OFF
OF 2	Indication contacts
OF 1	

OF 14	Optional
OF 13	ON/OFF
OF 12	Indication contacts
OF 11	

Chassis contacts								
CD3	CD2	CD1	CE3	CE2	CE1	CT3	CT2	CT1
δ_{834}°	$\begin{aligned} & \mathrm{O}_{8}{ }^{\circ} \\ & \hline \end{aligned}$	${ }_{814}{ }^{\circ}$	${ }_{334}$	$\begin{aligned} & \delta \quad 0 \\ & 324 \end{aligned}$	$\begin{aligned} & \circ \\ & 314 \end{aligned}$	$\begin{aligned} & \text { ס } \\ & 934 \end{aligned}$	$\begin{aligned} & \mathrm{O} \\ & 924 \end{aligned}$	$\begin{aligned} & \delta \quad{ }_{9} \\ & \hline \end{aligned}$
${ }_{832}^{\circ}$	${ }_{8}{ }_{82}$	${ }_{812}$	${ }_{332}$	${ }_{322}^{\circ}$		${ }_{932}$	${ }_{922}^{\circ}$	${ }_{912}^{\circ}$
${ }_{831}{ }^{\circ}$	$\stackrel{\delta}{821}$	${ }_{811}$	$\left\lvert\, \begin{array}{\|c\|} \hline \\ 331 \end{array}\right.$	${ }_{321}^{\circ}$	${ }_{311}$	${ }_{9}{ }_{91}$	${ }_{921}$	$\overleftarrow{911}^{\circ}$
Optional								

Chassis contacts

CD3 Disconnected	CE3 Connected	CT3 Test
CD2 Position	CE2 Position	
CD1 Contacts	CE1 Contacts	CT1 Position
CT1 Contacts		

CT3 Test CT1 Contacts

[^4]
EasyPact MVS

Earth-fault protection
Neutral Protection

External sensor (CT) for residual earth-fault protection

Connection of current-transformer secondary circuit for external neutral

EasyPact MVS equipped with a ET/ETA/ETV 6G:
■ Shielded cable with 2 twisted pairs

- T1 twisted with T2
- Maximum length 4 meters

■ Cable cross-sectional area 0.4 to $1.5 \mathrm{~mm}^{2}$

- Recommended cable: Belden 9552 or equivalent For proper wiring of neutral CT, refer to instruction Bulletin 48041-082-03 shipped with it.
Do not remove factory-installed jumper between T1 and T2 unless neutral CT is connected. If supply is via the top, follow the shematics. If supply is via the bottom, control wiring is identical; for the power wiring, H 1 is connected to the source side, H 2 to the load side.
For four-pole versions, for residual earth-fault protection, the current transformer for the external neutral is not necessary.

Neutral protection

■ Three pole circuit breaker:
\square Neutral protection is impossible
■ Four pole circuit breaker:

- The current transformer for external neutral is not necessary

EasyPact MVS
Zone Selective Interlocking

Zone selective interlocking

Zone-selective interlocking is used to reduce the electrodynamic forces exerted on the installation by shortening the time required to clear faults, while maintaining time discrimination between the various devices.
A pilot wire interconnects a number of circuit breakers equipped with ET range of trip system, as illustrated in the diagram above.
The control unit detecting a fault sends a signal upstream and checks for a signal arriving from downstream. If there is a signal from downstream, the circuit breaker remains closed for the full duration of its tripping delay. If there is no signal from downstream, the circuit breaker opens immediately, regardless of the tripping-delay setting.
Fault 1.
Only circuit breaker A detects the fault. Because it receives no signal from downstream, it opens immediately, regardless of its tripping delay set to 0.3 .

Fault 2.

Circuit breakers A and B detect the fault. Circuit breaker A receives a signal from B and remains closed for the full duration of its tripping delay set to 0.3 . Circuit breaker B does not receive a signal from downstream and opens immediately, in spite of its tripping delay set to 0.2.
Wiring
■ Maximum impedance: $2.7 \Omega / 300 \mathrm{~m}$

- Capacity of connectors: 0.4 to $2.5 \mathrm{~mm}^{2}$
- Wires: single or multicore
- Maximum lenght: 3000 m
- Limits to device interconnection:
- The common ZSI - OUT (Z1) and the output ZSI - OUT (Z2) can be connected to a maximum of 10 upstream device
\square A maximum of 100 downstream devices may be connected to the common ZSI - IN (Z3) and to an input ZSI - IN CR (Z4) or GF (Z5)

EasyPact MVS

24 V DC external power supply AD module

AD module

$\underset{10 / 240 \mathrm{~V}}{ }$
$110 / 240$ V AC
24/125 V DC

- The 24 V DC external power-supply (AD module) for the ET Trip system (F1- F2+) is not required for basic protections LSIG
- With ETA/ETV, it is recommended to connect 24 V DC external power-supply (AD module) to the Micrologic control unit (F1- F2+) in order to keep available the display and the energy metering, even if Current < 20% In
- The 24 V DC external power-supply for the BCM ULP communication module(E1-E2) is required. The same 24 V DC external power supply can be used for the communication devices (IFM, I/O, EasyCom)).
- If the 24 V DC external power supply (AD module) is used to supply ET trip system, this power supply shall be used only for supplying ET trip system and M2C.
- The dedicated AD power supplies shall be used only for the ET trip system. If the COM option is used, a second dedicated 24 V DC external power supply shall be used.

Connection

The maximum length for each conductor supplying power to the trip unit is 10 m .
Do not ground F2+, F1-, or power supply output:

- The positive terminal (F2+) on the trip unit must not be connected to earth ground
- The negative terminal (F1-) on the trip unit must not be connected to earth ground
- The output terminals (- and +) of the 24 V DC power supply must not be grounded

Reduce electromagnetic interference:

- The input and output wires of the 24 V DC power supply must be physically separated as much as possible
- If the 24 V DC power supply wires cross power cables, they must cross perpendicularly. If this is not physically possible, the power supply conductors must be twisted together
- Power supply conductors must be cut to length. Do not loop excess conductor

Additional characteristics
Functions and characteristics A-1
Installation recommendations B-1
Dimensions and connection C-1
Electrical diagrams D-1
Tripping curves E-2
Selectivity table E-4
Catalogue numbers and order form F-1

Tripping curves

ET range of trip system - 21

ET range of trip system - 5S, 6G

Additional

characteristics

Tripping curves

Earth fault protection (ET range of trip system - 6G)

(1)

$\lg =\ln \mathbf{x} \ldots$	A	B	C	D	E	F	G	\mathbf{H}	\mathbf{I}
$\ln \leqslant 400 \mathrm{~A}$	0.3	0.3	0.4	0.5	0.6	0.7	0.8	0.9	1
$400 \mathrm{~A}<\ln \leqslant 1000 \mathrm{~A}$	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9	1
$\ln \geqslant 1250 \mathrm{~A}$	500	640	720	800	880	960	1040	1120	1200

Complementary technical informations

Selectivity table
Upstream: EasyPact MVS Downstream: EasyPact CVS
$\mathrm{Ue} \leq 415 \mathrm{Vac}$

Upstream Trip Unit		EasyPact MVS C 06-16 ET 2,5,6					$\begin{aligned} & \text { EasyPact MVS 08-40N } \\ & \text { ET 2, 5, } 6 \end{aligned}$				
	Rating	630	800	1000	1250	1600	800	1000	1250	1600	2000
Downstream	Setting ir	630	800	1000	1250	1600	800	1000	1250	1600	2000
Selectivity Limit (kA)											
$\begin{aligned} & \text { CVS100 BS } \\ & \text { TM•D } \end{aligned}$	16	T	T	T	T	T	T	T	T	T	T
	20	T	T	T	T	T	T	T	T	T	T
	25	T	T	T	T	T	T	T	T	T	T
	32	T	T	T	T	T	T	T	T	T	T
	40	T	T	T	T	T	T	T	T	T	T
	50	T	T	T	T	T	T	T	T	T	T
	63	T	T	T	T	T	T	T	T	T	T
	80	T	T	T	T	T	T	T	T	T	T
	100	T	T	T	T	T	T	T	T	T	T
$\begin{aligned} & \text { CVS } 100 \mathrm{~B} / \mathrm{F} / \mathrm{N} \\ & \text { TM•D } \end{aligned}$	16	T	T	T	T	T	T	T	T	T	T
	25	T	T	T	T	T	T	T	T	T	T
	32	T	T	T	T	T	T	T	T	T	T
	40	T	T	T	T	T	T	T	T	T	T
	50	T	T	T	T	T	T	T	T	T	T
	63	T	T	T	T	T	T	T	T	T	T
	80	T	T	T	T	T	T	T	T	T	T
	100	T	T	T	T	T	T	T	T	T	T
$\begin{aligned} & \text { CVS } 160 \mathrm{~B} / \mathrm{F} / \mathrm{N} \\ & \text { TM•D } \end{aligned}$	100	T	T	T	T	T	T	T	T	T	T
	125	T	T	T	T	T	T	T	T	T	T
	160	T	T	T	T	T	T	T	T	T	T
$\begin{aligned} & \hline \text { CVS } 250 \mathrm{~B} / \mathrm{F} / \mathrm{N} \\ & \text { TM•D } \end{aligned}$	160	T	T	T	T	T	T	T	T	T	T
	200	T	T	T	T	T	T	T	T	T	T
	250	T	T	T	T	T	T	T	T	T	T
$\begin{aligned} & \hline \text { CVS } 400 \mathrm{~F} / \mathrm{N} \\ & \text { TM•D } \end{aligned}$	320	T	T	T	T	T	T	T	T	T	T
	400		T	T	T	T	T	T	T	T	T
$\begin{aligned} & \hline \text { CVS } 600 \mathrm{~F} / \mathrm{N} \\ & \text { TM•D } \end{aligned}$	500		T	T	T	T	T	T	T	T	T
	600			T	T	T		T	T	T	T
CVS 400F/N ETU	320	T	T	T	T	T	T	T	T	T	T
	400	T	T	T	T	T	T	T	T	T	T
CVS 630F/N ETU	500		T	T	T	T	T	T	T	T	T
	630			T	T	T		T	T	T	T

Upstream Trip Unit $\begin{aligned} & \text { EasyPact MVS C 06-16 } \\ & \text { ET 2.5.6 }\end{aligned}$

		-				
	Rating	630	800	1000	1250	1600
Downstream	Setting ir	630	800	1000	1250	1600
Motor protection						
CVS 100 B/F	2.5	T	T	T	T	T
MA + O/L R	6.3	T	T	T	T	T
	12.5	T	T	T	T	T
	25	T	T	T	T	T
	50	T	T	T	T	T
	100	T	T	T	T	T
CVS 160 B/F	100	T	T	T	T	T
MA + O/L R	150	T	T	T	T	T
CVS 250 B/F	220	T	T	T	T	T
MA + O/L R	250					
CVS $400 \mathrm{~F} / \mathrm{N}$	320			T	T	T
MA +0/L R	400					
CVS $600 \mathrm{~F} / \mathrm{N}$	500					T
MA +0/L R	630					

ET 2, 5, 6

4	Selectvity limit $=4 \mathrm{KA}$
T	Total selectivity, up to the breaking capacity of the downstream circuit breaker.
\square No Selectivity	

[^5]Complementary technical informations

Selectivity table
 Upstream: EasyPact MVS Downstream: EasyPact CVS

$\mathrm{Ue} \leq 415 \mathrm{Vac}$

$\begin{aligned} & \text { EasyPact MVS } 08-40 \mathrm{H} \\ & \text { ET } 2,5,6 \end{aligned}$										
2500	3200	4000	800	1000	1250	1600	2000	2500	3200	4000
2500	3200	4000	800	1000	1250	1600	2000	2500	3200	4000
T	T	T	T	T	T	T	T	T	T	T
T	T	T	T	T	T	T	T	T	T	T
T	T	T	T	T	T	T	T	T	T	T
T	T	T	T	T	T	T	T	T	T	T
T	T	T	T	T	T	T	T	T	T	T
T	T	T	T	T	T	T	T	T	T	T
T	T	T	T	T	T	T	T	T	T	T
T	T	T	T	T	T	T	T	T	T	T
T	T	T	T	T	T	T	T	T	T	T
T	T	T	T	T	T	T	T	T	T	T
T	T	T	T	T	T	T	T	T	T	T
T	T	T	T	T	T	T	T	T	T	T
T	T	T	T	T	T	T	T	T	T	T
T	T	T	T	T	T	T	T	T	T	T
T	T	T	T	T	T	T	T	T	T	T
T	T	T	T	T	T	T	T	T	T	T
T	T	T	T	T	T	T	T	T	T	T
T	T	T	T	T	T	T	T	T	T	T
T	T	T	T	T	T	T	T	T	T	T
T	T	T	T	T	T	T	T	T	T	T
T	T	T	T	T	T	T	T	T	T	T
T	T	T	T	T	T	T	T	T	T	T
T	T	T	T	T	T	T	T	T	T	T
T	T	T	T	T	T	T	T	T	T	T
T	T	T	T	T	T	T	T	T	T	T
T	T	T	T	T	T	T	T	T	T	T
T	T	T		T	T	T	T	T	T	T
T	T	T	T	T	T	T	T	T	T	T
T	T	T	T	T	T	T	T	T	T	T
T	T	T	T	T	T	T	T	T	T	T
T	T	T		T	T	T	T	T	T	T
$\begin{aligned} & \text { EasyPact MVS } 08-40 \mathrm{H} \\ & \text { ET } 2,5,6 \end{aligned}$										
2500	3200	4000	800	1000	1250	1600	2000	2500	3200	4000
2500	3200	4000	800	1000	1250	1600	2000	2500	3200	4000
T	T	T	T	T	T	T	T	T	T	T
T	T	T	T	T	T	T	T	T	T	T
T	T	T	T	T	T	T	T	T	T	T
T	T	T	T	T	T	T	T	T	T	T
T	T	T	T	T	T	T	T	T	T	T
T	T	T	T	T	T	T	T	T	T	T
T	T	T	T	T	T	T	T	T	T	T
T	T	T	T	T	T	T	T	T	T	T
T	T	T	T	T	T	T	T	T	T	T
T	T	T	T	T	T	T	T	T	T	T
T	T	T	T	T	T	T	T	T	T	T

Complementary technical informations

Selectivity table

Upstream: EasyPact MVS 06-16
Downstream: EasyPact CVS 06-16

$\mathrm{Ue} \leq 415 \mathrm{Vac}$

Upstream		EasyPact MVS C 06-16														
Trip Unit		ET 2.0 Im=101r					ET5.0-6.0 Im=15In					ET5.0 - 6.0 Inst OFF				
Downstream Selectivity limit (kA)	Rating	630	800	1000	1250	1600	630	800	1000	1250	1600	630	800	1000	1250	1600
	Setting Ir	630	800	1000	1250	1600	630	800	1000	1250	1600	630	800	1000	1250	1600
$\begin{aligned} & \text { MVS C } 06 \\ & \text { ET } \end{aligned}$	250	6.3	8	10	12.5	16	12	12	15	18.75	24	42	42	42	42	42
	320	6.3	8	10	12.5	16	12	12	15	18.75	24	42	42	42	42	42
	400	6.3	8	10	12.5	16	12	12	15	18.75	24	42	42	42	42	42
	500		8	10	12.5	16		12	15	18.75	24		42	42	42	42
	630			10	12.5	16			15	18.75	24			42	42	42
$\begin{aligned} & \hline \text { MVS C } 08 \\ & \text { ET } \end{aligned}$	320	6.3	8	10	12.5	16	12	12	15	18.75	24	42	42	42	42	42
	400	6.3	8	10	12.5	16	12	12	15	18.75	24	42	42	42	42	42
	500		8	10	12.5	16		12	15	18.75	24		42	42	42	42
	630			10	12.5	16			15	18.75	24			42	42	42
	800				12.5	16				18.75	24				42	42
$\begin{aligned} & \hline \text { MVS C } 10 \\ & \text { ET } \end{aligned}$	400	6.3	8	10	12.5	16	12	12	15	18.75	24	42	42	42	42	42
	500		8	10	12.5	16		12	15	18.75	24		42	42	42	42
	630			10	12.5	16			15	18.75	24			42	42	42
	800				12.5	16				18.75	24				42	42
	1000					16					24					42
$\begin{aligned} & \hline \text { MVS C } 12 \\ & \text { ET } \end{aligned}$	500		8	10	12.5	16		12	15	18.75	24		42	42	42	42
	630			10	12.5	16			15	18.75	24			42	42	42
	800				12.5	16				18.75	24				42	42
	1000					16					24					42
	1250															
$\begin{aligned} & \hline \text { MVS C } 16 \\ & \text { ET } \end{aligned}$	630			10	12.5	16			15	18.75	24			42	42	42
	800				12.5	16				18.75	24				42	42
	960					16					24					42
	1250															
	1600															

Nota: respect the basic rules of selectivity for overload and short-circuit. See Introduction

Complementary technical informations ,

Selectivity table
Upstream: EasyPact MVS 08-20
Downstream: EasyPact MVS C 06-16,
$\mathrm{Ue} \leq 415 \mathrm{Vac}$ MVS 08-40 N/H

Upstream		EasyPact MVS 08-20 N/H																		
Trip Unit		ET $2.0 \mathrm{~lm}=10 \mathrm{Ir}$							ET5.0-6.0 Im=15ln						ET5.0 - 6.0 Inst OFF					
Down stream	Rating	800			1000	1250	1600	2000	800		1000	1250	1600	2000	800		1000	1250	1600	2000
	Setting Ir	630	80	0	1000	1250	1600	2000	630	800	1000	1250	1600	2000	630	800	1000	1250	1600	2000
Selectivity limit (kA)																				
$\begin{aligned} & \hline \text { MVS C } 06 \\ & \text { ET } \end{aligned}$	400	6.3	8		10	12.5	16	20	12	12	15	18.75	24	30	T	T	T	T	T	T
	500		8		10	12.5	16	20		12	15	18.75	24	30		T	T	T	T	T
	630				10	12.5	16	20			15	18.75	24	30			T	T	T	T
MVS08 N/H MVS C 08 ET	320	6.3	8		10	12.5	16	20	12	12	15	18.75	24	30	T	T	T	T	T	T
	400	6.3	8		10	12.5	16	20	12	12	15	18.75	24	30	T	T	T	T	T	T
	500		8		10	12.5	16	20		12	15	18.75	24	30		T	T	T	T	T
	630				10	12.5	16	20			15	18.75	24	30			T	T	T	T
	800					12.5	16	20				18.75	24	30				T	T	T
MVS10 N/H MVS C 10 ET	400	6.3	8		10	12.5	16	20	12	12	15	18.75	24	30	T	T	T	T	T	T
	500		8		10	12.5	16	20		12	15	18.75	24	30		T	T	T	T	T
	630				10	12.5	16	20			15	18.75	24	30			T	T	T	T
	800					12.5	16	20				18.75	24	30				T	T	T
	1000						16	20					24	30					T	T
MVS12 N/H MVS C 12 ET	500		8		10	12.5	16	20		12	15	18.75	24	30		T	T	T	T	T
	630				10	12.5	16	20			15	18.75	24	30			T	T	T	T
	800					12.5	16	20				18.75	24	30				T	T	T
	1000						16	20					24	30					T	T
	1250							20						30						T
MVS16 N/H MVS C 16 ET	630				10	12.5	16	20			15	18.75	24	30			T	T	T	T
	800					12.5	16	20				18.75	24	30				T	T	T
	960						16	20					24	30					T	T
	1250							20						30						T
	1600																			
$\begin{aligned} & \hline \text { MVS20 N/H } \\ & \text { ET } \end{aligned}$	800					12.5	16	20				18.75	24	30				T	T	T
	1000						16	20					24	30					T	T
	1250							20						30						T
	1600																			

4 Selectvity limit $=4 \mathrm{kA}$

T Total selectivity, up to the breaking capacity of the downstream circuit breaker.
\qquad No Selectivity

Nota: respect the basic rules of selectivity for overload and short-circuit. See Introduction

Complementary technical informations

Selectivity table
Upstream: EasyPact MVS 25-40 N/H
Downstream: EasyPact CVS C 06-16
$\mathrm{Ue} \leq 415 \mathrm{Vac}$

Upstream		EasyPact MVS $08-20 \mathrm{~N} / \mathrm{H}$								
Trip Unit		ET 2.0 Im=101r			E-T5.0-6.0 Im=15in			ET5.0-6.0 Inst OFF		
	Rating	2500	3200	4000	2500	3200	4000	2500	3200	4000
Downstream	Setting Ir	2500	3200	4000	2500	3200	4000	2500	3200	4000
Selectivity limit (kA)										
MVS C 06 ET	<=630	25	32	40	37.5	T	T	T	T	T
MVS C 08 ET	<=800	25	32	40	37.5	T	T	T	T	T
MVS C 10 ET	<=1000	25	32	40	37.5	T	T	T	T	T
MVS C 12 ET	<=1250	25	32	40	37.5	T	T	T	T	T
MVS C 16 ET	<=1600	25	32	40	37.5	T	T	T	T	T
MVS 08 N ET	<=800	25	32	40	37.5	48	T	T	T	T
MVS 10 N ET	<=1000	25	32	40	37.5	48	T	T	T	T
MVS 12 NET	<=1250	25	32	40	37.5	48	T	T	T	T
MVS 16 N ET	<=1600	25	32	40	37.5	48	T	T	T	T
MVS 16 N ET	<=1600	25	32	40	37.5	48	T	T	T	T
MVS 20 N ET	<=2000	25	32	40	37.5	48	T	T	T	T
MVS 25 N ET	<=2500		32	40		48	T		T	T
MVS 32 N ET	<=3200			40			T			T
MVS 08 HET	<=800	25	32	40	37.5	48	60	T	T	T
MVS 10 HET	<=1000	25	32	40	37.5	48	60	T	T	T
MVS 12 HET	<=1250	25	32	40	37.5	48	60	T	T	T
MVS 16 HET	<=1600	25	32	40	37.5	48	60	T	T	T
MVS 16 HET	<=1600	25	32	40	37.5	48	60	T	T	T
MVS 20 HET	<=2000	25	32	40	37.5	48	60	T	T	T
MVS 25 HET	$<=2500$		32	40		48	60		T	T
MVS 32 HET	<=3200			40			60			T

Nota: respect the basic rules of selectivity for overload and short-circuit. See Introduction

Catalogue numbers and order form

EasyPact MVS

Catalogue numbers and order form

Functions and characteristics A-1
Installation recommendations $B-1$
Dimensions and connection C-1
Electrical diagrams D-1
Tripping curves E-2
Nomenclature F-2
EasyPact MVS 630-4000A F-3
EasyPact MVS Frame 1 F-10
Connection F-10
ET Trip System \& accessories F-12
EasyPact MVS F-13
Communication,monitoring and control F-13
Remote operation F-14
Chassis locking and accessories F15
Circuit breaker locking and accessories F16
Mechanical interlocking for source changeover F-17
EasyPact MVS Frame 2 F-18
Remote operation F-19
Chassis locking and accessories F-20
Circuit breaker locking and accessories F-21
Mechanical interlocking for source changeover F-22
Indication contacts F-23
Instructions F-24
Order form F-25

Catalogue numbers and order form

Nomenclature

Example 1 MVS08C3NW6L

MVS	8	C	3	N	W	6	L	
EasyPact	800 A	50 kA	3 Pole	Electrical operated MVS			Withdrawable type	LSIG protection

Example 2 MVS16CA3MWOD

MVS	16	CA	3	M	W	0		
EasyPact MVS	1600 A	65 kA	3 Pole	Manual operated	Withdrawable type	No Protection for Switch Disconnector		Switch Disconnector
:---								

Catalogue numbers and order form

EasyPact MVS630-4000A
EasyPact MVS C/CA drawout 50KA

EasyPact MVS C drawout type 50KA with ET trip unit

		3 P			4P		
		ET 21	ET5S	ET6G	ET 21	ET5S	ET 6G
Manual	630A	MVS06C3MW2L	MVS06C3MW5L	MVS06C3MW6L	*	*	*
	800A	MVS08C3MW2L	MVS08C3MW5L	MVS08C3MW6L	*	*	*
	1000A	MVS10C3MW2L	MVS10C3MW5L	MVS10C3MW6L	*	*	*
	1250A	MVS12C3MW2L	MVS12C3MW5L	MVS12C3MW6L	*	*	*
	1600A	MVS16C3MW2L	MVS16C3MW5L	MVS16C3MW6L	*	*	*
Electrical$240 \mathrm{VAC}$	630A	MVS06C3NW2L	MVS06C3NW5L	MVS06C3NW6L	*	*	*
	800A	MVS08C3NW2L	MVS08C3NW5L	MVS08C3NW6L	*	*	*
	1000A	MVS10C3NW2L	MVS10C3NW5L	MVS10C3NW6L	*	*	*
	1250A	MVS12C3NW2L	MVS12C3NW5L	MVS12C3NW6L	*	*	*
	1600A	MVS16C3NW2L	MVS16C3NW5L	MVS16C3NW6L	*	*	*

EasyPact MVS C drawout type 50KA with ETA trip unit

		3 P			4P		
		ETA 21	ETA5S	ETA6G	ETA 21	ETA 5S	ETA6G
Manual	630A	MVS06C3MW2A	MVS06C3MW5A	MVS06C3MW6A	*	MVS06C4MW5A	MVS06C4MW6A
	800A	MVS08C3MW2A	MVS08C3MW5A	MVS08C3MW6A	*	MVS08C4MW5A	MVS08C4MW6A
	1000A	MVS10C3MW2A	MVS10C3MW5A	MVS10C3MW6A	*	MVS10C4MW5A	MVS10C4MW6A
	1250A	MVS12C3MW2A	MVS12C3MW5A	MVS12C3MW6A	*	MVS12C4MW5A	MVS12C4MW6A
	1600A	MVS16C3MW2A	MVS16C3MW5A	MVS16C3MW6A	*	MVS16C4MW5A	MVS16C4MW6A
Electrical 240V AC	630A	MVS06C3NW2A	MVS06C3NW5A	MVS06C3NW6A	*	MVS06C4NW5A	MVS06C4NW6A
	800A	MVS08C3NW2A	MVS08C3NW5A	MVS08C3NW6A	*	MVS08C4NW5A	MVS08C4NW6A
	1000A	MVS10C3NW2A	MVS10C3NW5A	MVS10C3NW6A	*	MVS10C4NW5A	MVS10C4NW6A
	1250A	MVS12C3NW2A	MVS12C3NW5A	MVS12C3NW6A	*	MVS12C4NW5A	MVS12C4NW6A
	1600A	MVS16C3NW2A	MVS16C3NW5A	MVS16C3NW6A	*	MVS16C4NW5A	MVS16C4NW6A

EasyPact MVS CA drawout type 50KA switch disconnector

Catalogue numbers and order form

EasyPact MVS630-4000A
 EasyPact MVS C/CA fixed 50KA

EasyPact MVS NA Drawout type 50kA switch disconnector

Catalogue numbers and order form

EasyPact MVS630-4000A
EasyPact MVS H/HA drawout 65KA

EasyPact MVS H drawout type 65KA with ET trip unit

		3P			4P		
		Trip System 2.0	Trip System 5.0	Trip System 6.0	Trip System 2.0	Trip System 5.0	Trip System 6.0
Manual	800A	MVS08H3MW2L	MVS08H3MW5L	MVS08H3MW6L	*	*	*
	1000A	MVS10H3MW2L	MVS10H3MW5L	MVS10H3MW6L	*	*	*
	1250A	MVS12H3MW2L	MVS12H3MW5L	MVS12H3MW6L	*	*	*
	1600A	MVS16H3MW2L	MVS16H3MW5L	MVS16H3MW6L	*	*	*
	2000A	MVS20H3MW2L	MVS20H3MW5L	MVS20H3MW6L	*	*	*
	2500A	MVS25H3MW2L	MVS25H3MW5L	MVS25H3MW6L	*	*	*
	3200A	MVS32H3MW2L	MVS32H3MW5L	MVS32H3MW6L	*	*	*
	4000A	MVS40H3MW2L	MVS40H3MW5L	MVS40H3MW6L	*	*	*
Electrical 240V AC	800A	MVS08H3NW2L	MVS08H3NW5L	MVS08H3NW6L	*	*	*
	1000A	MVS10H3NW2L	MVS10H3NW5L	MVS10H3NW6L	*	*	*
	1250A	MVS12H3NW2L	MVS12H3NW5L	MVS12H3NW6L	*	*	*
	1600A	MVS16H3NW2L	MVS16H3NW5L	MVS16H3NW6L	*	*	*
	2000A	MVS20H3NW2L	MVS20H3NW5L	MVS20H3NW6L	*	*	*
	2500A	MVS25H3NW2L	MVS25H3NW5L	MVS25H3NW6L	*	*	*
	3200A	MVS32H3NW2L	MVS32H3NW5L	MVS32H3NW6L	*	*	*
	4000A	MVS40H3NW2L	MVS40H3NW5L	MVS40H3NW6L	*	*	*

EasyPact MVS HA Drawout type 65kA switch disconnector

Catalogue numbers and order form

EasyPact MVS630-4000A

EasyPact MVS N/NA fixed 50KA

EasyPact MVS N fixedtype 50KA with ET trip unit

		3P			
		Trip System 2.0	Trip System 5.0	Trip System 6.0	
Manual	800A	MVS08N3MF2L	MVS08N3MF5L	MVS08N3MF6L	
	1000A	MVS10N3MF2L	MVS10N3MF5L	MVS10N3MF6L	
	1250A	MVS12N3MF2L	MVS12N3MF5L	MVS12N3MF6L	
	1600A	MVS16N3MF2L	MVS16N3MF5L	MVS16N3MF6L	
	2000A	MVS20N3MF2L	MVS20N3MF5L	MVS20N3MF6L	
	2500A	MVS25N3MF2L	MVS25N3MF5L	MVS25N3MF6L	
	3200A	MVS32N3MF2L	MVS32N3MF5L	MVS32N3MF6L	
	4000A	MVS40N3MF2L	MVS40N3MF5L	MVS40N3MF6L	
Electrical$240 \mathrm{~V} \text { AC }$	800A	MVS08N3NF2L	MVS08N3NF5L	MVS08N3NF6L	
	1000A	MVS10N3NF2L	MVS10N3NF5L	MVS10N3NF6L	
	1250A	MVS12N3NF2L	MVS12N3NF5L	MVS12N3NF6L	
	1600A	MVS16N3NF2L	MVS16N3NF5L	MVS16N3NF6L	
	2000A	MVS20N3NF2L	MVS20N3NF5L	MVS20N3NF6L	
	2500A	MVS25N3NF2L	MVS25N3NF5L	MVS25N3NF6L	
	3200A	MVS32N3NF2L	MVS32N3NF5L	MVS32N3NF6L	
	4000A	MVS40N3NF2L	MVS40N3NF5L	MVS40N3NF6L	

EasyPact MVS NA fixedtype 50kA switch disconnector

Catalogue numbers and order form

EasyPact MVS630-4000A EasyPact MVS H/HA fixed65KA

EasyPact MVS H fixedtype 65KA with ET trip unit

		3 P			4P		
		Trip System 2.0	Trip System 5.0	Trip System 6.0	Trip System 2.0	Trip System 5.0	Trip System 6.0
Manual	800A	MVS08H3MF2L	MVS08H3MF5L	MVS08H3MF6L	*	*	*
	1000A	MVS10H3MF2L	MVS10H3MF5L	MVS10H3MF6L	*	*	*
	1250A	MVS12H3MF2L	MVS12H3MF5L	MVS12H3MF6L	*	*	*
	1600A	MVS16H3MF2L	MVS16H3MF5L	MVS16H3MF6L	*	*	*
	2000A	MVS20H3MF2L	MVS20H3MF5L	MVS20H3MF6L	*	*	*
	2500A	MVS25H3MF2L	MVS25H3MF5L	MVS25H3MF6L	*	*	*
	3200A	MVS32H3MF2L	MVS32H3MF5L	MVS32H3MF6L	*	*	*
	4000A	MVS40H3MF2L	MVS40H3MF5L	MVS40H3MF6L	*	*	*
Electrical 240V AC	800A	MVS08H3NF2L	MVS08H3NF5L	MVS08H3NF6L	*	*	*
	1000A	MVS10H3NF2L	MVS10H3NF5L	MVS10H3NF6L	*	*	*
	1250A	MVS12H3NF2L	MVS12H3NF5L	MVS12H3NF6L	*	*	*
	1600A	MVS16H3NF2L	MVS16H3NF5L	MVS16H3NF6L	*	*	*
	2000A	MVS20H3NF2L	MVS20H3NF5L	MVS20H3NF6L	*	*	*
	2500A	MVS25H3NF2L	MVS25H3NF5L	MVS25H3NF6L	*	*	*
	3200A	MVS32H3NF2L	MVS32H3NF5L	MVS32H3NF6L	*	*	*
	4000A	MVS40H3NF2L	MVS40H3NF5L	MVS40H3NF6L	*	*	*

EasyPact MVS HA fixedtype 65kA switch disconnector

Catalogue numbers and order form

EasyPact MVS Frame 1 Connection

Connection -MVS Frame 1
Fixed circuit breakers
Rear connection (vertical or horizontal mounting) / Replacement kit (3 or 4 parts)

Connection MVS Frame 2

Catalogue numbers and order form

EasyPact MVS
 ET Trip System \& accessories

ET trip units \& accessories
Battery + cover
33593

Battery (1 part)
Cover (1 part)

External sensors
External sensor for earth-fault protection (TCE) / 1 part

$400 / 1600 \mathrm{~A}$	33576
$400 / 2000 \mathrm{~A}$	34035
$1000 / 4000 \mathrm{~A}$	34036

External power supply module (AD) / 1 part

$\frac{24-30 ~ V ~ D C ~}{48-60 ~ V ~ D C ~}$
$200-240$ V AC

|LV454440
$48-60$ V DC
LV454441
Lv454444

Catalogue numbers and order form

EasyPact MVS

Communication, monitoring and control

Communication option

Monitoring and control
ULP wiring accessories

Catalogue numbers and order form

EasyPact MVS Frame 1

Remote operation

Remote operation				
Gear motor				
	MCH (1 part)			
	AC $50 / 60 \mathrm{~Hz}$	$100 / 130 \mathrm{~V}$		33176
		200/240 V		33177
		$277 / 415 \mathrm{~V}$		33179
	DC	$24 / 30 \mathrm{~V}$		33185
		48/60 V		33186
		100/125 V		33187
		200/250 V		33188
	Terminal block (1 part)	For fixed circuit breaker		47074
		For drawout circuit breaker		33098
Fixed.	Installation manual			MVS21736
Closing and opening release (XF or MX)				
	Standard coil (1 part)			
	AC $50 / 60 \mathrm{~Hz}$ DC	$24 / 30 \mathrm{~V}$ DC, 24 VAC		33659
		$48 / 60 \mathrm{~V}$ DC, 48 VAC		33660
		100/130 V AC/DC		33661
		200/250 V AC/DC		33662
		277 V AC		33663
		380/480 V AC		33664
	Terminal block (1 part)	For fixed circuit breaker		47074
		For drawout circuit breaker		33098
Fixed.	Installation manual			MVS21736
Undervoltage release MN				
	Undervoltage release (1 part)			
	AC $50 / 60 \mathrm{~Hz}$	$24 / 30 \mathrm{~V}$ DC, 24 VAC		33668
	DC	$48 / 60$ V DC, 48 V AC		33669
		100/130 V AC/DC		33670
		200/250 V AC/DC		33671
		380/480 V AC		33673
	Terminal block (1 part)	For fixed circuit breaker		47074
		For drawout circuit breaker		33098
Fixed.	Installation manual			47103
MN delay unit				
	MN delay unit (1 part)			
			R (non-adjustable)	$\mathbf{R r}$ (adjustable)
	AC $50 / 60 \mathrm{~Hz}$	$48 / 60$ V AC/DC		33680
	DC	100/130 V AC/DC	33684	33681
		200/250 V AC/DC	33685	33682
		380/480 V AC/DC		33683
	Installation manual			MVS21736

Catalogue numbers and order form

EasyPact MVS Frame 1

Chassis locking and accessories

	Right and left-hand side of chassis (VPECD or VPECG)		33172
	Installation manual		MVS21737
Chassis accessories			
Auxiliary terminal shield (CB) / 1 part			
	Terminal shield	$\left\lvert\, \begin{aligned} & 3 P \\ & 4 P\end{aligned}\right.$	$\begin{array}{\|l\|l\|} 33763 \\ 33764 \end{array}$
	Installation manual		MVS21737
Safety shut	part		
	Safety shutters (VO)	$3 P$ $4 P$	33765 33766

Installation manual	MVS21737

Note: the locking of safety shutters is integrated.

Catalogue numbers and order form

EasyPact MVS Frame 1
 Circuit breaker locking and accessories

Circuit breaker locking
OFF position locking / 1 part

By Profalux keylocks

Profalux
|adaptation kit
| 47515M

1 keylock Profalux (without adaptation kit):	Profalux 1 lock+ 1 key (without adaptation kit)	42888
Intallation manual		MVS21737

Other circuit breaker accessories

Escutcheon and accessories/1 part

			Fixed	Drawout
		Escutcheon	33718	33857
		Transparent		33859
		Escutcheon		33858
		Installation m		MVS21737

Escutcheon
Cover
Blanking plate

Catalogue numbers and order form

EasyPact MVS Frame 1

Mechanical interlocking for source changeover

Mechanical interlocking for source changeover
Interlocking using cables ${ }^{(1)}$

$|$| Choose 2 adaptation fixtures（1 for each breaker）+1 set of cables |
| :--- |
| 1 adaptation fixture for MVS Frame 1 fixed devices |
| 1 adaptation fixture for MVS Frame 1 drawout devices |
| 1 set of 2 cables |
| （1）Can be used with any combination of MVS，fixed or drawout devices． |

33200
33201
33209
（1）Can be used with any combination of MVS，fixed or drawout devices．

Indication contacts
＂Ready to close＂contact（1 max．）／ 1 part

				PF
		1 changeover contact（6A－240 V）		47080
			For fixed circuit breaker	47074
		ring	For drawout circuit breaker	33098
		Installati		MVS 21736

Carriage switches（connected／disconnected／test position）／ 1 part

Changeover contacts（6 A－240 V）
1 connected position contact（3 max．）$\quad \left\lvert\, \begin{array}{ll}33170\end{array}\right.$
1 test position contact（1 max．）
33170
1 disconnected position contact（2 max．）
33170
Auxiliary terminals for chassis alone

A	3 wire terminal（1 part），terminal block（1 part）	33098
塩	6 wires terminals drawout（1 part）	33099
喜 畄	Installation manual	MVS 21736

Catalogue numbers and order form

EasyPact MVS Frame 2

Remote operation

Catalogue numbers and order form

EasyPact MVS Frame 2
Remote operation

Remote operation
Undervoltage release MN

Catalogue numbers and order form

EasyPact MVS Frame 2

Chassis locking and accessories

Racking handle
为

Catalogue numbers and order form

EasyPact MVS Frame 2

Circuit breaker locking and accessories

Circuit breaker locking

Pushbutton locking device / 1 part

		By padlocks			48536	
		Installation manual			MVS21736	
OFF position locking / 1 part						
		By Profalux keylocks				
		Profalux	1 lock with 1 key + adaptatio		64928	
		2 locks 1 keys + adaptation		64929		
		Profalux 1 lock+ 1 key (with	daptation kit)	42888		
		Profalux 2 locks + 1 key (with	adaptation kit)	42878		
		Adaptation kit (without key		64925		
		By Ronis keylocks				
		Ronis	1 lock with 1 key + adaptation		64931	
		2 locks 1 keys + adaptation		64932		
		Ronis 1 lock+ 1 key (withou	ptation kit)	41940		
		Ronis 2 locks + 1 key (witho	daptation kit)	41950		
		Adaptation kit (without key l		64925		
		Installation manual	MVS21736			
Mechanical operation counter / 1 part						
			Operation counter CDM			48535
		Installation manual	MVS21736			
Escutcheon and accessories / 1 part						
			Cover Blanking plate		Fixed	Draw-out
		Escutcheon		48601	48603	
		Transparent cover (IP 54)		-	48604	
		Escutcheon blanking plate		48605	48605	
		Installation manual			MVS21736	

Catalogue numbers and order form

EasyPact MVS Frame 2
 Mechanical interlocking for source changeover

Mechanical interlocking for source changeover Interlocking of 2 devices using cables ${ }^{(1)}$

Choose 2 adaptation sets (1 for each device +1 set of cables)

1 adaptation fixture for EasyPact MVS fixed devices	47926
1 adaptation fixture for EasyPact MVS draw-out devices	47926
1 set 2 cables	33209

1 set of 2 cables
33209
(1) Can be used with any combination of EasyPact MVS, fixed or draw-out devices.

	Installation manual	\|MVS21738
Interlocking of 3 devices using cables		
Choose 3 adaptation (including 3 adaptation fixtures + cables)		
	3 sources, only 1 device closed, fixed or draw-out devices	48610
	2 sources + 1 coupling, fixed or draw-out devices	48609
	2 normal + 1 replacement source, fixed or draw-out devices	48608
\cdots	Installation manual	MVS21738

Catalogue numbers and order form

EasyPact MVS Frame 2

Indication contacts

Indication contacts
ON/OFF indication contacts (OF) / 12 parts

	1 additional block of 4 contacts		47887
	Wiring	For fixed circuit breaker	47074
		For draw-out circuit breaker	47849
	Installation manual		MVS21736
"Ready to close" contact (1 max.) / 1 part			
	1 changeover contact (5A-240 V)		47080
	Wiring	For fixed circuit breaker	47074
		For draw-out circuit breaker	47849
	Installation manual		MVS21736
"Connected, disconnected, test position" indication contact (carriage switches)/1 part			
	Changeover contacts 6A-240 V		33170
	Installation manual		MVS21736
Auxiliary terminals for chassis alone			
	3 wire terminal (1 part)		47849
	6 wire terminal (1 part)		47850
	Jumpers (10 parts)		47900

Catalogue numbers and order form

EasyPact MVS
Instructions

Instructions

Circuit breaker accessories
MVS21736
Chassis accessories
MVS21737
Interlocking of EasyPact MVS devices
MVS Communication user manual
MVS21835

Catalogue numbers and order form

Order ref no: Date: Product ref no: OA No. (to be filled by Order booking team)		

EasyPact MVS

Circuit breaker and Switch-disconnectors Customer Order form

To indicate your choices, check the applicable square boxes $\quad \square$

Indication contacts		
OF - ON/OFF indication contacts		
Standard	1 block of 4 OF	
Additional(not incl MVS C/CA)	1 block of 4 OF	6 A-240/380V AC

VSPO - Device locking in OFF position by key lock (Only one key lock per ACB possible)		Ronis Ronis
Key lock kit (w/o key lock)	Profalux	
1 key lock	Profalux	
2 identical key locks, 1 key(non include MVS C/CA)	Profalux	Ronis

Easy Communication Module

EasyCom Communication Module

Programmable contacts
2 M2C contacts(only with ETV Trip System) $\quad \square$

Connection				
Horizontal	Top			Bottom
Vertical	Top	$\sqrt{ }$	$\sqrt{ }$	
	Bottom	\square		

Trip System functions:

21 : Basic protection (long time + inst.)
5S : Selective protection (long time + short time + inst.)
6G : Selective + earth-fault protection (long time + short time + inst. + earth-fault)

Notes:

Customer can provide only the reference no. of the product for the listed references. Kindly refer to product catalogue for list of references
Customer to fill this order form for non-listed references.
All breakers will be provided with 1 OF (4 c/o contacts), 1 SDE (trip contact), Escutcheon (Panel sealing frame) as standard
All draw-out breakers/switches will be supplied with Chassis \& safety shutter.
For Electrical operated breakers/ switches, indicate the voltage ratings of $M C H, X F \& M X$
Refer to product catalogue for available voltage ratings of MCH/XF/MX/MN \& AD Module
The orientation of customer connecting terminals can be changed at site from Horizontal to vertical or vice-versa.

Life Is JUn
 Schneider
 Slectric

Schneider Electric Industries SAS

35, rue Joseph Monier
CS 30323
92506 Rueil Malmaison Cedex
France

RCS Nanterre 954503439
Capital social $928298512 €$
www.se.com

[^0]: 1 Reset button for mechanical trip indication.
 2 OFF pushbutton.
 3 OFF position lock.
 4 Door interlock.
 5 ON pushbutton.
 6 Spring charge indication.
 7 Pushbutton locking.
 8 Contact position indication.
 9 Operation counter

[^1]: Mounting on rails.

[^2]: F: datum.
 (1) Without escutcheon.
 (2) With escutcheon.

[^3]: Key:
 \square drawout device only.
 XXXX
 SDE1, OF1, OF2, OF3, OF4 supplied as standard.
 $\delta \delta$
 interconnected connections
 (only one wire per connection point).

[^4]: Key:

 XXX SDE1, OF1, OF2, OF3, OF4 supplied as standard
 \bigcirc Interconnected connections (only one wire per connection point)

[^5]: Nota: respect the basic rules of selectivity for overload and short-circuit. See Introduction

